首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Members of the genus Tobamovirus represent one of the best-characterized groups of plant positive, single stranded RNA viruses. Previous studies have shown that genomes of some tobamoviruses contain not only genes coding for coat protein, movement protein, and the cistron coding for different domains of RNA-polymerase, but also a gene, named ORF6, coding for a poorly conserved small protein. The amino acid sequences of ORF6 proteins encoded by different tobamoviruses are highly divergent. The potential role of ORF6 proteins in replication of tobamoviruses still needs to be elucidated. In this study, using biochemical and immunological methods, we have shown that ORF6 peptide is accumulated after infection in case of two isolates of Tobacco mosaic virus strain U1 (TMV-U1 common and TMV-U1 isolate A15). Unlike virus particles accumulating in the cytoplasm, the product of the ORF6 gene is found mainly in nuclei, which correlates with previously published data about transient expression of ORF6 isolated from TMV-U1. Moreover, we present new data showing the presence of ORF6 genes in genomes of several tobamoviruses. For example, in the genomes of other members of the tobamovirus subgroup 1, including Rehmannia mosaic virus, Paprika mild mottle virus, Tobacco mild green mosaic virus, Tomato mosaic virus, Tomato mottle mosaic virus, and Nigerian tobacco latent virus, sequence comparisons revealed the existence of a similar open reading frame like ORF6 of TMV.  相似文献   

2.
We examined the transmission of RNA silencing signal in non-transgenic tomato and tobacco scions grafted onto the tobacco Sd1 rootstocks, which is silenced in both NtTOM1 and NtTOM3 required for tobamovirus multiplication. When the non-transgenic tomato scions were grafted onto the Sd1 rootstocks, RT-PCR analysis of the scions showed the reduced level of mRNA compared with that before grafting in both LeTH3 and LeTH1, tomato homologs of NtTOM1 and NtTOM3, respectively. siRNAs from both genes were detected in the scions after grafting but not before grafting. Further tomato scions were inoculated with Tomato mosaic virus (ToMV) and used for virus infection. They showed very low level of virus accumulation. Necrotic responding tobacco to tobamovirus was grafted onto the rootstock of Sdl. RT-PCR analysis showed low level expression of both NtTOM1 and NtTOM3 in the scions but siRNA was detected after grafting. When the leaves of scions were inoculated with ToMV or Tobacco mosaic virus, they produced very few local necrotic lesions (LNLs) while the control scions did many LNLs. These results suggest that RNA silencing was transmitted to non-transgenic tomato and tobacco scions after grafting onto the Sd1 rootstocks and that virus resistance was induced in the scions.  相似文献   

3.

Background

Synthetic biology is a discipline that includes making life forms artificially from chemicals. Here, a DNA molecule was enzymatically synthesized in vitro from DNA templates made from oligonucleotides representing the text of the first Tobacco mosaic virus (TMV) sequence elucidated in 1982. No infectious DNA molecule of that seminal reference sequence exists, so the goal was to synthesize it and then build viral chimeras.

Results

RNA was transcribed from synthetic DNA and encapsidated with capsid protein in vitro to make synthetic virions. Plants inoculated with the virions did not develop symptoms. When two nucleotide mutations present in the original sequence, but not present in most other TMV sequences in GenBank, were altered to reflect the consensus, the derivative synthetic virions produced classic TMV symptoms. Chimeras were then made by exchanging TMV capsid protein DNA with Tomato mosaic virus (ToMV) and Barley stripe mosaic virus (BSMV) capsid protein DNA. Virus expressing ToMV capsid protein exhibited altered, ToMV-like symptoms in Nicotiana sylvestris. A hybrid ORF6 protein unknown to nature, created by substituting the capsid protein genes in the virus, was found to be a major symptom determinant in Nicotiana benthamiana. Virus expressing BSMV capsid protein did not have an extended host range to barley, but did produce novel symptoms in N. benthamiana.

Conclusions

This first report of the chemical synthesis and artificial assembly of a plant virus corrects a long-standing error in the TMV reference genome sequence and reveals that unnatural hybrid virus proteins can alter symptoms unexpectedly.  相似文献   

4.

Background

Synthetic biology is a discipline that includes making life forms artificially from chemicals. Here, a DNA molecule was enzymatically synthesized in vitro from DNA templates made from oligonucleotides representing the text of the first Tobacco mosaic virus (TMV) sequence elucidated in 1982. No infectious DNA molecule of that seminal reference sequence exists, so the goal was to synthesize it and then build viral chimeras.

Results

RNA was transcribed from synthetic DNA and encapsidated with capsid protein in vitro to make synthetic virions. Plants inoculated with the virions did not develop symptoms. When two nucleotide mutations present in the original sequence, but not present in most other TMV sequences in GenBank, were altered to reflect the consensus, the derivative synthetic virions produced classic TMV symptoms. Chimeras were then made by exchanging TMV capsid protein DNA with Tomato mosaic virus (ToMV) and Barley stripe mosaic virus (BSMV) capsid protein DNA. Virus expressing ToMV capsid protein exhibited altered, ToMV-like symptoms in Nicotiana sylvestris. A hybrid ORF6 protein unknown to nature, created by substituting the capsid protein genes in the virus, was found to be a major symptom determinant in Nicotiana benthamiana. Virus expressing BSMV capsid protein did not have an extended host range to barley, but did produce novel symptoms in N. benthamiana.

Conclusions

This first report of the chemical synthesis and artificial assembly of a plant virus corrects a long-standing error in the TMV reference genome sequence and reveals that unnatural hybrid virus proteins can alter symptoms unexpectedly.  相似文献   

5.

Key message

In the soybean cultivar Suweon 97, BCMV-resistance gene was fine-mapped to a 58.1-kb region co-localizing with the Soybean mosaic virus (SMV)-resistance gene, Rsv1-h raising a possibility that the same gene is utilized against both viral pathogens.

Abstract

Certain soybean cultivars exhibit resistance against soybean mosaic virus (SMV) or bean common mosaic virus (BCMV). Although several SMV-resistance loci have been reported, the understanding of the mechanism underlying BCMV resistance in soybean is limited. Here, by crossing a resistant cultivar Suweon 97 with a susceptible cultivar Williams 82 and inoculating 220 F2 individuals with a BCMV strain (HZZB011), we observed a 3:1 (resistant/susceptible) segregation ratio, suggesting that Suweon 97 possesses a single dominant resistance gene against BCMV. By performing bulked segregant analysis with 186 polymorphic simple sequence repeat (SSR) markers across the genome, the resistance gene was determined to be linked with marker BARSOYSSR_13_1109. Examining the genotypes of nearby SSR markers on all 220 F2 individuals then narrowed down the gene between markers BARSOYSSR_13_1109 and BARSOYSSR_13_1122. Furthermore, 14 previously established F2:3 lines showing crossovers between the two markers were assayed for their phenotypes upon BCMV inoculation. By developing six more SNP (single nucleotide polymorphism) markers, the resistance gene was finally delimited to a 58.1-kb interval flanked by BARSOYSSR_13_1114 and SNP-49. Five genes were annotated in this interval of the Williams 82 genome, including a characteristic coiled-coil nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR, CNL)-type of resistance gene, Glyma13g184800. Coincidentally, the SMV-resistance allele Rsv1-h was previously mapped to almost the same region, thereby suggesting that soybean Suweon 97 likely relies on the same CNL-type R gene to resist both viral pathogens.
  相似文献   

6.
Tobacco mosaic virus (TMV) and Tomato mosaic virus (ToMV) are two closely related viruses in the genus Tobamovirus, but they induce obviously different sizes of necrotic lesions in tobacco plants containing the N gene. Comparison of the symptoms produced by TMV, ToMV and a chimaeric virus (T/OMP), in which the TMV movement protein (MP) gene was replaced by the ToMV MP gene, showed T/OMP caused necrotic lesions that were similar in size to those of ToMV in tobacco plants containing the N gene. The coat protein and MP of the three viruses accumulated in planta with similar levels, and the replication level of TMV and T/OMP in protoplasts also had no difference. Comparison of the activities of defense-related enzymes (PAL, POD and PPO) induced by the three viruses also showed that the variability of enzyme activity induced by T/OMP was similar to that induced by TMV, but different from that induced by ToMV. The results indicate that the size difference of necrotic lesions induced by TMV and ToMV in tobacco plants containing the N gene results from the functional difference of their MP genes.  相似文献   

7.
8.
Transgenic Nicotiana tabacum L. cv. SR1 plants, characterized by an increase in the level of dsRNA-specific hydrolytic activity after induction by wounding, were obtained. The Solanum lycopersicum anionic peroxidase gene promoter (new for plant genetic engineering) was for the first time used for the induced expression of the target Serratia marcescens RNase III gene. Upon infection with the tobacco mosaic virus (TMV), the transgenic plants of the obtained lines did not differ significantly from the control group in the level of TMV capsid protein accumulation. In general, no delay in the development of the infection symptoms was observed in transgenic plants as compared with the control group. The obtained transgenic plants represent a new model for the study of the biological role of endoribonucleases from the RNase III family, including in molecular mechanisms of resistance to pathogens.  相似文献   

9.

Key message

An NB-LRR gene, TYNBS1, was isolated from Begomovirus-resistance locus Ty-2. Transgenic plant analysis revealed that TYNBS1 is a functional resistance gene. TYNBS1 is considered to be synonymous with Ty-2.

Abstract

Tomato yellow leaf curl disease caused by Tomato yellow leaf curl virus (TYLCV) is a serious threat to tomato (Solanum lycopersicum L.) production worldwide. A Begomovirus resistance gene, Ty-2, was introduced into cultivated tomato from Solanum habrochaites by interspecific crossing. To identify the Ty-2 gene, we performed genetic analysis. Identification of recombinant line 3701 confirmed the occurrence of a chromosome inversion in the Ty-2 region of the resistant haplotype. Genetic analysis revealed that the Ty-2 gene is linked to an introgression encompassing two markers, SL11_25_54277 and repeat A (approximately 200 kb). Genomic sequences of the upper and lower border of the inversion section of susceptible and resistant haplotypes were determined. Two nucleotide-binding domain and leucine-rich repeat-containing (NB-LRR) genes, TYNBS1 and TYNBS2, were identified around the upper and lower ends of the inversion section, respectively. TYNBS1 strictly co-segregated with TYLCV resistance, whereas TYNBS2 did not. Genetic introduction of genomic fragments containing the TYNBS1 gene into susceptible tomato plants conferred TYLCV resistance. These results demonstrate that TYNBS1 is a functional resistance gene for TYLCV, and is synonymous with the Ty-2 gene.
  相似文献   

10.
Legume crops in Central India, the main soybean production area of the country, may suffer from yellow mosaic disease caused by the Mungbean yellow mosaic India virus (MYMIV). MYMIV is transmitted by the sweet potato whitefly, Bemisia tabaci (Gennadius), which is a species complex composed of various genetic groups. This vector species harbors different endosymbionts among regional strains and among individuals. To elucidate fundamental aspects of this virus vector in the state of Madhya Pradesh, the infection status of the symbionts and the virus in whiteflies was studied. A polymerase chain reaction (PCR) survey of the whiteflies collected in Madhya Pradesh found four secondary endosymbionts, Arsenophonus, Hemipteriphilus, Wolbachia, and Cardinium, in addition to the primary endosymbiont Portiera. Arsenophonus and Hemipteriphilus were highly infected but the infection rates of Wolbachia and Cardinium were low. MYMIV was detected in whitefly populations collected from various host plants in Madhya Pradesh. The whitefly populations belonged to the Asia I and II genetic groups; several different Asia II populations were also distributed. Specific relations were not observed among symbiont infection status, virus infection, and the whitefly genetic groups in the populations of Madhya Pradesh, though Cardinium was highly detected in the Asia II-1 group. New primers, which can be used for PCR template validation and for discriminating two phylogenetically close endosymbionts, were designed.  相似文献   

11.
The aim of study was to gain a deeper knowledge about local and systemic changes in photosynthetic processes and sugar production of pepper infected by Obuda pepper virus (ObPV) and Pepper mild mottle virus (PMMoV). PSII efficiency, reflectance, and gas exchange were measured 48 and/or 72 h after inoculation (hpi). Sugar accumulation was checked 72 hpi and 20 d after inoculation (as a systemic response). Inoculation of leaves with ObPV led to appearance of hypersensitive necrotic lesions (incompatible interaction), while PMMoV caused no visible symptoms (compatible interaction). ObPV (but not PMMoV) lowered Fv/Fm (from 0.827 to 0.148 at 72 hpi). Net photosynthesis decreased in ObPV-infected leaves. In ObPV-inoculated leaves, the accumulation of glucose, fructose, and glucose-6-phosphate was accompanied with lowered sucrose, maltoheptose, nystose, and trehalose contents. PMMoV inoculation increased the contents of glucose, maltose, and raffinose in the inoculated leaves, while glucose-6-phosphate accummulated in upper leaves.  相似文献   

12.

Background

Plants are increasingly being examined as alternative recombinant protein expression systems. Recombinant protein expression levels in plants from Tobacco mosaic virus (TMV)-based vectors are much higher than those possible from plant promoters. However the common TMV expression vectors are costly, and at times technically challenging, to work with. Therefore it was a goal to develop TMV expression vectors that express high levels of recombinant protein and are easier, more reliable, and more cost-effective to use.

Results

We have constructed a Cauliflower mosaic virus (CaMV) 35S promoter-driven TMV expression vector that can be delivered as a T-DNA to plant cells by Agrobacterium tumefaciens. Co-introduction (by agroinfiltration) of this T-DNA along with a 35S promoter driven gene for the RNA silencing suppressor P19, from Tomato bushy stunt virus (TBSV) resulted in essentially complete infection of the infiltrated plant tissue with the TMV vector by 4 days post infiltration (DPI). The TMV vector produced between 600 and 1200 micrograms of recombinant protein per gram of infiltrated tissue by 6 DPI. Similar levels of recombinant protein were detected in systemically infected plant tissue 10–14 DPI. These expression levels were 10 to 25 times higher than the most efficient 35S promoter driven transient expression systems described to date.

Conclusion

These modifications to the TMV-based expression vector system have made TMV vectors an easier, more reliable and more cost-effective way to produce recombinant proteins in plants. These improvements should facilitate the production of recombinant proteins in plants for both research and product development purposes. The vector should be especially useful in high-throughput experiments.  相似文献   

13.

Background

The apoplast plays an important role in plant defense against pathogens. Some extracellular PR-4 proteins possess ribonuclease activity and may directly inhibit the growth of pathogenic fungi. It is likely that extracellular RNases can also protect plants against some viruses with RNA genomes. However, many plant RNases are multifunctional and the direct link between their ribonucleolytic activity and antiviral defense still needs to be clarified. In this study, we evaluated the resistance of Nicotiana tabacum plants expressing a non-plant single-strand-specific extracellular RNase against Cucumber mosaic virus.

Results

Severe mosaic symptoms and shrinkage were observed in the control non-transgenic plants 10 days after inoculation with Cucumber mosaic virus (CMV), whereas such disease symptoms were suppressed in the transgenic plants expressing the RNase gene. In a Western blot analysis, viral proliferation was observed in the uninoculated upper leaves of control plants, whereas virus levels were very low in those of transgenic plants. These results suggest that resistance against CMV was increased by the expression of the heterologous RNase gene.

Conclusion

We have previously shown that tobacco plants expressing heterologous RNases are characterized by high resistance to Tobacco mosaic virus. In this study, we demonstrated that elevated levels of extracellular RNase activity resulted in increased resistance to a virus with a different genome organization and life cycle. Thus, we conclude that the pathogen-induced expression of plant apoplastic RNases may increase non-specific resistance against viruses with RNA genomes.
  相似文献   

14.
Watermelon mosaic virus (WMV) is an important disease of cucumber (Cucumis sativus L.) that is difficult to control in the field. Some resistant lines are available, and understanding the inheritance of the disease and mapping the gene or genes that confer resistance will facilitate the development of further resistant varieties. In this study, the inheritance and gene mapping for resistance to WMV in cucumber were conducted using populations derived from the cross between susceptible ‘65G’ and resistant ‘02245’ inbred lines. Genetic analysis showed that resistance to WMV in ‘02245’ is controlled by a single recessive gene designated as wmv 02245 mapped to chromosome 6 (Chr.6). The region was flanked by the molecular markers SSRWMV60-23 and CAPS-W1 with genetic distances of 0.34 and 1.19 cM from the wmv 02245 locus, respectively. The 134.7 kb physical distance of this region includes 21 candidate genes. Comparison of the genotypic and phenotypic results showed that the accuracy rate of the most closely linked marker SSRWMV60-23 was 94.0 %. This marker will be used for molecular marker-assisted selection to select resistant lines, and future research will be directed at identifying and cloning the resistance gene.  相似文献   

15.
Tm-22 is a coiled coil-nucleotide binding-leucine rich repeat resistance protein that confers durable extreme resistance against Tomato mosaic virus (ToMV) and Tobacco mosaic virus (TMV) by recognizing the viral movement protein (MP). Here we report that the Nicotiana benthamiana J-domain MIP1 proteins (NbMIP1s) associate with tobamovirus MP, Tm-22 and SGT1. Silencing of NbMIP1s reduced TMV movement and compromised Tm-22-mediated resistance against TMV and ToMV. Furthermore, silencing of NbMIP1s reduced the steady-state protein levels of ToMV MP and Tm-22. Moreover, NbMIP1s are required for plant resistance induced by other R genes and the nonhost pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. In addition, we found that SGT1 associates with Tm-22 and is required for Tm-22-mediated resistance against TMV. These results suggest that NbMIP1s function as co-chaperones during virus infection and plant immunity.  相似文献   

16.
17.
Investigating weeds for viruses in ruderal localities of Greater Prague two forms of mosaic diseases inSisymbrium loeselii Jusl. were demonstrated (green and yellowish-green mosaic). Transmission tests carried out on differential host plants showed that the green mosaic is caused by cabbage black ringspot virus (CBRV) and the yellowish green by mixed infection of CBRV and tobacco mosaic virus (TMV). TMV—isolate is characterized as an unusual necrotic strain; its capability to reproduce in cruciferous plant in nature is unique. It was ascertained that green mosaic was commonly spread overSisymbrium plants in ruderal ***DIRECT SUPPORT *** A01GP029 00004 associations on Prague territory; epidemiological significance of this discovery is discussed.  相似文献   

18.
Virus infection is common in pear (Pyrus spp.) trees commercially cultivated in China. In this study, the growth speed, root development and phytohormone levels of virus-free and virus-infected pear cultures were comparatively investigated. Results showed that the co-infection of Apple stem grooving virus (ASGV) and Apple stem pitting virus (ASPV) significantly decreased the growth and proliferation of in vitro plants of P. communis cv. ‘Confenence’, but showed relatively less effect for P. pyrifolia cv. ‘Jinshui no. 2’, P. communis cv. ‘Red Clapp Favonite’ and P. sinkiangensis cv. Korla’. Strong inhibition of ASGV infection to root development was observed for in vitro plants of ‘Jinshui no. 2’, but not for ‘Confenence’. Furthermore, during root induction, ASGV infection significantly increased CTKs/IAA ratio and decreased IAA/ABA ratio in the rooting region of in vitro plants of ‘Jinshui no. 2’. Nevertheless, for in vitro plants of ‘Confenence’, these values were rarely influenced by ASGV and ASPV infection. The result indicated that the changes of CTKs/IAA and IAA/ABA ratios might be responsible for rooting inhibition of in vitro plants of ‘Jinshui no. 2’.  相似文献   

19.
The cotton mealybug Phenacoccus solenopsis (Tinsley) and Cotton leaf curl Multan virus (CLCuMV), serious threats to economic crops and garden plants, have invaded southern China and widely infected Hibiscus rosa-sinensis. Whether an inter-species connection has facilitated the invasion process is unclear. In this study the interaction between P. solenopsis and H. rosa-sinensis infected with CLCuMV was investigated in the laboratory. We observed that 1st and 2nd instar nymphs of P. solenopsis preferred to feed on healthy H. rosa-sinensis leaves, whereas 3rd instar nymphs and female adults had no preference between healthy and virus-infected H. rosa-sinensis leaves. The developmental time of each P. solenopsis developmental stage increased significantly after feeding on infected H. rosa-sinensis leaves (p < 0.05). In particular, the development time for 2nd instar female and male nymphs and 3rd instar female nymphs increased by approximately twofold. The generation time of female mealybugs increased from 25.84 d on healthy H. rosa-sinensis to 32.12 d when feeding on CLCuMV-infected H. rosa-sinensis, and the survival rate decreased from 71.04 % on healthy H. rosa-sinensis to 5.80 % on infected plants. Nymph survival was most affected by feeding on infected plants. Additionally, the fecundity of female mealybugs feeding on infected H. rosa-sinensis decreased by 47.8 %. Thus, feeding on CLCuMV-infected H. rosa-sinensis significantly decreased the biological fitness and invading and colonizing abilities of P. solenopsis.  相似文献   

20.
Among the available reverse genetic approaches for studying gene function, virus-induced gene silencing (VIGS) has several advantages. It allows rapid characterization of gene function independent of stable transformation, which is basically difficult to achieve in monocots, and offers the potential to silence individual or multiple genes of a gene family. In order to establish a VIGS system in Aegilops tauschii, modified vectors derived from Barley stripe mosaic virus (BSMV) were used for silencing a phytoene desaturase gene that provides a convenient visual reporter for silencing. The results demonstrated a high efficiency of BSMV-VIGS in A. tauschii. Moreover, the BSMV-VIGS system was used to target a 354 bp specific region of the Dehydration-responsive element-binding (AetDreb2) gene, resulting in successful silencing of the gene in A. tauschii plants, as verified by real-time qRT-PCR. Indeed, in comparison with plants that were inoculated with an empty vector (BSMV:00), a faster rate of wilting and a lower relative water content were observed in plants inoculated with BSMV:AetDreb2 when they were exposed to drought stress. Therefore, BSMV-VIGS can be efficiently employed as a novel tool for reverse genetics in A. tauschii. It can also be used to study the effects of polyploidization on the gene function by a comparative analysis between bread wheat and its diploid progenitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号