首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the structure of an estuarine, subtidal, benthic deposit-feeding community have been investigated. Three quantitative samples were taken within a grid 10 m on a side every four weeks from May, 1971 to July, 1973. Each sample was washed over a 250 μm sieve. Streblospio benedicti Webster, Capitella capitata (Fabricius), Heteromastus filiformis (Claparède), Potydora ligni Webster, and Paranais litoralis (Müller) were the five dominant species on the basis of their total abundance, percentage occurrence, and biological index value. Repeatable cycles in diversity were observed for Fager's scaled standard deviation and scaled information measure, as well as for Lloyd and Ghelardi's equitability, but not for the unsealed information theory measure. McNaughton's dominance index was strongly inversely correlated with all diversity measures. Graphical measures of lognormal skewness and normal kurtosis, as applied to Whittaker's dominance diversity curves, followed repeatable cycles, whereas normal skewness and lognormal kurtosis did not. A strong relationship between Fager's scaled standard deviation diversity, dominance, and the degree to which resources were being shared by the deposit-feeding segment of the community was suggested. A decrease in average niche width and average niche overlap was observed as the community developed during the period of strong larval recruitment.  相似文献   

2.
The present study was carried out on the non-tidal reaches of the River Ely, South Wales, from October 1979 to October 1980. The seasonal variations of the chlorophyll-a content of the phytoplankton was unimodal with one maximum in May and a minimum in December. The chlorophyll-a content varied from 0.277 to 41.259 mg m?3. The primary productivity showed a bimodal seasonal distribution with two maxima in May and September and lower values throughout the remainder of the year, particularly in winter. The value for the primary productivity varied from 0.269 to 24.302 mg C m?3 h?1. A positive correlation was obtained between chlorophyll-a content and primary productivity. The seasonal distribution of the dominant algal species and the saprobity of the River Ely were also studied. The diatom species almost showed a similar seasonal periodicity. Their concentrations were low during the winter months and high during most of the spring and summer months. Many of the dominant diatom species found in the phytoplankton populations were either considered by the other authors as saprobic (Nitzchia palea) or as inhabitants of eutrophic waters (Gomphonema parvulum, Navicula cryptocephala and Synedra ulna). Chlamydomonas spp. were the most abundant green algae followed by Chlorella vulgaris. The effect of sewage effluent disposal and cattle excreta at three of the sampling sites might partly explain the presence of high Chlamydomonas spp. populations at those sites. Physical factors (low flow rates, high transparency and water temperature) and organic pollution at some sampling sites seemed to play an important role in increasing the number of algal species during spring and summer. The non-tidal reaches of the River Ely were found to be β-mesosaprobic above and below Station 5 and α-mesosaprobic at the latter station and therefore, the river can be considered as polluted at Station 5 and mildly polluted at the others.  相似文献   

3.
Competition or facilitation characterises intra- and interspecific interactions within communities of species that utilize the same resources. Temperature is an important factor influencing those interactions and eventual outcomes. The noctuid stemborers, Busseola fusca and Sesamia calamistis and the crambid Chilo partellus attack maize in sub-Saharan Africa. They often occur as a community of interacting species in the same field and plant at all elevations. The influence of temperature on the intra- and interspecific interactions among larvae of these species, was studied using potted maize plants exposed to varying temperatures in a greenhouse and artificial stems kept at different constant temperatures (15°C, 20°C, 25°C and 30°C) in an incubator. The experiments involved single- and multi-species infestation treatments. Survival and relative growth rates of each species were assessed. Both intra- and interspecific competitions were observed among all three species. Interspecific competition was stronger between the noctuids and the crambid than between the two noctuids. Temperature affected both survival and relative growth rates of the three species. Particularly at high temperatures, C. partellus was superior in interspecific interactions shown by higher larval survival and relative growth rates. In contrast, low temperatures favoured survival of B. fusca and S. calamistis but affected the relative growth rates of all three species. Survival and relative growth rates of B. fusca and S. calamistis in interspecific interactions did not differ significantly across temperatures. Temperature increase caused by future climate change is likely to confer an advantage on C. partellus over the noctuids in the utilization of resources (crops).  相似文献   

4.
Understanding how changing climate, nutrient regimes, and invasive species shift food web structure is critically important in ecology. Most analytical approaches, however, assume static species interactions and environmental effects across time. Therefore, we applied multivariate autoregressive (MAR) models in a moving window context to test for shifting plankton community interactions and effects of environmental variables on plankton abundance in Lake Washington, U.S.A. from 1962–1994, following reduced nutrient loading in the 1960s and the rise of Daphnia in the 1970s. The moving-window MAR (mwMAR) approach showed shifts in the strengths of interactions between Daphnia, a dominant grazer, and other plankton taxa between a high nutrient, Oscillatoria-dominated regime and a low nutrient, Daphnia-dominated regime. The approach also highlighted the inhibiting influence of the cyanobacterium Oscillatoria on other plankton taxa in the community. Overall community stability was lowest during the period of elevated nutrient loading and Oscillatoria dominance. Despite recent warming of the lake, we found no evidence that anomalous temperatures impacted plankton abundance. Our results suggest mwMAR modeling is a useful approach that can be applied across diverse ecosystems, when questions involve shifting relationships within food webs, and among species and abiotic drivers.  相似文献   

5.
Predicting the influence of biotic and abiotic factors on species interactions and ecosystem processes is among the primary aims of community ecologists. The composition of saprotrophic fungal communities is a consequence of competitive mycelial interactions, and a major determinant of woodland decomposition and nutrient cycling rates. Elevation of atmospheric temperature is predicted to drive changes in fungal community development. Top-down regulation of mycelial growth is an important determinant of, and moderator of temperature-driven changes to, two-species interaction outcomes. This study explores the interactive effects of a 4 °C temperature increase and soil invertebrate (collembola or woodlice) grazing on multispecies interactions between cord-forming basidiomycete fungi emerging from colonised beech (Fagus sylvatica) wood blocks. The fungal dominance hierarchy at ambient temperature (16 °C; Phanerochaete velutina > Resinicium bicolor > Hypholoma fasciculare) was altered by elevated temperature (20 °C; R. bicolor > P. velutina > H. fasciculare) in ungrazed systems. Warming promoted the competitive ability of the fungal species (R. bicolor) that was preferentially grazed by all invertebrate species. As a consequence, grazing prevented the effect of temperature on fungal community development and maintained a multispecies assemblage. Decomposition of fungal-colonised wood was stimulated by warming, with implications for increased CO2 efflux from woodland soil. Analogous to aboveground plant communities, increasing complexity of biotic and abiotic interactions appears to be important in buffering climate change effects on soil decomposers.  相似文献   

6.
The effect of the addition of synthetic sheep urine (SSU) and plant species on the bacterial community composition of upland acidic grasslands was studied using a microcosm approach. Low, medium, and high concentrations of SSU were applied to pots containing plant species typical of both unimproved (Agrostis capillaris) and agriculturally improved (Lolium perenne) grasslands, and harvests were carried out 10 days and 50 days after the addition of SSU. SSU application significantly increased both soil pH (P < 0.005), with pH values ranging from pH 5.4 (zero SSU) to pH 6.4 (high SSU), and microbial activity (P < 0.005), with treatment with medium and high levels of SSU displaying significantly higher microbial activity (triphenylformazan dehydrogenase activity) than treatment of soil with zero or low concentrations of SSU. Microbial biomass, however, was not significantly altered by any of the SSU applications. Plant species alone had no effect on microbial biomass or activity. Bacterial community structure was profiled using bacterial automated ribosomal intergenic spacer analysis. Multidimensional scaling plots indicated that applications of high concentrations of SSU significantly altered the bacterial community composition in the presence of plant species but at different times: 10 days after application of high concentrations of SSU, the bacterial community composition of L. perenne-planted soils differed significantly from those of any other soils, whereas in the case of A. capillaris-planted soils, the bacterial community composition was different 50 days after treatment with high concentrations of SSU. Canonical correspondence analysis also highlighted the importance of interactions between SSU addition, plant species, and time in the bacterial community structure. This study has shown that the response of plants and bacterial communities to sheep urine deposition in grasslands is dependent on both the grass species present and the concentration of SSU applied, which may have important ecological consequences for agricultural grasslands.  相似文献   

7.
Vascular smooth muscle α2C-adrenoceptors (α2C-ARs) mediate vasoconstriction of small blood vessels, especially arterioles. Studies of endogenous receptors in human arteriolar smooth muscle cells (referred to as microVSM) and transiently transfected receptors in heterologous HEK293 cells show that the α2C-ARs are perinuclear receptors that translocate to the cell surface under cellular stress and elicit a biological response. Recent studies in microVSM unraveled a crucial role of Rap1A-Rho-ROCK-F-actin pathways in receptor translocation, and identified protein-protein interaction of α2C-ARs with the actin binding protein filamin-2 as an essential step in the process. To better understand the molecular nature and specificity of this interaction, in this study, we constructed comparative models of human α2C-AR and human filamin-2 proteins. Finally, we performed in silico protein-protein docking to provide a structural platform for the investigation of human α2C-AR and filamin-2 interactions. We found that electrostatic interactions seem to play a key role in this complex formation which manifests in interactions between the C-terminal arginines of α2C-ARs (particularly R454 and R456) and negatively charged residues from filamin-2 region between residues 1979 and 2206. Phylogenetic and sequence analysis showed that these interactions have evolved in warm-blooded animals.  相似文献   

8.
The potential interactions between the bloom-forming dinoflagellates and other phytoplankton during the algal bloom cycle are interesting, while the causes for the phytoplankton community changes were not fully understood. We hypothesized that phytoplankton community structure and photosynthetic activities of total phytoplankton have their special characteristics in different phases of the algal blooms. To test this hypothesis, a survey covering the process of a Prorocentrum donghaiense bloom in coastal waters between Dongtou and Nanji Islands was carried out from 9 to 20 May 2016, and the changes in the phytoplankton community and photosynthetic activities of total phytoplankton were determined. Surface seawater was sampled for microscopic analysis of phytoplankton composition and pulse amplitude modulated (PAM) chlorophyll fluorescence analysis of photosynthetic activities of the total phytoplankton species. A total of 25, 31, and 19 phytoplankton species were identified in its growth (9–12 May), maintenance (13–18 May) and dissipation phases (19–20 May), respectively. Diatoms were dominant in terms of species number while dinoflagellates were predominant at cell abundance. Dinoflagellates were the major dominant species during three phases of the bloom based on the dominance (Y) value, whereas the dominant species extended to dinoflagellates and diatoms including P. donghaiense, Coscinodiscus argus, Gonyaulax spinifera, Cyclotella sp. and Scrippsiella trochoidea in the dissipation phase. In the maintenance phase, the average cell abundances of the total phytoplankton and P. donghaiense were consistent with the chlorophyll a (Chla) concentration in the seawater; for the diversity indices of total phytoplankton species, Simpson index (C) was the highest while Shannon index (H′) and Pielou evenness index (J′) were the lowest. Furthermore, photosynthetic activities of the total phytoplankton species represented by the effective quantum yield (Fq'/Fm') and the maximum relative electron transport rate (rETRmax) in the maintenance phase were higher than those in the growth and dissipation phases. The results indicated that the characteristics of phytoplankton community structure and photosynthetic activities could be regarded as criteria in predicting the phases of algal blooms.  相似文献   

9.

Background and Aims

Functional groups of species interact and coevolve in space and time, forming complex networks of interacting species. A long-term study of temporal variation of an ant–plant network is presented with the aims of: (1) depicting its structural changes over a 20-year period; (2) detailing temporal variation in network topology, as revealed by nestedness and modularity analysis and other parameters (i.e. connectance, niche overlap); and (3) identifying long-term turnover in taxonomic structure (i.e. switches in ant resource use or plant visitor assemblages according to taxa).

Methods

Fieldwork was carried out at La Mancha, Mexico, and ant–plant interactions were observed between 1989 and 1991, between 1998 and 2000, and between May 2010 and 2011. Occurrences of ants on extrafloral nectaries (EFNs) were recorded. The resulting ant–plant networks were constructed from qualitative presence–absence data determined by a species–species matrix defined by the frequency of occurrence of each pairwise ant–plant interaction.

Key Results

Network variation across time was stable and a persistent nested structure may have contributed to the maintenance of resilient and species-rich communities. Modularity was lower than expected, especially in the most recent networks, indicating that the community exhibited high overlap among interacting species (e.g. few species were hubs in the more recent network, being partly responsible for the nested pattern). Structurally, the connections created among modules by super-generalists gave cohesion to subsets of species that otherwise would remain unconnected. This may have allowed an increasing cascade-effect of evolutionary events among modules. Mutualistic ant–plant interactions were structured 20 years ago mainly by the subdominant nectarivorous ant species Camponotus planatus and Crematogaster brevispinosa, which monopolized the best extrafloral nectar resources and out-competed other species with broader feeding habits. Through time, these ants, which are still present, lost their position as network hubs and diminished in their importance in structuring the network; simultaneously, plants gained in importance.

Conclusions

The long-term network analysis reveals a decrease in attended plant species richness, a notable increase in plant species participation from 1990 to 2010 (sustained by less plant taxonomic similarity in the older 1990 network), an increase in the number of ant species and a diminishing dominance of super-generalist ants. The structure of the community has remained highly nested and connected with low modularity, suggesting overall a more participative, homogeneous, cohesive interaction network. Although previous studies have suggested that interactions between ants and EFN-bearing plants are susceptible to seasonality, abiotic factors and perturbation, this cohesive structure appears to be the key for biodiversity and community maintenance.  相似文献   

10.
Interspecies interactions have important impacts on communities and when multiple trophic levels are involved, effects can be complex and indirect. For mosquitoes, interactions experienced as larvae affect adult attributes such as survivorship, reproductive output, and longevity, factors that can affect their ability to vector disease. We examined how larvae of two ecologically distinct mosquito species, Aedes japonicus japonicus and Culex quinquefasciatus, interact at different temperatures (17 and 27 °C) and at different relative densities. We also quantified abundances of bacteria and protozoan flagellates to uncover how changes in the microbial community affect the outcome of the two mosquitoes’ interaction. At 17 °C, survival and size of both mosquito species were not affected by the other’s presence. Cx. quinquefasciatus was strongly affected by intraspecific, but not interspecific, competition at both temperatures. At 27 °C, Ae. j. japonicus larvae experienced 100 % mortality in treatments by themselves and treatments where Cx. quinquefasciatus was abundant, surviving only in the presence of low densities of Cx. quinquefasciatus. Both the total bacteria count and counts of a protozoan flagellate identified as Spumella spp. decreased with increasing numbers of Cx. quinquefasciatus. We postulate that at 27 °C, the survival of Ae. j. japonicus depends on the interaction between Cx. quinquefasciatus and the microbial community. This study demonstrates that one mosquito species may alter the microbial community in ways that indirectly influence another mosquito species’ larval survival, and by extension adult abundance and potential disease transmission.  相似文献   

11.
Summary Plant and soil water relationships in a typical nebraska Sandhills prairie were examined to 1) explain the observed distribution patterns of several dominant grasses along a topographic gradient, and 2) show how spatial and temporal variations in soil moisture are critical to community organization on a sandy substrate. An experimental transect encompassing the major community and soil types along a steep, west-facing vegetated dune was established. Maximum available water was shown to be significantly higher in the fine textured surface soils of the lowland sites than the coarse textured sands of the dune sites. Seasonal (1979) patterns of available soil moisture of the sampling sites on the transect showed that in the upper elevation dune sands, moisture was available in the entire profile with surface depletions not occurring until mid to late summer. In contrast, moisture in the surface 60–80 cm in the fine textured lowland soils was exhausted by early to mid-summer with the entire profile nearly dry by late summer. Deep-rooted, C4 species, Andropogon hallii and Calamovilfa longifolia which are common on upper, coarser sandy soils showed significantly greater water stress on fine textured soils than on dune sands. C3, shallowrooted species, Agropyron smithii, Stipa comata, and Koeleria cristata always experienced lower mid-day and predawn leaf water potentials than the C4 species. The C3 species, with the exception of Koeleria are most abundant on finer textured soils that provide substantial moisture during their peak activity in the spring. It appears that the C4 species show more conservative water use patterns than the C3 species as significantly lower leaf conductances in the C4's were measured when soil water was abundant. The C3 species appear to be opportunistic with available water and rapidly deplete surface soil moisture as a result of high transpiration rates. These data suggest that the temporal and spatial distribution of available water along this gradient controls species distribution according to rooting morphology, photosynthetic physiology, and water deficits, incurred by transpirational losses. Competitive interactions between species that utilize soil moisture differently may be an important factor in community organization.  相似文献   

12.
We consider a multi-species community modelled as a complex network of populations, where the links are given by a random asymmetric connectivity matrix J, with fraction 1 − C of zero entries, where C reflects the over-all connectivity of the system. The non-zero elements of J are drawn from a Gaussian distribution with mean μ and standard deviation σ. The signs of the elements J ij reflect the nature of density-dependent interactions, such as predatory-prey, mutualism or competition, and their magnitudes reflect the strength of the interaction. In this study we try to uncover the broad features of the inter-species interactions that determine the global robustness of this network, as indicated by the average number of active nodes (i.e. non-extinct species) in the network, and the total population, reflecting the biomass yield. We find that the network transitions from a completely extinct system to one where all nodes are active, as the mean interaction strength goes from negative to positive, with the transition getting sharper for increasing C and decreasing σ. We also find that the total population, displays distinct non-monotonic scaling behaviour with respect to the product μC, implying that survival is dependent not merely on the number of links, but rather on the combination of the sparseness of the connectivity matrix and the net interaction strength. Interestingly, in an intermediate window of positive μC, the total population is maximal, indicating that too little or too much positive interactions is detrimental to survival. Rather, the total population levels are optimal when the network has intermediate net positive connection strengths. At the local level we observe marked qualitative changes in dynamical patterns, ranging from anti-phase clusters of period 2 cycles and chaotic bands, to fixed points, under the variation of mean μ of the interaction strengths. We also study the correlation between synchronization and survival, and find that synchronization does not necessarily lead to extinction. Lastly, we propose an effective low dimensional map to capture the behavior of the entire network, and this provides a broad understanding of the interplay of the local dynamical patterns and the global robustness trends in the network.  相似文献   

13.
Hybrids between the C4-like species, Flaveria brownii, A. M. Powell and the C3-C4 intermediate species Flaveria linearis Lag., Flaveria floridana Johnston, and Flaveria oppositifolia (DC.) Rydb. exhibited bivalent chromosome pairing during meiosis and stainability of pollen was high, ranging from 51 to 95%. An F2 population produced from an F. brownii × F. linearis F1 hybrid, exhibited bivalent chromosome pairing and high pollen stainability indicating a high degree of fertility in the hybrid. Oxygen inhibition of apparent photosynthesis averaged 6.8% for F. brownii and 22.2% for the C3-C4 species (in two experiments), and F1 hybrids exhibited inhibitions which were intermediate to their parents. Values of carbon dioxide compensation concentration determined at low irradiance were 4.0, 34.0, and 6.5 microliters per liter for F. brownii, F. linearis and their F1 hybrid, respectively. The mean value at low irradiance for 33 F1 plants was 6.8 microliters per liter, and individual values ranged only from 3.7 to 11.7 microliters per liter. Anatomical characteristics for the F1 hybrid leaves were intermediate to those of the parents, and there was considerable variation among F2 plants derived from F. brownii × F. linearis. In the F2 population δ13C values ranged from −27‰ to −20‰. The expression of more C4-like characteristics by the F1 hybrids in this study and their apparent high fertility make them promising specimens for producing segregating populations for use in C4 inheritance studies.  相似文献   

14.
Development of potentially life-threatening enterocolitis is the most frequent complication in children with Hirschsprung disease (HSCR), even after definitive corrective surgery. Intestinal microbiota likely contribute to the etiology of enterocolitis, so the aim of this study was to compare the fecal bacterial and fungal communities of children who developed Hirschsprung-associated enterocolitis (HAEC) with HSCR patients who had never had enterocolitis. Eighteen Hirschsprung patients who had completed definitive surgery were enrolled: 9 had a history of HAEC and 9 did not. Fecal DNA was isolated and 16S and ITS-1 regions sequenced using Next Generation Sequencing and data analysis for species identification. The HAEC group bacterial composition showed a modest reduction in Firmicutes and Verrucomicrobia with increased Bacteroidetes and Proteobacteria compared with the HSCR group. In contrast, the fecal fungi composition of the HAEC group showed marked reduction in diversity with increased Candida sp., and reduced Malassezia and Saccharomyces sp. compared with the HSCR group. The most striking finding within the HAEC group is that the Candida genus segregated into “high burden” patients with 97.8% C. albicans and 2.2% C. tropicalis compared with “low burden” patients 26.8% C. albicans and 73% C. tropicalis. Interestingly even the low burden HAEC group had altered Candida community structure with just two species compared to more diverse Candida populations in the HSCR patients. This is the first study to identify Candida sp. as potentially playing a role in HAEC either as expanded commensal species as a consequence of enterocolitis (or treatment), or possibly as pathobioants contributing to the pathogenesis of HAEC. These findings suggest a dysbiosis in the gut microbial ecosystem of HAEC patients, such that there may be dominance of fungi and bacteria predisposing patients to development of HAEC.  相似文献   

15.
It is argued that alternate prey species in the diet of a food-limited generalist predator should reduce each other's equilibrial abundances, whether or not they directly compete. Such indirect, interspecific interactions are labeled apparent competition. Two examples are discussed in which an observed pattern of habitat segregation was at first interpreted as evidence for direct competition, but later interpreted as apparent competition resulting from shared predation. In order to study the consequences of predator-mediated apparent competition in isolation from other complicating factors, a model community is analyzed in which there is no direct interspecific competition among the prey. An explicit necessary condition for prey species coexistence is derived for the case of one predator feeding on many prey species. This model community has several interesting properties: (1) Prey species with high relative values for a parameter ra are “keystone” species in the community; (2) prey species can be excluded from the community by “diffuse” apparent competition; (3) large changes in the niche breadth of the predator need not correspond to large changes in predator density; (4) the prey trophic level as a whole is regulated by the predator, yet each of its constituent species is regulated by both the predator and available resources; (5) increased productivity may either increase, decrease, or leave unchanged the number of species in the community; (6) a decrease in density-independent mortality may decrease species diversity. These conclusions seem to be robust to changes in the prey growth equations and to the incorporation of predator satiation. By contrast, adding prey refugia or predator switching to the model weakens these conclusions. If the predator can be satiated or switched, the elements aij comprising the community matrix may have signs opposite the long-term effect of j upon i. The effect of natural selection upon prey species coexistence is discussed. Unless ri, Ki, and ai are tightly coupled, natural selection within prey species i will tend to decrease the equilibrial abundance of species j.  相似文献   

16.
To better understand how warming, increased precipitation and their interactions influence community structure and composition, a field experiment simulating hydrothermal interactions was conducted at an annual forb dominated desert steppe in northern China over 2 years. Increased precipitation increased species richness while warming significantly decreased species richness, and their effects were additive rather than interactive. Although interannual variations in weather conditions may have a major affect on plant community composition on short term experiments, warming and precipitation treatments affected individual species and functional group composition. Warming caused C4 grasses such as Cleistogenes squarrosa to increase while increased precipitation caused the proportions of non-perennial C3 plants like Artemisia capillaris to decrease and perennial C4 plants to increase.  相似文献   

17.
Walker J. C. 1979. Austrobilharzia terrigalensis: a schistosome dominant in interspecific interactions in the molluscan host. International Journal for Parasitology9: 137–140. In the estuarine prosobranch Velacumantus australis the avian schistosome Austrobilharzia terrigalensis is always associated with the germinal sacs of other trematodes. In this association the schistosome retards the development of the other trematode, thereby reducing the intensity of interspecific competition for the limited resource, the host's tissues.  相似文献   

18.
《Phytochemistry》1987,26(12):3265-3268
Seven species of fresh mangrove leaves were found to contain saturated normal and branched chain hydrocarbons, mostly between C16 and C36 with both odd and even carbon numbers. Significant quantitative variations were found between species. Wax esters were found to contain fatty acids with chain lengths between C12 and C22. Palmitic (16:0) and stearic (18:0) acids were the major component saturated fatty acids, whereas, oleic (18:1) and linolenic (18:3) acids were the major unsaturate α-acids. Chain lengths of the alcohols of wax esters were between C14 and C36. Significant quantitative and minor qualitative differences were noted in the alcohol composition of wax esters. Hydrocarbon and wax ester compositions were characterised by the presence of low M, components in high proportions.  相似文献   

19.
The interspecific plant interactions along grazing and aridity stress gradients represent a major research issue in plant ecology. However, the combined effects of these two factors on plant–plant interactions have been poorly studied in the northeast of Iran. To fill this knowledge gap, 144 plots were established in 12 study sites with different grazing intensities (high vs. low) and climatic characteristics (arid vs. semiarid) in northeastern Iran. A dominant shrub, Artemisia kopetdaghensis, was selected as the model species. Further, we studied changes in plant life strategies along the combined grazing and aridity stress gradients. In this study, we used relative interaction indices calculated for species richness, Shannon diversity, and species cover to determine plant–plant interactions using linear mixed‐effect models (LMM). The indicator species analysis was used to identify the indicator species for the undercanopy of shrub and for the adjacent open areas. The combined effects of grazing and aridity affected the plant–plant interactions and plant life strategies (CSR) of indicator species. A. kopetdaghensis showed the highest facilitation effect under high stress conditions (high grazing, high aridity), which turned into competition under the low stress conditions (low grazing, low aridity). In the arid region, the canopy of the shrub protected ruderals, annual forbs, and grasses in both high and low grazing intensities. In the semiarid region and high grazing intensity (low aridity/high grazing), the shrubs protected mostly perennial forbs with C‐strategy. Our findings highlight the importance of context‐dependent shrub management to restore the vegetation damaged by the intensive grazing.  相似文献   

20.
The NMR structure of the horse (Equus caballus) cellular prion protein at 25 °C exhibits the typical PrPC [cellular form of prion protein (PrP)] global architecture, but in contrast to most other mammalian PrPCs, it contains a well-structured loop connecting the β2 strand with the α2 helix. Comparison with designed variants of the mouse prion protein resulted in the identification of a single amino acid exchange within the loop, D167S, which correlates with the high structural order of this loop in the solution structure at 25 °C and is unique to the PrP sequences of equine species. The β2-α2 loop and the α3 helix form a protein surface epitope that has been proposed to be the recognition area for a hypothetical chaperone, “protein X,” which would promote conversion of PrPC into the disease-related scrapie form and thus mediate intermolecular interactions related to the transmission barrier for transmissible spongiform encephalopathies (TSEs) between different species. The present results are evaluated in light of recent indications from in vivo experiments that the local β2-α2 loop structure affects the susceptibility of transgenic mice to TSEs and the fact that there are no reports on TSE in horses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号