首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Feasibility of acrylic acid production by fermentation   总被引:4,自引:0,他引:4  
Acrylic acid might become an important target for fermentative production from sugars on bulk industrial scale, as an alternative to its current production from petrochemicals. Metabolic engineering approaches will be required to develop a host microorganism that may enable such a fermentation process. Hypothetical metabolic pathways for insertion into a host organism are discussed. The pathway should have plausible mass and redox balances, plausible biochemistry, and plausible energetics, while giving the theoretically maximum yield of acrylate on glucose without the use of aeration or added electron acceptors. Candidate metabolic pathways that might lead to the theoretically maximum yield proceed via -alanine, methylcitrate, or methylmalonate-CoA. The energetics and enzymology of these pathways, including product excretion, should be studied in more detail to confirm this. Expression of the selected pathway in a host organism will require extensive genetic engineering. A 100,000-tons/year fermentation process for acrylic acid production, including product recovery, was conceptually designed based on the supposition that an efficient host organism for acrylic acid production can indeed be developed. The designed process is economically competitive when compared to the current petrochemical process for acrylic acid. Although the designed process is highly speculative, it provides a clear incentive for development of the required microbial host, especially considering the environmental sustainability of the designed process.  相似文献   

2.
Metabolic engineering of beta-lactam production   总被引:2,自引:0,他引:2  
Metabolic engineering has become a rational alternative to classical strain improvement in optimisation of beta-lactam production. In metabolic engineering directed genetic modification are introduced to improve the cellular properties of the production strains. This has resulted in substantial increases in the existing beta-lactam production processes. Furthermore, pathway extension, by heterologous expression of novel genes in well-characterised strains, has led to introduction of new fermentation processes that replace environmentally damaging chemical methods. This minireview discusses the recent developments in metabolic engineering and the applications of this approach for improving beta-lactam production.  相似文献   

3.
Modular co‐culture engineering is an emerging approach for biosynthesis of complex natural products. In this study, microbial co‐cultures composed of two and three Escherichia coli strains, respectively, are constructed for de novo biosynthesis of flavonoid acacetin, a value‐added natural compound possessing numerous demonstrated biological activities, from simple carbon substrate glucose. To this end, the heterologous biosynthetic pathway is divided into different modules, each of which is accommodated in a dedicated E. coli strain for functional expression. After the optimization of the inoculation ratio between the constituent strains, the engineered co‐cultures show a 4.83‐fold improvement in production comparing to the mono‐culture controls. Importantly, cultivation of the three‐strain co‐culture in shake flasks result in the production of 20.3 mg L?1 acacetin after 48 h. To the authors' knowledge, this is the first report on acacetin de novo biosynthesis in a heterologous microbial host. The results of this work confirm the effectiveness of modular co‐culture engineering for complex flavonoid biosynthesis.  相似文献   

4.
The development of efficient microbial processes for the production of flavonoids has been a metabolic engineering goal for the past several years, primarily due to the purported health-promoting effects of these compounds. Although significant strides have been made recently in improving strain titers and yields, current fermentation strategies suffer from two major drawbacks-(1) the requirement for expensive phenylpropanoic precursors supplemented into the media and (2) the need for two separate media formulations for biomass/protein generation and flavonoid production. In this study, we detail the construction of a series of strains capable of bypassing both of these problems. A four-step heterologous pathway consisting of the enzymes tyrosine ammonia lyase (TAL), 4-coumarate:CoA ligase (4CL), chalcone synthase (CHS), and chalcone isomerase (CHI) was assembled within two engineered l-tyrosine Escherichia coli overproducers in order to enable the production of the main flavonoid precursor naringenin directly from glucose. During the course of this investigation, we discovered that extensive optimization of both enzyme sources and relative gene expression levels was required to achieve high quantities of both p-coumaric acid and naringenin accumulation. Once this metabolic balance was achieved, however, such strains were found to be capable of producing 29 mg/l naringenin from glucose and up to 84 mg/l naringenin with the addition of the fatty acid enzyme inhibitor, cerulenin. These results were obtained through cultivation of E. coli in a single minimal medium formulation without additional precursor supplementation, thus paving the way for the development of a simple and economical process for the microbial production of flavonoids directly from glucose.  相似文献   

5.
微生物发酵产二十二碳六烯酸代谢机理的研究进展   总被引:2,自引:0,他引:2  
二十二碳六烯酸(简称DHA)是一种重要的长链多不饱和脂肪酸,对人体具有重要的生理功能。微生物发酵生产的DHA与鱼油来源的DHA相比,具有诸多优点,其发展前景广阔。以下从发酵菌株、代谢途径、关键酶以及油脂积累机制等方面进行了综述,为通过代谢工程等技术手段进一步提高DHA产量提供了参考。  相似文献   

6.
Microbes play an important role in biotransformation and biosynthesis of biofuels, natural products, and polymers. Therefore, microbial manufacturing has been widely used in medicine, industry, and agriculture. However, common strategies including enzyme engineering, pathway optimization, and host engineering are generally inadequate to obtain an efficient microbial production system. Transporter engineering provides an alternative strategy to promote the transmembrane transfer of substrates, intermediates, and final products in microbial cells and thus enhances production by alleviating feedback inhibition and cytotoxicity caused by final products. According to the current studies in transport engineering, native transporters usually have low expression and poor transportation ability, resulting in inefficient transport processes and microbial production. In this review, current approaches for transporter mining, characterization, and verification are comprehensively summarized. Practical approaches to enhance the transport system in engineered cells, such as balancing transporter overexpression and cell growth, and evolution of native transporters are discussed. Furthermore, the applications of transporter engineering in microbial manufacturing, including enhancement of substrate utilization, concentration of metabolic flux to the target pathway, and acceleration of efflux and recovery of products, demonstrate its outstanding advantages and promising prospects.  相似文献   

7.
Metabolic engineering of plant-specific phenylpropanoid biosynthesis has attracted an increasing amount of attention recently, owing to the vast potential of flavonoids as nutraceuticals and pharmaceuticals. Recently, we have developed a recombinant Streptomyces venezuelae as a heterologous host for the production of flavonoids. In this study, we successfully improved flavonoid production by expressing two sets of genes predicted to be involved in malonate assimilation. The introduction of matB and matC encoding for malonyl-CoA synthetase and the putative dicarboxylate carrier protein, respectively, from Streptomyces coelicolor into the recombinant S. venezuelae strains expressing flavanone and flavone biosynthetic genes resulted in enhanced production of both flavonoids.  相似文献   

8.
Metabolic engineering of flavonoids in plants and microorganisms   总被引:1,自引:0,他引:1  
Over 9,000 flavonoid compounds have been found in various plants, comprising one of the largest families of natural products. Flavonoids are an essential factor in plant interactions with the environment, often serving as the first line of defense against UV irradiation and pathogen attacks. Flavonoids are also major nutritional compounds in foods and beverages, with demonstrated health benefits. Some flavonoids are potent antioxidants, and specific flavonoid compounds are beneficial in many physiological and pharmacological processes. Therefore, engineering of flavonoid biosynthesis in plants or in microorganisms has significant scientific and economical importance. Construction of biosynthetic pathways in heterologous systems offers promising results for large-scale flavonoid production by fermentation or bioconversion. Genomics and metabolomics now offer unprecedented tools for detailed understanding of the engineered transgenic organism and for developing novel technologies to further increase flavonoid production yields. We summarize some of the recent metabolic engineering strategies in plants and microorganisms, with a focus on applications of metabolic flux analysis. We are confident that these engineering approaches will lead to successful industrial flavonoid production in the near future.  相似文献   

9.
萜类化合物是一类广泛存在于植物中的天然产物,其在食品、药品和化工等多个领域中均有广泛的用途,市场潜力巨大。因此,开发生产萜类化合物等植物天然产物可再生的微生物资源来补充甚至代替原有稀少和珍贵的植物资源,具有重要的理论意义和潜在的应用价值。解脂耶氏酵母是目前使用最广泛的非常规酵母底盘细胞之一。近年来,利用代谢工程及合成生物学技术在解脂耶氏酵母底盘细胞中重构与优化萜类化合物的合成途径以实现目标代谢产物的高效合成,已经成为一项研究热点。本文系统总结了有关利用解脂耶氏酵母作为底盘细胞异源生产植物萜类化合物的具体实例和最新进展,包括所涉及的宿主菌株、关键酶、代谢途径及改造策略等,并在最后对该领域的未来发展方向进行了展望。  相似文献   

10.
11.
Although optimality of microbial metabolism under genetic and environmental perturbations is well studied, the effects of introducing heterologous reactions on the overall metabolism are not well understood. This point is important in the field of metabolic engineering because heterologous reactions are more frequently introduced into various microbial hosts. The genome-scale metabolic simulations of Escherichia coli strains engineered to produce 1,4-butanediol, 1,3-propanediol, and amorphadiene suggest that microbial metabolism shows much different responses to the introduced heterologous reactions in a strain-specific manner than typical gene knockouts in terms of the energetic status (e.g., ATP and biomass generation) and chemical production capacity. The 1,4-butanediol and 1,3-propanediol producers showed greater metabolic optimality than the wild-type strains and gene knockout mutants for the energetic status, while the amorphadiene producer was metabolically less optimal. For the optimal chemical production capacity, additional gene knockouts were most effective for the strain producing 1,3-propanediol, but not for the one producing 1,4-butanediol. These observations suggest that strains having heterologous metabolic reactions have metabolic characteristics significantly different from those of the wild-type strain and single gene knockout mutants. Finally, comparison of the theoretically predicted and 13C-based flux values pinpoints pathways with non-optimal flux values, which can be considered as engineering targets in systems metabolic engineering strategies. To our knowledge, this study is the first attempt to quantitatively characterize microbial metabolisms with different heterologous reactions. The suggested potential reasons behind each strain’s different metabolic responses to the introduced heterologous reactions should be carefully considered in strain designs.  相似文献   

12.
Taxadiene is the first dedicated intermediate in the biosynthetic pathway of the anticancer compound Taxol. Recent studies have taken advantage of heterologous hosts to produce taxadiene and other isoprenoid compounds, and such ventures now offer research opportunities that take advantage of the engineering tools associated with the surrogate host. In this study, metabolic engineering was applied in the context of over-expression targets predicted to improve taxadiene production. Identified targets included genes both within and outside of the isoprenoid precursor pathway. These targets were then tested for experimental over-expression in a heterologous Escherichia coli host designed to support isoprenoid biosynthesis. Results confirmed the computationally predicted improvements and indicated a synergy between targets within the expected isoprenoid precursor pathway and those outside this pathway. The presented algorithm is broadly applicable to other host systems and/or product choices.  相似文献   

13.
Microorganisms are ubiquitous on earth, often forming complex microbial communities in numerous different habitats. Most of these organisms cannot be readily cultivated in the laboratory using standard media and growth conditions. However, it is possible to gain access to the vast genetic, enzymatic, and metabolic diversity present in these microbial communities using cultivation-independent approaches such as sequence- or function-based metagenomics. Function-based analysis is dependent on heterologous expression of metagenomic libraries in a genetically amenable cloning and expression host. To date, Escherichia coli is used in most cases; however, this has the drawback that many genes from heterologous genomes and complex metagenomes are expressed in E. coli either at very low levels or not at all. This review emphasizes the importance of establishing alternative microbial expression systems consisting of different genera and species as well as customized strains and vectors optimized for heterologous expression of membrane proteins, multigene clusters encoding protein complexes or entire metabolic pathways. The use of alternative host-vector systems will complement current metagenomic screening efforts and expand the yield of novel biocatalysts, metabolic pathways, and useful metabolites to be identified from environmental samples.  相似文献   

14.
Developments in the use of Bacillus species for industrial production   总被引:13,自引:0,他引:13  
Bacillus species continue to be dominant bacterial workhorses in microbial fermentations. Bacillus subtilis (natto) is the key microbial participant in the ongoing production of the soya-based traditional natto fermentation, and some Bacillus species are on the Food and Drug Administration's GRAS (generally regarded as safe) list. The capacity of selected Bacillus strains to produce and secrete large quantities (20-25 g/L) of extracellular enzymes has placed them among the most important industrial enzyme producers. The ability of different species to ferment in the acid, neutral, and alkaline pH ranges, combined with the presence of thermophiles in the genus, has lead to the development of a variety of new commercial enzyme products with the desired temperature, pH activity, and stability properties to address a variety of specific applications. Classical mutation and (or) selection techniques, together with advanced cloning and protein engineering strategies, have been exploited to develop these products. Efforts to produce and secrete high yields of foreign recombinant proteins in Bacillus hosts initially appeared to be hampered by the degradation of the products by the host proteases. Recent studies have revealed that the slow folding of heterologous proteins at the membrane-cell wall interface of Gram-positive bacteria renders them vulnerable to attack by wall-associated proteases. In addition, the presence of thiol-disulphide oxidoreductases in B. subtilis may be beneficial in the secretion of disulphide-bond-containing proteins. Such developments from our understanding of the complex protein translocation machinery of Gram-positive bacteria should allow the resolution of current secretion challenges and make Bacillus species preeminent hosts for heterologous protein production. Bacillus strains have also been developed and engineered as industrial producers of nucleotides, the vitamin riboflavin, the flavor agent ribose, and the supplement poly-gamma-glutamic acid. With the recent characterization of the genome of B. subtilis 168 and of some related strains, Bacillus species are poised to become the preferred hosts for the production of many new and improved products as we move through the genomic and proteomic era.  相似文献   

15.
Engineering biosynthetic pathways in heterologous microbial host organisms offers an elegant approach to pathway elucidation via the incorporation of putative biosynthetic enzymes and characterization of resulting novel metabolites. Our previous work in Escherichia coli demonstrated the feasibility of a facile modular approach to engineering the production of labdane-related diterpene (20 carbon) natural products. However, yield was limited (<0.1 mg/L), presumably due to reliance on endogenous production of the isoprenoid precursors dimethylallyl diphosphate and isopentenyl diphosphate. Here, we report incorporation of either a heterologous mevalonate pathway (MEV) or enhancement of the endogenous methyl erythritol phosphate pathway (MEP) with our modular metabolic engineering system. With MEP pathway enhancement, it was found that pyruvate supplementation of rich media and simultaneous overexpression of three genes (idi, dxs, and dxr) resulted in the greatest increase in diterpene yield, indicating distributed metabolic control within this pathway. Incorporation of a heterologous MEV pathway in bioreactor grown cultures resulted in significantly higher yields than MEP pathway enhancement. We have established suitable growth conditions for diterpene production levels ranging from 10 to >100 mg/L of E. coli culture. These amounts are sufficient for nuclear magnetic resonance analyses, enabling characterization of enzymatic products and hence, pathway elucidation. Furthermore, these results represent an up to >1,000-fold improvement in diterpene production from our facile, modular platform, with MEP pathway enhancement offering a cost effective alternative with reasonable yield. Finally, we reiterate here that this modular approach is expandable and should be easily adaptable to the production of any terpenoid natural product.  相似文献   

16.
构建高产高附加值产品的微生物细胞工厂是代谢工程的研究目标之一,设计高效的产品合成途径是实现这一目标的重要方式.不同微生物底盘因其代谢能力有所差异,故而可以利用的底物和生产的产品范围有限.为了扩大其生产能力,需要进行代谢途径从无到有的设计.传统代谢工程基于经验进行异源途径设计的方式低效且无法确保结果的全面性,而系统生物学...  相似文献   

17.
The biosynthesis of terpenoids in heterologous hosts has become increasingly popular. Isopentenyl diphosphate (IPP) is the central precursor of all isoprenoids, and the synthesis can proceed via two separate pathways in different organisms: The 1-deoxylulose 5-phosphate (DXP) pathway and the mevalonate (MVA) pathway. In this study, an in silico comparison was made between the maximum theoretical IPP yields and the thermodynamic properties of the DXP and MVA pathways using different hosts and carbon sources. We found that Escherichia coli and its DXP pathway have the most potential for IPP production. Consequently, codon usage redesign, and combinations of chromosomal engineering and various strains were considered for optimizing taxadiene biosynthesis through the endogenic DXP pathway. A high production strain yielding 876 ± 60 mg/L taxadiene, with an overall volumetric productivity of 8.9 mg/(L × h), was successfully obtained by combining the chromosomal engineered upstream DXP pathway and the downstream taxadiene biosynthesis pathway. This is the highest yield thus far reported for taxadiene production in a heterologous host. These results indicate that genetic manipulation of the DXP pathway has great potential to be used for production of terpenoids, and that chromosomal engineering is a powerful tool for heterologous biosynthesis of natural products.  相似文献   

18.
Secondary metabolites are an important source of high-value chemicals, many of which exhibit important pharmacological properties. These valuable natural products are often difficult to synthesize chemically and are commonly isolated through inefficient extractions from natural biological sources. As such, they are increasingly targeted for production by biosynthesis from engineered microorganisms. The budding yeast species Saccharomyces cerevisiae has proven to be a powerful microorganism for heterologous expression of biosynthetic pathways. S. cerevisiae's usefulness as a host organism is owed in large part to the wealth of knowledge accumulated over more than a century of intense scientific study. Yet many challenges are currently faced in engineering yeast strains for the biosynthesis of complex secondary metabolite production. However, synthetic biology is advancing the development of new tools for constructing, controlling, and optimizing complex metabolic pathways in yeast. Here, we review how the coupling between yeast biology and synthetic biology is advancing the use of S. cerevisiae as a microbial host for the construction of secondary metabolic pathways.  相似文献   

19.
Eicosapentaenoic acid (EPA) is an ω3 polyunsaturated fatty acid which has been demonstrated to play important roles in a number of aspects of human health. EPA is traditionally obtained from marine fish oils. However, the shrinking fish populations are making the sustainability of these sources questionable. Consequently, alternative sources of EPA are being sought, especially from marine microalgae, bacteria, and fungi. These microorganisms contain relatively large amounts of high-quality EPA and they are the primary producers of this important fatty acid. There are two distinct pathways for EPA de novo biosynthesis in microbial systems: the desaturation and elongation pathway and the polyketide pathway. Genes involved in the biosynthetic pathways have been identified from different microorganisms and characterized in depth. In addition, numerous strategies have been developed for commercial production of EPA by microbial fermentation, among which strain improvements by genetic engineering could provide high-yield producers of EPA. In this review, we summarize recent efforts and experiences devoted to metabolic engineering of various microorganisms that lead to efficient biocatalysts for the production of EPA, as well as the key limitations and challenges. The combination of traditional biochemistry and molecular biology with new systems biology and synthetic biology tools will provide a better view of EPA biosynthesis and a greater potential of microbial production. Continued advances in metabolic engineering will help to improve the final titer, productivity, and yield of EPA.  相似文献   

20.
Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel‐like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high‐yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high‐yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain‐length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain‐lengths and functionalities. Biotechnol. Biotechnol. Bioeng. 2014;111: 849–857. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号