首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of increased training on the sympathoadrenergic system was investigated. Moderately trained male subjects (n = 15) increased their training within 10 wk by 60%; eight of the subjects increased their training volume, and seven increased their training intensity. Before and after the training, an exhaustive treadmill exercise was carried out. Acute treadmill exercise increased beta-adrenergic receptor number on mononuclear lymphocytes, isoproternol-stimulated cAMP production, and plasma catecholamine concentration. The increase of receptor number can at least partially be explained by a changed lymphocyte composition at rest and after exercise. After training, the exercise-induced increase of beta-adrenergic receptor number was significantly blunted, and the exercise-induced increase of the isoproternol-stimulated cAMP production per beta-receptor was enhanced. Subjects who experienced increased symptoms of physical discomfort and/or mood changes showed an enhanced cAMP production after training. These findings point to an altered regulation of the receptor and postreceptor mechanisms as an effect of a 10-wk period of hard training.  相似文献   

2.
It has been observed that repeated and prolonged beta-agonist treatment causes the impairment of beta-adrenergic function, so-called "desensitization" or "down regulation". To clarify the mechanism of down regulation, the following experiment was performed using guinea pig lungs. Animals were divided into four groups: In the metaproterenol groups, guinea pigs were treated with metaproterenol (10 mg/kg/day) by intraperitoneal injection once a day for 1 day or for 7 successive days In the control groups, guinea pigs were treated with saline by the same procedure as in the metaproterenol groups. In the group treated with metaproterenol for 7 days, there was a 45% reduction in the number of beta-adrenoceptors and a 62% reduction in adenylate cyclase activity, compared with those of the control group. However, there were no significant changes in the dissociation constant (Kd) of the receptors. On the other hand, no reduction in the number of beta-adrenoceptors and adenylate cyclase activity was observed in the group treated with metaproterenol once a day for 1 day, compared with those of the control group. Phospholipase (PLase) activity in the lung microsomes of guinea pigs injected with metaproterenol for 1 day and for 7 days was elevated by 14.4 and 33.1%, respectively, compared with that of the control groups. Phospholipid contents of lung membranes prepared from the animals treated with metaproterenol for 7 days were significantly decreased compared with those of the control group, though in the group treated with metaproterenol once a day for 1 day, phospholipid contents did not differ from those of the control. Lung membranes treated with PLase A2 revealed decreases both in the number of beta-adrenoceptors and adenylate cyclase activity, dose dependently. These results and the fact that membrane phospholipids are involved in the beta-adrenoceptor system suggest that down regulation observed during beta-agonist administration is, at least in part, attributed to degradation of phospholipids of lung membranes by the persistent activation of PLase in the tissue.  相似文献   

3.
In normal subjects beta-adrenergic responsiveness in the cardiovascular system has been shown to be impaired with increasing age. In order to correlate reduced hormonal responsiveness to an age-related defect at the receptor level, high affinity beta-adrenergic receptors in homogenates of human mononuclear leucocytes have been studied with a (?)-3H-dihydroalprenolol (3H-DHA) binding assay. The binding sites have been characterized by rapid kinetics, saturability, structural and sterospecificity. Binding equilibrium was obtained within 16 minutes at 37° and was reversed by 50% within 10.6 minutes. In 22 healthy subjects a binding capacity of 60 ± 8 fmol/mg protein and an equilibrium dissociation constant (KD) of 0.6 ± 0.05 nM was found. Beta-adrenergic agonists displaced 3H-DHA binding with a potency order of isoproterenol > adrenaline > noradrenaline. The (?) isomers of beta-adrenergic agonists and antagonists were one to two orders of magnitude more potent as inhibitors of 3H-DHA binding than their corresponding (+) isomers. The binding capacity and affinity of the beta-adrenergic receptors did not differ in old, as compared to young normal subjects. Leucocytes from 14 individuals 18–40 years old had an average density of 53 ± 4 fmol/mg protein, while the average density in leucocytes from 8 individuals aged 53–65 years was 67 ± 8 fmol/mg protein. The KD was 0.6 ± 0.05 nM in both groups. In conclusion, an age-related decrease of beta-adrenergic receptor-mediated cardiovascular functions does not seem to be reflected in the properties of beta-adrenergic receptors of mononuclear leucocytes.  相似文献   

4.
Results of hemacytometer cell counts and of tyrosinase measurements made by the Pomerantz method demonstrate that imidazole added to the medium of cultured B16 mouse melanoma cells can stimulate tyrosinase specific activity and inhibit cell division. These effects are greater than with adenosine 3',5' cyclic monophosphate (cAMP) or the cAMP-phosphodiesterase inhibitor theophylline. The effects of imidazole on cell division and tyrosinase are enhanced by theophylline and antagonized by cAMP. Cyclic AMP-phosphodiesterase activity in cell-free extracts can be inhibited by theophylline and stimulated by imidazole. However, imidazole does not affect cAMP-phosphodiesterase specific activity in vivo, nor does it affect intracellular cAMP concentrations as determined by competitive protein-binding assays. In contrast, the specific activity of cAMP-phosphodiesterase in vivo is stimulated by cAMP and theophylline, supporting the hypothesis that cAMP and agents which increase intracellular cAMP concentrations induce the synthesis of cAMP-phosphodiesterase. Studies with actinomycin-D and cycloheximide support the hypothesis that cAMP can also mediate posttranslational activation of tyrosinase. Similar experiments suggest that imidazole, or a derivative thereof, can induce the synthesis of tyrosinase at the pretranslational level of control. We hypothesize that this type of regulation (pretranslational) by imidazole may define a role for the concept of "Metabolite Gene Regulation" (MGR), in mammalian cells.  相似文献   

5.
Several studies have suggested the involvement of biogenic monoaminergic neurotransmission in bipolar disorder and in the therapy for this disease. In this study, the effects of the mood-stabilizing drugs lithium, carbamazepine or valproate on the dopaminergic and adrenergic systems, particularly on D2-like and beta-adrenergic receptors, were studied both in cultured rat cortical neurones and in rat prefrontal cortex. In vitro and in vivo data showed that stimulation of beta-adrenergic receptors with isoproterenol increased cyclic adenosine monophosphate (cAMP) levels and this effect was significantly inhibited by lithium, carbamazepine or valproate. The activation of dopamine D2-like receptors with quinpirole decreased the isoproterenol-induced rise in cAMP in control conditions. This inhibition was observed in vivo after chronic treatment of the rats with carbamazepine or valproate, but not after treatment with lithium or in cultured rat cortical neurones after 48 h exposure to the three mood stabilizers. Dopamine D2 and beta1-adrenergic receptors were found to be co-localized in prefrontal cortical cells, as determined by immunohistochemistry, but western blot experiments revealed that receptor levels were differentially affected by treatment with the three mood stabilizers. These data show that mood stabilizers affect D2 receptor-mediated regulation of beta-adrenergic signalling and that each drug acts by a unique mechanism.  相似文献   

6.
1. Beta-adrenergic agonists were not effective inhibitors of lipogenesis in porcine adipose tissue slices in vitro; addition of theophylline permitted the inhibition. 2. Inhibition was increased to a greater extent by isoproterenol than epinephrine and was decreased by propranolol, therefore presumably via beta-adrenergic receptors. 3. Caffeine, isobutylmethylxanthine and theophylline all permitted inhibition of lipogenesis by beta-adrenergic agonists. 4. It is not clear whether the mechanism for this permissive action is via antagonism of the adenosine receptor, inhibition of cAMP phosphodiesterase or a combination of both. 5. Adenosine deaminase was weakly permissive, presumably through destruction of adenosine. Inhibition of lipogenesis was observed with glucose or acetate as lipogenic substrate and in the presence or absence of albumin.  相似文献   

7.

Background and Objective

Asthma is associated with airway narrowing in response to bronchoconstricting stimuli and increased airway smooth muscle (ASM) mass. In addition, some studies have suggested impaired β-agonist induced ASM relaxation in asthmatics, but the mechanism is not known.

Objective

To characterize the potential defect in β-agonist induced cAMP in ASM derived from asthmatic in comparison to non-asthmatic subjects and to investigate its mechanism.

Methods

We examined β2-adrenergic (β2AR) receptor expression and basal β-agonist and forskolin (direct activator of adenylyl cyclase) stimulated cAMP production in asthmatic cultured ASM (n = 15) and non-asthmatic ASM (n = 22). Based on these results, PDE activity, PDE4D expression and cell proliferation were determined.

Results

In the presence of IBMX, a pan PDE inhibitor, asthmatic ASM had ∼50% lower cAMP production in response to isoproterenol, albuterol, formoterol, and forskolin compared to non-asthmatic ASM. However when PDE4 was specifically inhibited, cAMP production by the agonists and forskolin was normalized in asthmatic ASM. We then measured the amount and activity of PDE4, and found ∼2-fold greater expression and activity in asthmatic ASM compared to non-asthmatic ASM. Furthermore, inhibition of PDE4 reduced asthmatic ASM proliferation but not that of non-asthmatic ASM.

Conclusion

Decreased β-agonist induced cAMP in ASM from asthmatics results from enhanced degradation due to increased PDE4D expression. Clinical manifestations of this dysregulation would be suboptimal β-agonist-mediated bronchodilation and possibly reduced control over increasing ASM mass. These phenotypes appear to be “hard-wired” into ASM from asthmatics, as they do not require an inflammatory environment in culture to be observed.  相似文献   

8.
The study involved 30 subjects: 15 healthy individuals and 15 patients with atopic bronchial asthma of the moderate degree. Salbutamol was administered to asthmatic patients in the intravenous infusion for 7 days. beta-adrenergic receptor density in the lymphocytes and FEV1 were evaluated before and after therapy. Moreover, isoprenaline test was carried out to evaluate the sensitivity of the bronchial smooth muscle to beta-agonist. The test was performed prior to and after salbutamol therapy. It was found that beta-receptor agonist statistically significantly decreases beta-adrenergic receptor density. Equivalently, bronchial smooth muscle is less sensitive to beta-agonist in the same degree as a decrease in beta-adrenergic receptor density in the peripheral blood lymphocytes.  相似文献   

9.
Desensitization of turkey erythrocyte adenylate cyclase by exposure of these cells to the beta-adrenergic agonist isoproterenol leads to a decrease in subsequent adenylate cyclase stimulation by isoproterenol, F-, or Gpp(NH)p without any apparent loss or down regulation of receptors (B.B. Hoffman et al. J. Cyclic Nucl. Res. 5: 363-366, 1979). We now report that the desensitization is associated with a functional "uncoupling" of the beta-adrenergic receptor. This is evidenced by an impaired ability of receptors to form a high affinity, guanine nucleotide sensitive complex with agonist as assessed by computer analysis of radioligand binding data. The changes in adenylate cyclase responsiveness as well as the alterations in receptor affinity for agonists are reproduced by incubation of turkey erythrocytes with the cAMP analog 8-Bromo-adenosine 3':5'- cyclic monophosphate. These findings suggest that one possible mechanism for the development of desensitization in adenylate cyclase systems may be a cAMP mediated alteration of a component(s) of the beta-adrenergic receptor-adenylate cyclase complex which results in impaired receptor-cyclase coupling.  相似文献   

10.
Metabolism of arachidonic acid via the cyclooxygenase and lipoxygenase pathways was studied in washed platelets from normal and asthmatic subjects. The platelets were incubated with [1-14C] arachidonic acid and the metabolites formed were separated by high pressure liquid chromatography (HPLC). The platelets from asthmatic patients had a 40% decrease in cyclooxygenase-derived metabolites and a 70% increase in lipoxygenase-derived product when compared with metabolites generated by platelets from normal subjects. The ratio of cyclooxygenase to lipoxygenase products was 3.24 ± 0.26 for platelets from normal subjects, and 1.14 ± 0.15 with platelets from the asthmatic patients. These results indicate an imbalance of arachidonic acid metabolism in platelets from asthmatic patients.  相似文献   

11.

Background

The "Th2 hypothesis for asthma" asserts that an increased ratio of Th2:Th1 cytokine production plays an important pathogenic role in asthma. Although widely embraced, the hypothesis has been challenged by various empirical observations and has been described as overly simplistic. We sought to establish whether CD3+CD28-mediated and antigen-independent accumulation of type 1 and type 2 T cells differs significantly between nonasthmatic and asthmatic populations.

Methods

An ex vivo system was used to characterize the regulation of IFN-γ-producing (type 1) and IL-13-producing (type 2) T cell accumulation in response to CD3+CD28 and IL-2 stimulation by flow cytometry.

Results

IL-13-producing T cells increased in greater numbers in response to antigen-independent stimulation in peripheral blood lymphocytes from female atopic asthmatic subjects compared with male asthmatics and both male and female atopic non-asthmatic subjects. IFN-γ+ T cells increased in greater numbers in response to either antigen-independent or CD3+CD28-mediated stimulation in peripheral blood lymphocytes from atopic asthmatic subjects compared to non-asthmatic subjects, regardless of gender.

Conclusions

We demonstrate that T cells from asthmatics are programmed for increased accumulation of both type 2 and type 1 T cells. Gender had a profound effect on the regulation of type 2 T cells, thus providing a mechanism for the higher frequency of adult asthma in females.  相似文献   

12.
The effect of the beta-adrenergic blockers L-alprenolol and DL-propranolol and of the beta-adrenergic agonist L-isoprenaline on the basal and thyrotropic hormone(TSH)-stimulated cyclic adenosine-monophosphate (cAMP) level in bovine thyroid slices was studied. The main basal cAMP level in bovine thyroid slices was 3 pmol/mg tissue. TSH stimulated cAMP production in correlation to the concentration. Maximum stimulation was achieved with a TSH concentration of 10 mU/ml. The beta-blockers DL-propranolol and L-alprenolol caused 74 and 77% inhibition of TSH-stimulated cAMP synthesis respectively. The beta-adrenergic agonist L-isoprenaline did not significantly affect either the basal or the TSH-stimulated cAMP level. The role of the beta-adrenergic receptor system in the regulation of TSH-stimulated cAMP synthesis is discussed.  相似文献   

13.
The response to exercise stress is characterized by an increase in circulating catecholamines and rapid synthesis of the inducible member of the 70 kDa family of heat shock proteins (Hsp70). Cell culture studies indicate that Hsp70 expression is influenced by beta-adrenergic receptor intermediates including cyclic AMP (cAMP) and cAMP dependent protein kinase (PKA). Thus, in the present investigation, the effect of a beta-adrenergic agonist, isoproterenol (ISO; 10 mg/kg) and a beta-adrenergic antagonist, nadolol (NAD; 25 mg/kg), on the in vivo expression of Hsp70 in rodent cardiac and skeletal muscle following moderate (MOD; 17 m/min) and exhaustive (EXH; 30 m/min) exercise was examined. While ISO alone did not induce Hsp70 synthesis, ISO treatment potentiated Hsp70 expression following MOD in the white vastus and heart (395+/-29 and 483+/-29% greater than control respectively, P < 0.05). Furthermore, this effect was reversed with combined beta-adrenergic agonist and antagonist treatment (ISO+NAD) indicating that the isoproterenol induced increase in post-exercise Hsp70 expression was mediated via beta-adrenergic receptor activity. However, there were no differences in Hsp70 levels among treatment groups following EXH. The failure of NAD to attenuate Hsp70 accumulation following EXH suggests that beta-adrenergic receptor activity is not the main signal in the induction of Hsp70 following exercise. Hsp70 induction was dependent on exercise intensity and ISO administration prior to MOD resulted in Hsp70 levels similar to those observed following EXH. The results from the present investigation indicate that beta-adrenergic receptor stimulation does not induce Hsp70 synthesis per se, but may be one factor involved in the complex regulation of the stress response to exercise in vivo.  相似文献   

14.
Thyrotropin (TSH) receptor mRNA levels in rat FRTL-5 thyroid cells are decreased by treatment with the calcium ionophores, A23187 or ionomycin, as well as with TSH, cholera toxin, forskolin, and 8-bromo-cAMP. Down regulation is, in each case, associated with a decrease in [125I]TSH binding and a decreased ability of TSH to increase cAMP levels. The ionophore does not alter cAMP levels and ethylene glycol-bis-(beta-aminoethyl ether) N, N'-tetraacetic acid (EGTA) in the medium prevents down regulation of TSH receptor mRNA levels by the ionophore, but not by TSH; the EGTA action is reversed by the simultaneous addition of Ca++. Whereas down regulation by TSH and its cAMP signal requires the presence of insulin and/or serum in the medium; down regulation by a calcium ionophore is still evident in their absence. Down regulation of TSH receptor mRNA levels and receptor desensitization by TSH/cAMP or an ionophore is lost in cells transfected with a full length TSH receptor cDNA devoid of regulatory elements, but able to reconstitute TSH receptor signal generation.  相似文献   

15.
In this study we investigated the effect of the selective and potent thromboxane A2 (TxA2) receptor antagonist GR32191 on smooth muscle contraction induced by the TxA2 analogue U46619, prostaglandin (PG) D2, PGF2 alpha, and methacholine (MCh) in guinea pig airways in vitro and the airways response provoked by inhaled PGD2 and MCh in asthmatic subjects in vivo. GR32191 antagonized competitively the contractile responses of all three prostanoids to a similar degree but had no effect on MCh-induced contractions. In asthmatic subjects GR32191, in a single oral dose of 80 mg, did not affect base-line airway caliber or MCh-induced broncho-constriction but caused significant inhibition of PGD2-induced bronchoconstriction, displacing the concentration-response curves to the right by greater than 10-fold. The effect of the same oral dose of GR32191 on allergen-induced immediate bronchoconstriction was subsequently investigated in allergic asthmatic subjects. In individual subjects, GR32191 inhibited to varying degrees the overall bronchoconstrictor response, with the maximum effect occurring between 10 and 30 min after allergen challenge. These studies suggest that prostanoids contribute to the immediate bronchoconstriction induced by inhaled allergen in allergic asthmatics, and that this effect is mediated by stimulation of a thromboxane receptor.  相似文献   

16.
The beta-adrenergic receptor-coupled adenylate cyclase system has been investigated in normal and Werner's syndrome fibroblasts. The basal levels of cAMP in Werner and normal control cells were similar, whereas the isoproterenol-induced increase in cAMP levels was far less for Werner cells than for control cells. In the broken cell preparations isoproterenol stimulated the adenylate cyclase of only control cells, not of Werner cells, although NaF or prostaglandin E1 stimulated the enzyme of both cells to the same extent. The beta-adrenergic receptor concentrations analyzed with hydrophilic radioligand were nearly equal in Werner and in control cells. A reduction of functional activity of the beta-adrenergic receptor in Werner cells is thus suggested.  相似文献   

17.
In two double-blind, multiple-dose cross-over studies the therapeutic effects of SR theophylline preparations given once each night (mean 11.2mg/kg per day) versus twice daily in equal doses (mean 10.3 mg/kg per day) (study I) and SR-terbutaline in equal doses (mean 0.25 mg/kg per day) versus SR theophylline in unequally divided daily doses (mean 5.3 mg/kg morning dose, 10.6 mg/kg evening dose) study II) were compared in 19 patients with nocturnal asthma. At the end of each treatment period drug serum concentrations and PEFR were measured every 2 hr over a 24-hr period. With the twice-daily, equally divided regimen, serum theophylline concentrations were lower at night than during the day (mean 9.4 ±0.9 versus 11.3± 1.0mg/l). With the single evening administration, serum theophylline concentrations were considerably higher at night (Cmax16.3 ±1.4 mg/1) and the circadian variation of PEFR was significantly reduced. PEFR was higher during night and early morning (283 ±14 versus 217 ± 11 l/min, P< 0.005). During daytime in study II, PEFR values were slightly higher with theophylline than terbutaline. There was no significant difference in peak flow between either treatment during the night and early morning. However, additional use of inhaled β-2-mimetics because of asthmatic attacks occurred more often during terbutaline (79 times in 8/10 patients) than theophylline treatment (29 times in 5/10 patients). Symptom scores, number of attacks and side-effects clearly favor the theophylline regimen. We conclude that for patients with nocturnal asthma a once-nightly dose of SR theophylline can be sufficient for stabilization of the airways.  相似文献   

18.
Agonist-promoted down-regulation of beta-adrenergic receptor mRNA was investigated in S49 mouse lymphoma variants with mutations in elements of hormone-sensitive adenylate cyclase. In wild-type cells steady-state levels of beta-adrenergic receptor mRNA were established by DNA-excess solution hybridization to be 1.72 +/- 0.08 (n = 8) amol/microgram total cellular RNA. Receptor mRNA levels declined 35-45% in response to stimulation by the beta-adrenergic agonist (-)isoproterenol or forskolin as described previously in DDT1 MF-2 cells (Hadcock, J. R., and Malbon, C. C. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 5021-5025). Agonist-promoted cAMP accumulation and down-regulation of receptor mRNA were analyzed in three variants with mutations in Gs alpha (H21a, unc, cyc-) and a single variant lacking cAMP-dependent protein kinase activity (kin-). H21a (Gs alpha coupled to receptor, but not to adenylate cyclase), unc (Gs alpha uncoupled from receptor), and cyc- (lacking Gs alpha) variants accumulated cAMP and down-regulated beta AR mRNA in response to forskolin. In unc and cyc- cells isoproterenol failed to stimulate cAMP; accumulation and down-regulation of receptor mRNA was not observed. H21a cells, in contrast, displayed agonist-promoted regulation of beta-adrenergic receptor mRNA but only basal levels of cAMP accumulation in response to isoproterenol. The kin- cells displayed cAMP accumulation in response to forskolin as well as to isoproterenol but no down-regulation of receptor mRNA or receptor expression. Taken together these data demonstrate several features of agonist-promoted down-regulation of mRNA: (i) cAMP-dependent protein kinase activity is required for down-regulation of mRNA (kin-), although elevated cAMP accumulation is not (H21a); (ii) functional receptor-Gs coupling is required (H21a), and clones lacking Gs alpha (cyc-) or receptor Gs coupling (unc) lack the capacity to down-regulate mRNA in response to agonist; and (iii) in the presence of basal levels of cAMP and cAMP-dependent protein kinase activity, functional receptor-Gs coupling (H21a) to some other effector other than adenylate cyclase may be propagating the signal.  相似文献   

19.
Immunity to Candida albicans (Candida) is characterized by a Th-1 type pattern of reactivity. Candida is rarely a cause antigen for bronchial asthma. Beta agonists have been found to inhibit secretion of IL-2 from T cells through intracellular cAMP elevation. We examined effects of isoproterenol (ISO) on Candida-stimulated T cells. Peripheral T cells obtained from six Candida-sensitive asthmatics, six Candida-sensitive non-asthmatic subjects, and six normal donors by Ficoll-Hypaque gradient centrifugation and nylon-wool column chromatography were incubated with Candida antigen or concanavalin A (Con A) in the absence or presence of ISO. Secretion of IL-2 and intracellular accumulation of cAMP were assayed by ELISA. Con A induced secretion of IL-2 in each of the three groups. Candida antigen induced IL-2 secretion in the normal and the non-asthmatic subjects, but not in the asthmatics. ISO, which reduced Con A-induced secretion of IL-2 in a dose-dependent manner, had no effect on Candida-induced secretion of IL-2. Although ISO increased the intracellular concentration of cAMP in untreated and Con A-treated T cells from all donors, cells from the normal and the non-asthmatic subjects, but not from the asthmatics, that were co-incubated with ISO and Candida had lower levels of cAMP than those treated with ISO alone. It is suggested that Candida antigen induces secretion of IL-2 and reduces ISO-inducible accumulation of cAMP in Candida-responsive IL-2 secreting cells, which may make Candida-induced secretion of IL-2 insensitive to ISO.  相似文献   

20.
We have investigated alterations in beta-adrenergic receptors in rat myocardial membranes derived from hypothyroid and hyperthyroid animals. (-)Isoproterenol competition curves with (-)[3H]dihydroalprenolol revealed that isoproterenol binds to the beta-adrenergic receptor with two distinct affinity states having high (KH) and low (KL) dissociation constants. In the presence of guanine nucleotides the isoproterenol competition curve steepened and had a higher EC50 (50% displacement). This was due to a transition of the high affinity state to a uniformly low affinity state. Using computer modeling of these competition curves, we have demonstrated that in hyperthyroidism, the isoproterenol curve in the absence of guanine nucleotides is shifted to the left with the EC50 changing from 180 ± 40 to 80 ± 20 nM (p < .02). The fold shift (4 fold) in KH (nM) 30 ± 9 to 7 ± 2 (p < .001) is greater than that (1.6 fold) in KL (nM) 595 ± 56 to 376 ± 34 (p < .001) such that the KL/KH ratio shifted from 20 ± 3 to 54 ± 9 (p < .001). The ratio, KL/KH, for a particular agonist appears to be related to its efficacy in activating adenylate cyclase.There was no significant alteration in any of these parameters in hypothyroid animals. Receptor number was decreased in hypothyroidism, 16 ± 3 fmol/mg protein (p < .03) and increased in hyperthyroidism 44 ± 4 (p < .03) compared to control 26 ± 2.In the rat heart agonist affinity and receptor number are modulated in hyperthyroidism, but only receptor number in hypothryoidism. Thus thyroid hormone can modify not only receptor number but agonist affinity as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号