首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Under minimal assumptions, we establish boundedness of every solution of a predator-prey system with constant rate harvesting or stocking of either or both species. This leads to an extension of the classical Kolmogorov theorem on asymptotic behavior of solutions of predator-prey systems.  相似文献   

2.
The natural historical literature contains a considerable body of work which indicates that harvesting (or predation) can alleviate competitive instabilities. In order to arrive at an understanding of this, the appropriate bifurcation structure for a rather general family of two-dimensional competitive systems is here investigated. The results of this analysis suggest that, in more complicated ecosystems with many competing species, (1) there is a good chance that harvesting at moderate rates will increase species diversity if one species is dominant in the unharvested system, while an increase in diversity is not likely to result from harvesting from a system with no dominant species, (2) whenever harvesting does increase species diversity, maximal diversity will occur at moderate harvesting rates, with less diversity at both very high and very low harvesting rates.  相似文献   

3.
The dynamic aspects of human harvesting behaviour are often overlooked in resource management, such that models often neglect the complexities of dynamic human effort. Some researchers have recognized this, and a recent push has been made to understand how human behaviour and ecological systems interact through dynamic social-ecological systems. Here, we use a recent example of a social-ecological dynamical systems model to investigate the relationship between harvesting behaviour and the dynamics and stability of a harvested resource, and search for general rules in how relatively simple human behaviours can either stabilize or destabilize resource dynamics and yield. Our results suggest that weak to moderate behavioural and effort responses tend to stabilize dynamics by decreasing return times to equilibria or reducing the magnitude of cycles; however, relatively strong human impacts can readily lead to human-driven cycles, chaos, long transients and alternate states. Importantly, we further show that human-driven cycles are characteristically different from typical resource-driven cycles and, therefore, may be differentiated in real ecosystems. Given the potentially dramatic implications of harvesting on resource dynamics, it becomes critical to better understand how human behaviour determines harvesting effort through dynamic social-ecological systems.  相似文献   

4.
Though the maximum sustainable yield (MSY) approach has been legally adopted for the management of world fisheries, it does not provide any guarantee against from species extinction in multispecies communities. In the present article, we describe the appropriateness of the MSY policy in a Holling–Tanner prey–predator system with different types of functional responses. It is observed that for both type I and type II functional responses, harvesting of either prey or predator species at the MSY level is a sustainable fishing policy. In the case of combined harvesting, both the species coexist at the maximum sustainable total yield (MSTY) level if the biotic potential of the prey species is greater than a threshold value. Further, increase of the biotic potential beyond the threshold value affects the persistence of the system.  相似文献   

5.
The visiting behaviour of oil-gathering, anthophorid bees on eglandular morphs of two Malpighiaceae species was observed in southeastern Brazil. The bees landed on eglandular flowers apparently by mistake, as suggested by their making one to a few scraping movements on landing, and behaving in the same way as they scrape oil glands on glandular flowers. After perceiving their mistake the bees either left the flower, making one to a few additional visits to other eglandular flowers before leaving the plant, or switched to pollen collecting. Large and medium-sized species of Centris, and some Epicharis, left the flowers after mistake visits, thus wasting time and energy, whereas small Centris and larger Epicharis switched to pollen harvesting, thus turning a mistake into a rewarding visit. Eglandular flowers of both Banisteriopsis muricata and Heteropterys aceroides attracted oil-gathering bees by deceit and probably acted as mimics of glandular flowers of their own species (automimicry). The pollination of eglandular morphs of these two Malpighiaceae species seems dependent mainly on the opportunistic, mixed oil-pollen gathering behaviour of deceived bees such as Epicharis schrottkyi. We suggest that some showy, eglandular species such as Banisteriopsis lutea may act as general mimics of other, oil-rewarding Malpighiaceae species.  相似文献   

6.
Land spreading of biosolids as a disposal option is expensive and can disperse pathogens and contaminants in the environment. This growth room study examined phytoremediation using switchgrass (Panicum virgatum L.) and cattail (Typha latifolia L.) as an alternative to land spreading of biosolids. Seedlings were transplanted into pots containing 3.9 kg of biosolids (dry wt.). Aboveground biomass (AGB) was harvested either once or twice during each 90-day growth period. Switchgrass AGB yield was greater with two harvests than with one harvest during the first 90-day growth period, whereas cattail yield was not affected by harvest frequency. In the second growth period, harvesting frequency did not affect the yield of either plant species. However, repeated harvesting significantly improved nitrogen (N) and phosphorus (P) uptake by both plants in the first period. Phytoextraction of P was significantly greater for switchgrass (3.9% of initial biosolids P content) than for cattail (2.8%), while plant species did not have a significant effect on N phytoextraction. The trace element accumulation in the AGB of both plant species was negligible. Phytoextraction rates attained in this study suggest that phytoremediation can effectively remove P from biosolids and offers a potentially viable alternative to the disposal of biosolids on agricultural land.  相似文献   

7.
Ants have been traditionally considered either as predators or dispersers of seeds, but not both. That is, ant dispersal is restricted to myrmecochorous seeds, while almost all seeds removed by seed‐harvesting ants are eaten. However, harvesting ants might be simultaneously antagonistic and mutualistic towards seeds. This study analyzes the predation–dispersal relationship between seed‐harvesting ants and seeds of Lobularia maritima, a non‐myrmechorous perennial herb, in order to disentangle the dual role of ants as dispersers and predators of L. maritima seeds. The results obtained confirm the role of harvesting ants as both predators and dispersers of the non‐myrmechorous seeds of L. maritima. The removal activity of Messor bouvieri on L. maritima seeds is very important, particularly in autumn, which is the flowering and fruiting peak of this plant. It can be estimated that harvesting ants collect more than 85% of seeds, and almost 70% of them are effectively lost to predation. However, these granivorous ants also have drawbacks as seed dispersers. There is a relatively small percent of seeds collected by ants that escape predation, either because they are dropped on the way to the nest (16.4% of seeds harvested), or because they are mistakenly rejected on the refuse pile (0.9%). Abiotic dispersal of L. maritima seeds in the absence of ants occurs over very short distances from the plant stem. As seeds dispersed by ants reach a considerably greater distance than that obtained by gravity, this might represent a real advantage for the species, because it reduces intraspecific adult competition for seedlings, which directly influences seedling survivorship. These results challenge the generalization that seed removal by ants generally leads to successful seed dispersal if done by legitimate seed dispersers, or seed loss if done by seed consumers that eat them, and confirm that harvesting ants might have a dual role as both predators and dispersers of nonmyrmechorous seeds.  相似文献   

8.
Theoretical analyses of single‐species models have revealed that the degree of synchrony in fluctuations of geographically separated populations increases with increasing spatial covariation in environmental fluctuations and increased interchange of individuals, but decreases with local strength of density dependence. Here we extend these results to include interspecific competition between two species as well as harvesting. We show that the effects of interspecific competition on the geographical scale of population synchrony are dependent on the pattern of spatial covariation of environmental variables. If the environmental noise is uncorrelated between the competing species, competition generally increases the spatial scale of population synchrony of both species. Otherwise, if the environmental noises are strongly correlated between species, competition generally increases the spatial scale of population synchrony of at least one, but also often of both species. The magnitude of these spatial scaling effects is, however, strongly influenced by the dispersal capacity of the two competing species. If the species are subject to proportional harvesting, this may synchronise population dynamics over large geographical areas, affecting the vulnerability of harvested species to environmental changes. However, the strength of interspecific competition may strongly modify this effect of harvesting on the spatial scale of population synchrony. For example, harvesting of one species may affect the spatial distribution of competing species that are not subject to harvesting. These analytical results provide an important illustration of the importance of applying an ecosystem rather than a single‐species perspective when developing harvest strategies for a sustainable management of exploited species.  相似文献   

9.
Predator and prey relationships are dynamic and interrelated. Thus, any offensive behaviour will vary according to differing defensive behaviours, or vice versa, within each species in any predator–prey system. However, most studies are one‐sided as they focus on just one behaviour, that of either the predator or prey. Here, we examine both predatory behaviour of an oophagus katydid and antipredator behaviour by a frog with egg‐stage parental care. Katydid offensive behaviour and predation success was greater in females and increased with predator maturity and size. Frog defensive behaviour was sex specific, probably because only mothers provide parental care. Defensive behaviour could be active, such as charging predators, or passive, such as sheltering eggs, with greater active defence against larger predators; neither was influenced by offspring age. These results are contrary to existing theory, which argues parental investment ought to be negatively correlated with parental predation risks and affected by offspring age. This study highlights the use of antipredator behaviour to test predictions of parental investment theories in amphibians. In addition, it illustrates the need to consider factors that influence both species concurrently when examining the complex interaction between predators and parents.  相似文献   

10.
An organism's morphology is constrained by its evolutionary history and the need to meet a variety of potentially competing functions. The ant genus Pheidole is the most species‐rich ant genus and almost every species has a dimorphic worker caste (a few are trimorphic). This separation of workers into two developmentally distinct subcastes (smaller minors and larger majors with distinctively large heads) may partially release individuals from functional constraints on morphology, making Pheidole an ideal genus for addressing questions on the evolution of morphology in relation to ecological specialization. Major workers can perform a variety of tasks, although they are usually specialized for defence, as well as food retrieval and processing. Pheidole species vary in their diet, although many species gather seeds. The major workers mill the seeds using large jaws powered by mandible closer muscles that occupy a large proportion of the head cavity. In the present study, we examined the relationship between seed‐harvesting and morphology in Pheidole, hypothesizing that majors of seed‐harvesting species would have larger heads relative to non‐seed‐harvesters to accommodate the powerful mandibular muscles needed to mill seeds. By taking a phylogenetically controlled comparative approach, we found that majors of seed‐associated Pheidole did not have larger heads (width and length) than majors of non‐seed‐harvesting species. However, the head length of minors (and to a lesser extent head width) was smaller in seed‐harvesters. Additionally, we found the difference in head size between majors and minors was greater in seed‐harvesting species. These morphological differences in diet, however, were not related to changes in the rate of evolution in either seed‐harvesting or non‐seed‐harvesting lineages. These findings suggest that the morphologies of worker subcastes can evolve independently of each other, allowing colonies with polymorphic workers to specialize on new resources or tasks in ways not possible in monomorphic species.  相似文献   

11.
The global behaviour of a class of predator-prey systems, modelled by a pair of non-linear ordinary differential equations, under constant rate harvesting and/or stocking of both species, is presented. Theoretically possible structures and transitions are developed and validated by computer simulations. The results are presented as transition loci in the F-G (prey harvest rate-predator harvest rate) plane.Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and in part by NSERC of Canada, Grant No. 67-3138The authors wish to thank Mr. Al MacKenzie of the Department of Electrical Engineering, University of British Columbia, for preparing the figures in this paper.  相似文献   

12.
Describing the drivers of species loss and of community change are important goals in both conservation and ecology. However, it is difficult to determine whether exploited species decline due to direct effects of harvesting or due to other environmental perturbations brought about by proximity to human populations. Here we quantify differences in species richness of coral reef fish communities along a human population gradient in Papua New Guinea to understand the relative impacts of fishing and environmental perturbation. Using data from published species lists we categorize the reef fishes as either fished or non-fished based on their body size and reports from the published literature. Species diversity for both fished and non-fished groups decreases as the size of the local human population increases, and this relationship is stronger in species that are fished. Additionally, comparison of modern and museum collections show that modern reef communities have proportionally fewer fished species relative to 19th century ones. Together these findings show that the reef fish communities of Papua New Guinea experience multiple anthropogenic stressors and that even at low human population levels targeted species experience population declines across both time and space.  相似文献   

13.
14.
We assessed the combined effects of varying the relative density and the relative floral morphological complexity of plant species on the behaviour of their bumblebee pollinators. Three species of bumblebee (Bombus pascuorum, B. terrestris and B. hortorum) were observed foraging on experimental arrays consisting of pair-wise combinations of four plant species: Borago officinalis, Phacelia tanacetifolia (both with simple flowers), Antirrhinum majus and Linaria vulgaris (both with complex flowers). Plant arrangements consisted of either two simple-flower species, a simple with a complex species or two complex species. The number of plants in each array was constant, while the frequency of each species was manipulated so that it was either rare, equal or common compared with its competitor. Contrary to predictions, rare plants were actually at an advantage in terms of the number of bees attracted per plant. However, rare plants were at a disadvantage in terms of pollen wastage because foragers more often went to a flower of another species after visiting a rare plant. The behaviour of bees on each plant species was further affected by plant floral complexity and the identity of the other species in the array. The three bumblebee species were markedly different in their foraging behaviour and in their responses to varying floral density and complexity. Each species preferred particular flower species. The results are discussed with reference to resource partitioning among bumblebee species. Received: 29 July 1998 / Accepted: 5 October 1998  相似文献   

15.
Comparative fluorescence studies on the chromosome of ten species of acridid grasshoppers, with varying amounts and locations of C-band positive heterochromatin, indicate that the only regions to fluoresce differentially are those that C-band. Within a given species there is a marked tendency for groups of chromosomes to accumulate heterochromatin with similar fluorescence behaviour at similar sites. This applies to all three major categories of heterochromatin — centric, interstitial and telomeric. Different sites within the same complement, however, tend to have different fluorescence properties. In particular, centric C-bands within a given species are regularly distinguishable in their behaviour from telomeric C-bands. Different species, on the other hand, may show distinct forms of differential fluorescence at equilocal sites. These varying patterns of heterochromatin heterogeneity, both within and between species, indicate that whatever determines the differential response to fluorochromes has tended to operate both on an equilocal basis and in a concerted fashion. This is reinforced by the fact that structural rearrangements that lead to the relocation of centric C-bands, either within or between species, may also be accompanied by a change in fluorescence behaviour.We dedicate this paper, with affection, to Professor Hans Bauer on the occasion of his 80th birthday, and in appreciation of his singular contribution to the study of chromosomes  相似文献   

16.
To test whether spider succession following harvest differed from succession following wildfire, spiders were collected by pitfall trapping and sweep netting over two years in aspen-dominated boreal forests. Over 8400 individuals from 127 species of spiders were identified from 12 stands representing three age-classes (stand origin in 1995, 1982, and 1968) and two disturbance types (wildfire and harvesting). The diversity of spider assemblages tended to be higher in fire-origin stands than in harvest-origin stands; the youngest fire-origin stands also supported more even distributions of spider species. Spider assemblages responded quickly to wildfire and harvesting as open habitat specialists colonized stands within one year after disturbance. Many web-building species common to older forests either survived harvesting, or re-colonized harvest-origin stands more rapidly than they re-colonized fire-origin stands. Cluster analyses and DCA ordination show faunal convergence by ca 30 years after wildfire and harvesting; trajectories in re-colonization, however, differed by disturbance type as the succession of spider assemblages from fire-origin stands lagged behind spider succession in harvest-origin stands. Comparison with cluster analyses using vegetation data and abiotic site conditions suggests spider assemblages recover from harvesting and fire more rapidly than do a variety of other site characteristics. Several spider species (e.g. Gnaphosa borea Kulezyński, Pirata bryantae Kurata, Arctosa alpigena (Doleschall)) appear dependent on some of the conditions associated with wildfires as they were absent or rarely collected in harvest-origin stands.  相似文献   

17.
Wildlife can cause serious crop damages, and factorial analyses focusing ecological aspects have been conducted to resolve this problem. However, ethological perspectives should also be considered. Individuals often show consistent biases in behaviour—so-called personality; e.g., boldness may cause to intrude into a farmland. Here, we hypothesized that boldness–shyness traits in wildlife could be managed through selective harvesting on the base of personality traits. We considered several scenarios involving the selective harvesting and fencing as means to prevent crop damage, and assessed their effects on the average boldness and population size using simulation models, assuming that bold individuals tend to enter farmlands, while shy ones prefer to stay in forests. The results showed that fencing and selective harvesting in farmlands reduced both the average boldness and crop damages, while harvesting in forests caused the increase of the both. Those results came from the selective harvesting and fencing on the base of personality traits, and indicate that not only population ecology but also an ethological approach is needed for wildlife management.  相似文献   

18.
The strongly anthropophilic behaviour of Anopheles gambiae Giles sensu stricto (Diptera: Culicidae), the most important malaria vector in Africa, has been demonstrated by field and laboratory studies. Other members of the An. gambiae complex express varied degrees of anthropophily. Anopheles quadriannulatus (Theobald) species A and B are more zoophilic members of the complex and hence are considered to be of no medical importance. Olfactometer experiments with An. quadriannulatus species A have demonstrated attraction to both human and cow odour. To extend these olfactometer observations a choice experiment was conducted in an outdoor cage with a human and a calf as baits, using laboratory-reared mosquitoes. Anopheles gambiae s.s. (from Liberia) and two strains of An. quadriannulatus species A (SKUQUA from South Africa, SANGQUA from Zimbabwe), marked with different coloured fluorescent powders for identification purposes, were released simultaneously and given an equal opportunity to feed on either host. The experiment was repeated six times. Bloodmeals were identified using the precipitin technique. Anopheles gambiae s.s. showed highly anthropophagic behaviour, taking 88% of bloodmeals from the human host. In contrast, both strains of An. quadriannulatus fed with equal frequency on the human or the calf; the response to either host was not significantly different. These results confirm the olfactometer findings and demonstrate anthropophagic behaviour not previously recorded in this species. This finding has implications for prospective manipulation of host preference for genetic control purposes.  相似文献   

19.
Recently, there has been growing recognition that fish harvesting practices can have important impacts on the phenotypic distributions and diversity of natural populations through a phenomenon known as fisheries-induced evolution. Here we experimentally show that two common recreational angling techniques (active crank baits versus passive soft plastics) differentially target wild largemouth bass (Micropterus salmoides) and rock bass (Ambloplites rupestris) based on variation in their behavioural tendencies. Fish were first angled in the wild using both techniques and then brought back to the laboratory and tested for individual-level differences in common estimates of personality (refuge emergence, flight-initiation-distance, latency-to-recapture and with a net, and general activity) in an in-lake experimental arena. We found that different angling techniques appear to selectively target these species based on their boldness (as characterized by refuge emergence, a standard measure of boldness in fishes) but not other assays of personality. We also observed that body size was independently a significant predictor of personality in both species, though this varied between traits and species. Our results suggest a context-dependency for vulnerability to capture relative to behaviour in these fish species. Ascertaining the selective pressures angling practices exert on natural populations is an important area of fisheries research with significant implications for ecology, evolution, and resource management.  相似文献   

20.
The young successional stages of boreal forests are an important habitat for many saproxylic species. These habitats are formed by disturbances such as forest fires and they are characterized by large volumes of dead wood and sun-exposed conditions. Today, young successional stages of natural origin are very rare in Fennoscandia and there is need for restoration. We constructed a large-scale field experiment in which we studied the effects of two restoration practices on beetle diversity: controlled burning and partial harvesting with creating different volumes of dead wood. We sampled beetles with flight-intercept traps recording a total of 56,031 individuals and 755 species. The species richness and abundance of both saproxylic and non-saproxylic beetles were increased by burning and harvesting but the volume of dead wood created on harvested sites had no short-term effect on species richness or abundance. Rare species, especially saproxylic ones, preferred burned sites and a similar trend was observed among red-listed and pyrophilous species. Burning and harvesting also resulted in different species assemblages and there were some additional differences according to the volume of dead wood. We conclude that fire can be successfully used in restoration of managed boreal forests to increase species diversity and to facilitate the recovery of declined species. However, long-term monitoring is needed to clarify the effects of the restoration practices, in particular those of creating dead wood without using fire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号