首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 382 毫秒
1.
Infinite cis uptake of cyclic AMP into red blood cell ghosts has been measured. The Kicoi is calculated from two different integrated rate equations that are applicable when the substrate concentration is unsufficient to cause volume changes. Values of 0.69 mM and 0.66 mM are obtained for the infinite cisKm at 30°C using these procedures. These values are only slightly higher than that predicted from zero trans net flux experiments.Lowering the temperature reduces Kicoi from 0.69 mM at 30°C to 0.478 mM at 20°C, 0.108 mM at 10°C and 0.072 mM at 4°C (Q10 = 2.4). The Q10 for activation of influx permeability of 10?5 M cyclic AMP is 1.55.  相似文献   

2.
1. In mitochondrial particles antimycin binds to two separate specific sites with dissociation constants Kd1 ≦ 4 · 10?13M and Kd2 = 3 · 10?9M, respectively.2. The concentrations of the two antimycin binding sites are about equal. The absolute concentration for each binding site is about 100 – 150 pmol per mg of mitochondrial protein.3. Antimycin bound to the stronger site mainly inhibits NADH- and succinate oxidase. Binding of antimycin to the weaker binding site inhibits the electron flux to exogenously added cytochrome c after blocking cytochrome oxidase by KCN.4. Under certain conditions cytochrome b and c1 are dispensible components for antimycin-sensitive electron transport.5. A model of the respiratory chain in yeast is proposed which accounts for the results reported here and previously. (Lang, B., Burger, G. and Bandlow, W. (1974) Biochim. Biophys. Acta 368, 71–85).  相似文献   

3.
The uptake of d-glucose, 2-aminoisobutyric acid and glycine was studied with intestinal brush border membrane vesicles of a marine herbivorous fish: Boops salpa. The uptake of these three substances is stimulated by an Na+ electrochemical gradient (CoutCin). For glucose, an increase of the electrical membrane potential generated by a concentration gradient of the liposoluble anion, SCN?, increases the Na+-dependent transport. This responsiveness to the membrane potential was confirmed by valinomycin. Differently from glucose, uptake of glycine and 2-aminoisobutyric acid requires, besides the Na+ gradient, the presence of Cl? on the external side of the vesicles. In the absence of Cl?, amino acid uptake is not stimulated by the Na+ gradient and is not influenced by an electrical membrane potential generated by SCN? gradient (Cout>Cin) or by a K+ diffusion potential (Cin>Cout). This Cl? requirement differs from the Na+ requirement, since a Cl? gradient (Cout>Cin) does not result in an accumulation of glycine or 2-aminoisobutyric acid similar to that produced by an Na+ gradient.  相似文献   

4.
The kinetic parameters of the sugar transport in avian erythrocytes were evaluated under aerobic and anaerobic conditions. In anaerobic cells, transport measurements with 3-O-[14C] methylglucose resulted in a set of similar dissociation-like constants. Thus the Michaelis constants of 3-O-[14C] methylglucose entry and exit, Kso and Ksi, were 8 and 7 mM, respectively. The equilibrium exchange constant, Bs, and the counterflow constant, Rs, were 9 and 11 mM, respectively. The activity constant for 3-O-methylglucose transport, Fs, defined as V/Km, was 4 ml/h per g. This set of kinetic constants was compatible with a symmetrical mobile-carrier model. In contrast, the Michaelis constant for glucose entry, Kgo, was 2 mM and less than the counterflow constant, Rg (8 mM). This result could be accounted for by slower movement of the glucose-carrier complex than the free carrier. The activity constant for glucose transport, Fg, was 5 ml/h perg.Under aerobic conditions, two of the dissociation-like constants (Ksi and Bs) for 3-O-methylglucose transport were significantly larger than those obtained in anaerobic cells, but the remaining two (Kso and Rs) remained unchanged. The values, for Kso, Ksi, Bs and Rs were 8, 26, 20 and 8 mM, respectively. The activity constant, Fs, decreased to 2 ml/h per g. These changes in kinetic constants were consistent with the hypothesis that anoxia accelerated sugar transport by releasing free carrier that was previously sequestered on the inside of the cell membrane.  相似文献   

5.
Adult female Dipetalonema viteae worms obtained from hamsters were introduced beneath the dorsal skin of Balbc, C57Bl6, and C3HHe mice. The microfilaraemia from the transplanted worms in Balbc mice was higher and persisted longer than in C57Bl6, and in C3HHe mice was intermediate between these two strains. The transplanted adult worms were killed earlier in C57Bl6 compared to Balbc mice; adult worms were killed before the microfilariae were cleared from the circulation. D. viteae infective larvae did not reach maturity in mice but when female worms were implanted into mice which had been infected with third-stage infective larvae 6 or 19 days previously, microfilarial production was inhibited. Outbred as well as inbred nude mice infected with 10 or 20 infective larvae died by Day 15, whereas the normal littermate control mice that received the same number of infective larvae remained alive and healthy. There was no difference in the duration and level of microfilaraemia from implanted female worms in outbred nudes and their heterozygous littermate control mice. In contrast, microfilaraemia in inbred Balbc Nu+ was similar to that of inbred BalbcNuNu only until Day 45; thereafter the microfilaraemia declined to zero around Day 160 in the Nu+, at which time it was still high and persisted longer in the BalbcNuNu. Transplanted adults were viable in inbred BalbcNuNu for a longer time than in Balbc Nu+. When infected, amicrofilaraemic nudes, littermate controls, and three strains of mice were challenged, a very low level short-lasting microfilaraemia resulted.  相似文献   

6.
The Michaelis-Menten parameters, JM and Km of the initial 1-min fluxes of uptake of l-phenylalanine and of α-aminoisobutyric acid were determined for extracellular concentrations of Na+ ranging from 0.5 to 110 mequiv/l for Ehrlich ascites tumor cells. The maximal initial flux, JM, decreased with decrease in extracellular Na+ for both α-aminoisobutyric acid and phenylalanine but the Km for α-aminoisobutyric acid increased markedly as the Na+ concentration fell whereas the Km for phenylalanine decreased. Cycloleucine behaved like phenylalanine.The data provides strong evidence that the Na+-independent flux of phenylalanine is an exchange diffusion flux that can be varied by changing the intracellular level of amino acids such as phenylalanine. For phenylalanine, cyclolcucine, and methionine this exchange diffusion flux appears to be additive with the Na+-dependent initial flux. α-Aminoisobutyric acid also has an exchange diffusion that is Na+-independent but it has a high Km and is not additive with the Na+-dependent flux.  相似文献   

7.
A convective mass transfer model as analyzed and developed for use in determining intestinal wall permeabilities from external perfusion experiments. Analysis of the model indicates that the ratio of the exit to inlet concentration CmC0 is a function of only two dimensionless independent variables, the wall permeability, Pw1 and Graetz number, Gz = πDL/2Q. The Graetz number contains the independent variables of interest, length, diflusivity, and flow rate. The radius of the intestine is included implicitly in the flow rate. Since CmC0 and Gz are the experimental quantities, and the solution to the model system contains Pω1 implicitly, a convenient approximate method is developed which allows a direct calculation of Pω1. This method is in error by 10–20% in the worst cases. The approach is illustrated by application to the determination of the wall permeabilities for two non polar compounds.  相似文献   

8.
With the aid of direct microfluorimetric determination of marker organic anions (fluorescein and uranin) accumulated in the proximal tubules the influence of Na+ in the bath medium on the active transport of these anions was studied. Kinetic analysis of the rate dependence of organic acid active transport into tubules on their concentration in the bath medium with a constant Na+ concentration permitted to define values of apparent Km and V for uranin and fluorescein transport in the medium with different Na+ content. It was shown that a decrease of Na+ concentration in the medium increases Km and lowers the V/Km ratio with uncharged V. By varying the Na+ concentration in the medium with a constant concentration of the marker anion the KmNa+ and VNa+ values for fluorescein and uranin transport were determined. A KmNa+ value for fluorescein in twice as much that for uranin. The 1/Km value for uranin transport is a linear function of Na+ concentration, while for fluorescein transport it is a quadratic one. Therefore it is concluded that two Na+ from the medium participate in active transfer of one fluorescein anion whereas only one Na+ from the medium is required for active transfer of one uranin anion. The run out of fluorescein from tubules preloaded with this acid is sharply reinforced by the Na+ omission from the medium. Thus, active transport of organic acids in proximal tubules of frog kidney is Na+-dependent, and Na+ from the medium is likely to participate directly in formation of a transport complex. When Na+ is absent in the medium a carrier fulfils a facilitated diffusion only.  相似文献   

9.
A protein named oxidation factor can be reversibly removed from succinate-cytochrome c reductase complex and shown to be required for electron transfer between succinate and cytochrome c. This protein is required for reduction of cytochrome c1 and, in the presence of antimycin, for reduction of both cytochromes b and c1. These results are consistent with a protonmotive Q cycle mechanism in which the oxidation factor catalyzes electron transfer from reduced quinone to cytochrome c1 and thus liberates from reduced quinone one of two protons required for energy conservation during electron transfer through the cytochrome b-c1 complex.  相似文献   

10.
The changes in polymer-solvent interactions that occur when native calf thymus DNA is dialyzed against Na2SO4 solutions of a given ionic strength and buffer concentration but of varying concentrations in methylmercuric hydroxide have been investigated with the help of solution density measurements at 25 °C and pH 6.8–7.0. From measurements executed under equilibrium dialysis conditions at the three salt levels 5 mm, 0.05 m, and 0.5 m Na2SO4 (m refers to molality) and in the presence of 5 mm cacodylic acid buffer, the density increments (???c2)μ0 for native calf thymus DNA were determined as a function of CH3HgOH concentration. (???c2)μ0 was found not to vary with organomercurial concentration, irrespective of the concentration of supporting electrolyte, until a certain CH3HgOH concentration level has been reached, viz., pM1 ? 3.5 (pM1 = ?log mCH3HgOH), beyond which (???c2)μ0 increases strongly with increasing concentration of CH3HgOH. As is shown by optical melting, (???c2)μ0 becomes a function of organomercurial concentration the moment DNA undergoes denaturation brought about by the complexing of CH3HgOH with the various N-binding sites of the base residues in the DNA double helix.Polymer-solvent interactions, expressed in terms of preferential water interactions (“net hydration”) and preferential salt interactions (“salt solvation”), were derived from the (???c2)μ0 data in combination with data obtained on the preferential interaction of CH3HgOH with denatured DNA and data on the partial specific volumes of all major solution components, gathered from density measurements on solutions with fixed concentrations of diffusible components. Evidence is presented which shows that denaturation in general decreases the net hydration while salt becomes preferentially associated with the polyelectrolyte. This process is further amplified by the interaction of CH3HgOH with denatured DNA: Methylmercurated DNA alters the redistribution of diffusible components at dialysis equilibrium to such an extent that in a formal sense large amounts of water are rejected from the immediate vicinity of the polymer. The molecular implications of these findings are explored. The results are further discussed in the light of previous findings where the methylmercury-induced denaturation of DNA had been studied with the help of buoyant density measurements in a Cs2SO4 density gradient and by velocity-sedimentation in a variety of sulfate media.  相似文献   

11.
The flow measurement of each component in each compartment is important in works on transport phenomena in a biological system. The method of flow measurement was studied adopting the capacitor concept derived from network thermodynamics.A biologically active component i in a compartment is defined as follows,
ni=n1+n2=c1V+c2V
where the total quantity ni consists of a measurable form ni (free form, conc. c1) and concealed form n2 (conc, c2). Capacitor for the species i of a compartment is defined as follows,
C=dnidμi=1+c2c1c1dVi+1+dc2dc1vdc1i
,
=Ac1dVi+BVdc1dt
Thus flow of each component is expressed as,
Ji=dnidi=dniinidt=Cdμidt
,
=Ac1dVdt+BVdc1dt
Method of determination of capacitor coefficients A and B by titration experiment was also considered. For an experimental case, the capacitance for H+ of blood compartment was determined. The relationship between the capacitor concept and the buffer value of Van Slyke was discussed.  相似文献   

12.
(1) The polymorphic phase behaviour of aqueous dispersions of various synthetic phosphatidylethanolamines, both singly and in mixtures, has been investigated by 31P-NMR. (2) 14:014:0 PE remains in the lamellar phase up to 90°C. 18:1t18:1t PE exhibits a lamellar to hexagonal (HII) transition between 60°C and 63°C. For 18:1c18:1c PE, the lamellar to hexagonal (HII) transition occurs between 7 and 12°C, whereas for 18:2c18:2c PE, the hexagonal (HII) phase is the preferred structure above ?15°C. (3) Mixtures of 18:1c18:1c PE and 18:1t18:1t PE exhibit near-ideal miscibility behaviour. For mixtures of 18:1c18:1c PE and 14:014:0 PE there is evidence of fluid-solid immiscibility at temperatures below the gel-liquid crystalline transition temperature of the 14:014:0 PE component. Mixtures of 18:2c18:2c PE and 18:1t18:1t PE exhibit complex phase behaviour involving limited fluid-solid immiscibility at low temperatures and formation of a phase allowing isotropic motional averaging at higher temperatures. (4) 31P-NMR provides a graphic method for investigating the miscibility properties of mixed PE systems.  相似文献   

13.
Glucose transport in human erythrocytes is characterized by a marked asymmetry in the V and Km values for entry and for exit. In addition, they show a high Km and a high V for equilibrium exchange but low Km values for infinite cis and for infinite trans exit and entry. An allosteric pore model has been proposed to account for these characteristics. In this model, substrate-induced conformational changes destabilize the interfaces between protein subunits (the pore gates).Pores doubly occupied from inside destabilize the transport gates and result in high Km and high V transport parameters. This effect is less marked when pores are doubly occupied from outside and therefore transport asymmetry results.  相似文献   

14.
Analysis of the cation composition of growing Mycoplasma mycoides var. Capri indicates that these organisms have a high intracellular K+ concentration (Ki: 200–300 mM) which greatly exceeds that of the growth medium, and a low Na+ concentration (Nai+: 20 mM). Unlike Nai+, Ki+ varies with cell aging.The K+ transport properties studied in washed organisms resuspended in buffered saline solution show that cells maintain a steady and large K+ concentration gradient across their membrane at the expense of metabolic energy mainly derived from glycolysis. In starved cells, Ki+ decreases and is partially compensated by a gain in Na+. This substitution completely reverses when metabolic substrate is added (K+ reaccumulation process). Kinetic analysis of K+ movement in cells with steady K+ level shows that most of K+ influx is mediated by an autologous K+-K+ exchange mechanism. On the other hand, during K+ reaccumulation by K+-depleted cells, a different mechanism (a K+ uptake mechanism) with higher transport capacity and affinity drives the net K+ influx. Both mechanisms are energy-dependent.Ouabain and anoxia have no effect on K+ transport mechanisms; in contrast, both processes are completely blocked by dicyclohexylcarbodiimide, an inhibitor of the Mg2+-dependent ATPase activity.  相似文献   

15.
Mitochondrial ubiquinol-cytochrome c reductase complex contains small amounts of succinate dehydrogenase. Estimates from electrophoresis indicate there is one dehydrogenase per eight complexes. This dehydrogenase transfers electrons to the b-c1 complex poorly, as judged by low succinate-ubiquinone and succinate-cytochrome c reductase activities. Electron transfer to the b-c1 complex is restored by reconstitution of the complex with phospholipid. This phospholipid dependent restoration of electron transfer indicates that either reconstitutive activity of the dehydrogenase is preserved under conditions where electron transfer is absent, or that addition of phospholipid allows one dehydrogenase to transfer electrons to multiple b-c1 complexes.  相似文献   

16.
Galactose transport by human platelets has been studied by measuring the cellular accumulation of the radiolabeled sugar during brief periods of suspension in varying concentrations of galactose. Weighted least-squares regression curves fitted to the measurements (initial velocity versus galactose concentration) indicate that a kinetic model with two saturable components is statistically more consistent with the data than a model based upon a single process (P < 0.001). For the two-component model Km1 = 0.29 mM, V1 = 1.2 mmol/min per 1015platelets, Km2 = 46 mM, V2 = 117 mmol/min per 1015platelets. The fact that galactose metabolites did not accumulate during the initial phase of uptake indicates that the uptake process is not mediated by enzymatic catalysis. Surface binding also appears inadequate to explain the uptake. The most likely basis for the kinetic data, therefore, is membrane transport. The kinetics are consistent with transport by coexistent membrane structures as well as with transport by a single structure manifesting negative cooperativity.  相似文献   

17.
The fall in transepithelial electrical resistance which accompanies aldosterone stimulation of short-circuit current (Isc) in toad urinary bladder has been studied further to evaluate the possible causal role of this response in hormonal stimulation of Na+ transport. A steady-state change in tissue conductance was found to depend upon both the simultaneous stimulation of transport by the steroid and the metabolic state of the tissue. Changes in metabolic state alone did not alter resistance. A sustained increase in Na+ transport, dependent on pretreatment with aldosterone and elicited by addition of glucose, could be obtained without a sustained decrease in resistance. Amiloride, an inhibitor of Na+ uptake, produced changes in Isc that were linearly correlated with its effects on tissue conductance. On the basis of the conductance-Isc relationship with amiloride, the Isc response to aldosterone was about two-fold higher than would be predicted from its effects on conductance alone. Despite the apparent lack of a simple quantitative dependence of the change in Isc on the change in conductance when the response is fully developed, the results suggest that conductance changes may mediate the initial or early stage of the response.  相似文献   

18.
Thermotropic properties of purified cytochrome c1 and cytochrome c have been studied by differential scanning calorimetry under various conditions. Both cytochromes exhibit a single endothermodenaturation peak in the differential scanning calorimetric thermogram. Thermodenaturation temperatures are ionic strength, pH, and redox state dependent. The ferrocytochromes are more stable toward thermodenaturation than the ferricytochromes. The enthalpy changes of thermodenaturation of ferro- and ferricytochrome c1 are markedly dependent on the ionic strength of the solution. The effect of the ionic strength of solution on the enthalpy change of thermodenaturation of cytochrome c is rather insignificant. The formation of a complex between cytochromes c and c1 at lower ionic strength causes a significant destabilization of the former and a slight stabilization of the latter. The destabilization of cytochrome c upon mixing with cytochrome c1 was also observed at high ionic strength, under which conditions no stable complex was detected by physical separation. This suggests formation of a transient complex between these two cytochromes. When cytochrome c was complexed with phospholipids, no change in the thermodenaturation temperature was observed, but a great increase in the enthalpy change of thermodenaturation resulted.  相似文献   

19.
The influence of a local anesthetic on the structure and function of an ion channel was examined, using the membrane-spanning domain of the erythrocyte anion transport protein, band 3, as the model system. The effect of lidocaine on the channel's structure was monitored in situ by highly sensitive differential scanning calorimetry. The influence of lidocaine on the channel's transport function was assayed by following the rate of H35SO4? exchange across the erythrocyte membrane. The results demonstrate that concentrations of lidocaine which inhibit ion transport also destabilize channel structure. While the uncharged form of lidocaine was a potent perturbant of both ion transport and channel stability, the cationic form of the anesthetic was ineffective in both respects. Based on empirical equations relating the calorimetric and transport properties of the anion channel to lidocaine concentration, the following structure-function relationship was derived: κκ0 = 11 + 0.06(ΔTc)1.6' where ΔTc is the change in the channel's denaturation temperature observed upon addition of sufficient lidocaine to lower the rate constant of anion transport from κ0 (control) to κ. With this expression, the rate of transport in the presence of lidocaine can be predicted from an analysis of the stability of the channel in situ.  相似文献   

20.
In the presence of the Na+-channel blocker amiloride, the short-circuit current across the skins of bullfrog tadpoles in metamorphic stages XIX–XXIV was subjected to fluctuation analysis. The resulting power spectra contained a Lorentzian component of which the plateau value (S0) decreased while the corner frequency (fc) increased as the mucosal amiloride concentration was increased from 0.5 to 24 μM. From the linear relationship between the fc values and the amiloride concentrations it was possible to determine the binding (k′01) and unbinding (k10) constants for amiloride to its receptor on the Na+ channel. With these parameters as well as short-circuit current and S0 values, the current through the individual Na+ channels (i) was calculated (average 0.58 pA). It did not increase significantly during late metamorphosis. The density of Na+ channels (M) in the apical membrane, on the other hand, increased significantly. It would appear that the increase in short-circuit current which occurs at this time is due primarily to an increase in amiloride-blockable Na+ channels. Unexpectedly, a Lorentzian component could be fitted to power spectra in amiloride-treated skins (stages XIX–XXI) which showed no amiloride-sensitive short-circuit current. Moreover, the typical increase in fc with the amiloride concentration did not occur in these animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号