首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melatonin mediates many physiological processes in animals and plants. To examine the potential roles of melatonin in salinity tolerance, we investigated the effects of exogenous melatonin on growth and antioxidant system in cucumber under 200 mM NaCl stress conditions. The results showed that the melatonin-treated plants significantly increased growth mass and antioxidant protection. Under salinity stress, the addition of melatonin effectively alleviated the decrease in the net photosynthetic rate, the maximum quantum efficiency of PSII, and the total chlorophyll content. Our data also suggested that melatonin and the resistance of plants exhibited a concentration effect. The application of 50–150 μM melatonin significantly improved the photosynthetic capacity. Additionally, the pretreatment with melatonin reduced the oxidative damage under salinity stress by scavenging directly H2O2 or enhancing activity of antioxidant enzymes (including superoxide dismutase, peroxidase, catalase, ascorbate peroxidase) and concentrations of antioxidants (ascorbic acid and glutathione). Therefore, the melatonin-treated plants could effectively enhance their salinity tolerance.  相似文献   

2.

Melatonin (N-acetyl-5-methoxytryptamine) as a natural biostimulating substance provides a number of benefits in stimulating plant growth in stress situations due to its natural antioxidant capacity. Rhizobia also play crucial roles in supporting plant growth under environmental stress conditions. The overall goal of this research is to study the possible positive effects of melatonin and rhizobacterium in enhancing the growth and salinity tolerance of common bean. To accomplish this objective, we conducted in vitro experiment to select the optimal melatonin concentration and treatment time of seed priming for the best germination. Also, a greenhouse experiment was performed to investigate the effect of melatonin pre-treatment applied before rhizobial inoculation to improve the fitness of common bean under salinity stress. The experiment was conducted using a completely randomized factorial design with six replications and three treatments: priming treatments (melatonin priming (PM100), hydro priming (PH) and dry (PD)), salinity (0, 4, 8, 10 and 16 dS m?1) and Rhizobium strain (inoculated (RS?+) and uninoculated (RS?)). Our results showed that melatonin priming promoted bacterial colony size in Petri-dishes. The interactive effects of melatonin and RS?+?was found to alleviate reactive oxygen species (ROS) burst, and hence protect common bean chlorophylls a, b and carotenoid and photosynthetic activity and decrease malondialdehyde content through activation of antioxidant enzymes (superoxide dismutase, peroxidase, catalase and ascorbate peroxidase), facilitation of soluble protein synthesis, maintenance of Na+ and K+ homeostasis, and finally increase shoot dry weight (33.2, 39.5 and 31.5%) and seed yield (78.6, 91 and 54.2%) compared to the combination of PD and RS- treatments under 0, 4 and 8 dS m?1 salinity levels, respectively. Thus, our findings suggest that seed priming with melatonin, especially 100 µM melatonin is an effective strategy that can be used to enhance salt tolerance in common bean.

  相似文献   

3.
Free radicals and other reactive species are involved in normal ovarian physiology. However, they are also highly reactive with complex cellular molecules (proteins, lipids, and DNA) and alter their functions leading to oxidative stress. Oxidative damage may play a prominent role in the development of disorders that considerably influence female fertility. Melatonin, because of its amphiphilic nature that allows for crossing morphophysiological barriers, is an effective antioxidant for protecting macromolecules against oxidative stress caused by reactive species. The balance between reactive oxygen species and antioxidants within the follicle seems to be critical to the function of the oocyte and granulosa cells and evidence has accumulated showing that melatonin is involved in the protection of these cells. Melatonin appears to have varied functions at different stages of follicle development, oocyte maturation, and luteal stage. Melatonin concentration in the growing follicle may be an important factor in avoiding atresia, because melatonin in the follicular fluid reduces apoptosis of critical cells. Melatonin also has protective actions during oocyte maturation reducing intrafollicular oxidative damage. An association between melatonin concentrations in follicular fluid and oocyte quality has been reported; this would allow a preovulatory follicle to fully develop and provide a competent oocyte for fertilization. The functional role of reactive species and the cytoprotective properties of melatonin on the ovary from oxidative damage are summarized in this brief review.  相似文献   

4.
Guo  Y. Y.  Li  H. J.  Zhao  C. F.  Xue  J. Q.  Zhang  R. H. 《Russian Journal of Plant Physiology》2020,67(5):809-821
Russian Journal of Plant Physiology - Melatonin is known to exert protective effects in maize against drought stress, but the knowledge regarding interaction among the melatonin, photosynthetic...  相似文献   

5.
Impairment of thyroid functions brings about pathological changes in different organs of body. Findings of in vivo and in vitro studies indicate that thyroid hormones have a considerable impact on oxidative stress. Melatonin reduces oxidative damage through its free radical eliminating and direct anti-oxidant effects. The present study was undertaken to determine how a 3-week period of intraperitoneal melatonin administration affected oxidative damage caused in experimental hyperthyroidism in rat. The experimental animals were divided into 3 groups (control, hyperthyroidism, hyperthyroidism+melatonin). Malondialdehyde (MDA) and glutathione (GSH) levels were determined in different tissues. MDA levels in cerebral, liver and cardiac tissues in hyperthyroidism group were significantly higher than those in control and hyperthyroidism+melatonin supplemented groups (p<0.001). The highest GSH levels were observed in the group that was administered melatonin in addition to having hyperthyroidism (p<0.001). These results show that hyperthyroidism increased oxidative damage in cerebral, hepatic and cardiac tissues of rat. Melatonin supplementation may also suppress oxidative damage.  相似文献   

6.
Previous studies have demonstrated that melatonin administration improves spatial learning and memory and hippocampal long-term potentiation in the adult Ts65Dn (TS) mouse, a model of Down syndrome (DS). This functional benefit of melatonin was accompanied by protection from cholinergic neurodegeneration and the attenuation of several hippocampal neuromorphological alterations in TS mice. Because oxidative stress contributes to the progression of cognitive deficits and neurodegeneration in DS, this study evaluates the antioxidant effects of melatonin in the brains of TS mice. Melatonin was administered to TS and control mice from 6 to 12 months of age and its effects on the oxidative state and levels of cellular senescence were evaluated. Melatonin treatment induced antioxidant and antiaging effects in the hippocampus of adult TS mice. Although melatonin administration did not regulate the activities of the main antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase) in the cortex or hippocampus, melatonin decreased protein and lipid oxidative damage by reducing the thiobarbituric acid reactive substances (TBARS) and protein carbonyls (PC) levels in the TS hippocampus due to its ability to act as a free radical scavenger. Consistent with this reduction in oxidative stress, melatonin also decreased hippocampal senescence in TS animals by normalizing the density of senescence-associated β-galactosidase positive cells in the hippocampus. These results showed that this treatment attenuated the oxidative damage and cellular senescence in the brain of TS mice and support the use of melatonin as a potential therapeutic agent for age-related cognitive deficits and neurodegeneration in adults with DS.  相似文献   

7.
Melatonin has the ability to improve plant growth and strengthened plant tolerance to environmental stresses; however, the effects of melatonin on mitochondrial respiration in plants and the underlying biochemical and molecular mechanisms are still unclear. The objective of the study is to determine possible effects of melatonin on mitochondrial respiration and energy efficiency in maize leaves grown under optimum temperature and cold stress and to reveal the relationship between melatonin-induced possible alterations in mitochondrial respiration and cold tolerance. Melatonin and cold stress, alone and in combination, caused significant increases in activities and gene expressions of pyruvate dehydrogenase, citrate synthase, and malate dehydrogenase, indicating an acceleration in the rate of tricarboxylic acid cycle. Total mitochondrial respiration rate, cytochrome pathway rate, and alternative respiration rate were increased by the application of melatonin and/or cold stress. Similarly, gene expression and protein levels of cytochrome oxidase and alternative oxidase were also enhanced by melatonin and/or cold stress. The highest values for all these parameters were obtained from the seedlings treated with the combined application of melatonin and cold stress. The activity and gene expression of ATP synthase and ATP concentration were augmented by melatonin under control and cold stress. On the other hand, cold stress reduced markedly plant growth parameters, including root length, plant height, leaf surface area, and chlorophyll content and increased the content of reactive oxygen species (ROS), including superoxide anion and hydrogen peroxide and oxidative damage, including malondialdehyde content and electrolyte leakage level; however, melatonin significantly promoted the plant growth parameters and reduced ROS content and oxidative damage under control and cold stress. These data revealed that melatonin-induced growth promotion and cold tolerance in maize is associated with its modulating effect on mitochondrial respiration.  相似文献   

8.
Manchester LC  Tan DX  Reiter RJ  Park W  Monis K  Qi W 《Life sciences》2000,67(25):3023-3029
The seeds of plants represent the anlage of the next generation and are vital to their existence. Melatonin has been identified in the leaves and flowers of plants but not in seeds. In this study, we examined the seeds of 15 edible plants for the presence of melatonin which was extracted using cold ethanol. Melatonin was initially identified by radioimmunoassay and subsequently quantified and confirmed using high performance liquid chromatography. The physiological concentrations of melatonin in the 15 seeds studied ranged from 2 to 200 ng/g dry weight. The highest concentrations of melatonin were observed in white and black mustard seeds. This level of melatonin is much higher than the known physiological concentrations in the blood of many vertebrates. Since the seed, particularly its germ tissue, is highly vulnerable to oxidative stress and damage, we surmise that melatonin, a free radical scavenger, might be present as an important component of its antioxidant defense system. Thus, melatonin in seeds may be essential in protecting germ and reproductive tissues of plants from oxidative damage due to ultraviolet light, drought, extremes in temperature, and environmental chemical pollutants.  相似文献   

9.
褪黑素对玉米幼苗根系发育和抗旱性的影响   总被引:2,自引:0,他引:2  
褪黑素是一种在生物体内广泛存在的吲哚胺类化合物,参与植物的多种生理和生化过程.近年来研究认为褪黑素可以不同程度地增强植物的抗逆性,但对其作用机理仍知之甚少.通过两种褪黑素的施用方法,详细研究了褪黑素对于玉米根系发育和抗旱性的影响.首先,采用水培根灌褪黑素的方法对玉米幼苗的根系和生长状况进行分析,结果表明施加褪黑素显著提...  相似文献   

10.
Melatonin (N-acetyl-5-methoxytryptamine) has a great potential for plant biostimulation. Its role in plant physiology is intensively explored, and its important function in plant stress defence frequently underlined. Melatonin is particularly effective when applied as an additional factor of seed priming. In the presented research, hydroconditioning was chosen experimentally as optimal for maize (Zea mays L.) seeds. The following seed variants were compared: controlled non-treated, hydroprimed with water and hydroprimed with melatonin solutions 50 and 500 μM. To identify modifications in proteome of maize seeds caused by the applied hydroconditioning techniques, protein extracts of germinated seed embryos (24 h, 25 °C) were separated by 2D-PAGE. Next, obtained maps of proteomes were compared (statistically and graphically) using PDQuest software, and characteristic spots of proteins were analysed qualitatively by mass-spectrometric techniques and identified in the Mascot protein databases. Research helped to identify hydropriming-associated proteins, and for the first time those which were expressed only in the presence of melatonin. Study confirmed that suitably selected pre-sowing treatment with melatonin, by embryo proteome modification, effectively prepares plants to adverse environmental conditions. In melatonin treated seeds during the initial state of embryos growth, even under optimal conditions, additional antioxidative, detoxifying, anti-stresses proteins were synthesized. Moreover, the supply of energy from seed storage substances was pretty intensified. The presented results partially explain how melatonin acts in plant stress defence, and why plants with higher melatonin content have exhibited increased capacity for stress tolerance.  相似文献   

11.
Melatonin has been shown to play a role in antioxidative defence. We therefore studied its effect on oxidative damage to the rat cerebral cortex evoked by painful stimulation and immobilization-induced stress. Moreover, the effect of melatonin on chronic pain perception was examined. Rats were injected with either a high dose of melatonin (100 mg/kg i.p.) or a vehicle for five days and were subjected to painful stimulation or immobilization stress 30 min after the treatment. To determine the degree of oxidative stress, the levels of free radicals, thiobarbituric acid reactive substances (TBARS) as indicators of lipid peroxidation and glutathione peroxidase (GSHPx) were estimated in somatosensory cortex. Pain perception was measured by the tail-flick and plantar test. Melatonin reduced the level of TBARS previously increased by painful stimulation. Melatonin also exhibited a slight analgesic effect in those animals exposed to painful stimulation but its role in free radical scavenging did not contribute to this effect.  相似文献   

12.
Ionizing radiation is classified as a potent carcinogen, and its injury to living cells is, to a large extent, due to oxidative stress. The molecule most often reported to be damaged by ionizing radiation is DNA. Hydroxyl radicals (*OH), considered the most damaging of all free radicals generated in organisms, are often responsible for DNA damage caused by ionizing radiation. Melatonin, N-acetyl-5-methoxytryptamine, is a well-known antioxidant that protects DNA, lipids, and proteins from free-radical damage. The indoleamine manifests its antioxidative properties by stimulating the activities of antioxidant enzymes and scavenging free radicals directly or indirectly. Among known antioxidants, melatonin is a highly effective scavenger of *OH. Melatonin is distributed ubiquitously in organisms and, as far as is known, in all cellular compartments, and it quickly passes through all biological membranes. The protective effects of melatonin against oxidative stress caused by ionizing radiation have been documented in in vitro and in vivo studies in different species and in in vitro experiments that used human tissues, as well as when melatonin was given to humans and then tissues collected and subjected to ionizing radiation. The radioprotective effects of melatonin against cellular damage caused by oxidative stress and its low toxicity make this molecule a potential supplement in the treatment or co-treatment in situations where the effects of ionizing radiation are to be minimized.  相似文献   

13.
Oxidative stress is a contributing factor to the development and progression of diabetic retinopathy, a leading cause of blindness in people at working age worldwide. Recent studies showed that Müller cells play key roles in diabetic retinopathy and produce vascular endothelial growth factor (VEGF) that regulates retinal vascular leakage and proliferation. Melatonin is a potent antioxidant capable of protecting variety of retinal cells from oxidative damage. In addition to the pineal gland, the retina produces melatonin. In the current study, we investigated whether melatonin protects against hyperglycemia-induced oxidative injury to Müller cells and explored the potential underlying mechanisms. Our results show that both melatonin membrane receptors, MT1 and MT2, are expressed in cultured primary Müller cells and are upregulated by elevated glucose levels. Both basal and high glucose-induced VEGF production was attenuated by melatonin treatment in a dose-dependent manner. Furthermore, we found that melatonin is a potent activator of Akt in Müller cells. Our findings suggest that in addition to functioning as a direct free radical scavenger, melatonin can elicit cellular signaling pathways that are protective against retinal injury during diabetic retinopathy.  相似文献   

14.
Ahmad  Shakeel  Su  Wennan  Kamran  Muhammad  Ahmad  Irshad  Meng  Xiangping  Wu  Xiaorong  Javed  Tehseen  Han  Qingfang 《Protoplasma》2020,257(4):1079-1092

Melatonin is an important plant growth regulator which plays a key role in plant growth and development. The objective of the current research was to evaluate the effect of foliar application of melatonin (MF) on photosynthetic efficiency, antioxidant defense mechanism, and its relation with leaf senescence in maize crop grown in a semi-arid region. A field experiment was conducted during 2017 and 2018 growth season, where melatonin was applied to the foliage at concentrations of 0 (MF0), 25 (MF1), 50 (MF2), and 75 (MF3) μM at the ninth leaf stage. Foliar application of melatonin significantly improved chlorophyll content, net photosynthetic rate, soluble sugar content, and soluble protein content during the process of leaf senescence. The application of melatonin also enhanced antioxidant enzyme activities including superoxide dismutase, catalase, and peroxidase, while reduced malondialdehyde and reactive oxygen species accumulation. Melatonin foliar application also increased total leaf area per plant, grains per ear, thousand grain weight and grain yield of maize crop in a semi-arid region. The application of melatonin significantly improved photosynthetic activity, antioxidant defense mechanism, and yield of maize crop in a semi-arid region, where the most effective treatment was MF2.

  相似文献   

15.
Melatonin has been reported to participate in the regulation of a number of important physiological and pathological processes. Melatonin, which is a powerful endogenous antioxidant, may play a role in the prevention of oxidative damage. The aim of this study was to investigate the effect of pretreatment with melatonin (5 mg kg(-1) and 10 mg kg(-1)) on gamma-radiation-induced oxidative damage in plasma and erythrocytes after total-body irradiation with a single dose of 5 Gy. Total-body irradiation resulted in a significant increase in plasma and erythrocyte MDA levels. Melatonin alone increased the levels of SOD and GSH-Px. Erythrocyte and plasma MDA levels in irradiated rats that were pretreated with melatonin (5 or 10 mg kg(-1)) were significantly lower than those in rats that were not pretreated. There was no significant difference between the effects of 5 and 10 mg kg(-1) on plasma MDA activities and CAT activities. However, erythrocyte MDA levels showed a dose-dependent decrease, while GSH-Px activities increased with dose. Our study suggests that melatonin administered prior to irradiation may protect against the damage produced by radiation by the up-regulation of antioxidant enzymes and by scavenging free radicals generated by ionizing radiation.  相似文献   

16.
Melatonin has a number of physiological functions in addition to light-dark transduction. In recent years, many in vivo and in vitro studies in rodents have revealed an important antioxidant activity of melatonin, both directly and indirectly. Nevertheless, the potential effects of melatonin as an antioxidant in fish remain unknown. The aim of this research was to evaluate the capacity of melatonin injections (3 mg/kg) to attenuate oxidative damage after submitting goldfish to oxidative stress caused directly by hydrogen peroxide (H2O2) baths and indirectly by hypoxia and subsequent reoxygenation, as well as the locomotor activity. The results revealed that melatonin decreased lipid damage in muscle after hypoxia/reoxygenation (1.22 vs. 2.27 nmoles lipid peroxides/g tissue), but not in liver. Mortality caused by oxidative stress was not attenuated by melatonin. Surprisingly, melatonin caused an increase of mortality (50 vs. 95%) when administered before hypoxia. Locomotor activity was also affected by melatonin but not by the administration of the vehicle, suggesting a sedative effect of melatonin in goldfish. In conclusion, melatonin administration provoked slight effects on lipid peroxidation and mortality resulting from oxidative stress, with reduction of locomotor activity in relation to the vehicle.  相似文献   

17.
Nephrotoxicity is an adverse side effect of methotrexate (MTX) chemotherapy. The present study verifies whether melatonin, an endogenous antioxidant prevents MTX‐induced renal damage. Adult rats were administered 7 mg/kg body weight MTX intraperitoneally for 3 days. In the melatonin pretreated rats, 40 mg/ kg body weight melatonin was administered daily intraperitoneally 1 h before the administration of MTX. The rats were killed 12 h after the final dose of MTX/vehicle. The kidneys were used for light microscopic and biochemical studies. The markers of oxidative stress were measured along with the activities of the antioxidant enzymes and myeloperoxidase activity in the kidney homogenates. Pretreatment with melatonin reduced MTX induced renal damage both histologically and biochemically as revealed by normal plasma creatinine levels. Melatonin pretreatment reduced MTX induced oxidative stress, alteration in the activity of antioxidant enzymes as well as elevation in myeloperoxidase activity. The results suggest that melatonin has the potential to reduce MTX induced oxidative stress, neutrophil infiltration as well as renal damage. As melatonin is an endogenous antioxidant and is non‐toxic even in high doses it is suggested that melatonin may be beneficial in minimizing MTX induced renal damage in humans. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Cancer remains among the most challenging human diseases. Several lines of evidence suggest that carcinogenesis is a complex process that is initiated by DNA damage. Exposure to clastogenic agents such as heavy metals, ionizing radiation (IR), and chemotherapy drugs may cause chronic mutations in the genomic material, leading to a phenomenon named genomic instability. Evidence suggests that genomic instability is responsible for cancer incidence after exposure to carcinogenic agents, and increases the risk of secondary cancers following treatment with radiotherapy or chemotherapy. Melatonin as the main product of the pineal gland is a promising hormone for preventing cancer and improving cancer treatment. Melatonin can directly neutralize toxic free radicals more efficiently compared with other classical antioxidants. In addition, melatonin is able to regulate the reduction/oxidation (redox) system in stress conditions. Through regulation of mitochondrial nction and inhibition of pro-oxidant enzymes, melatonin suppresses chronic oxidative stress. Moreover, melatonin potently stimulates DNA damage responses that increase the tolerance of normal tissues to toxic effect of IR and may reduce the risk of genomic instability in patients who undergo radiotherapy. Through these mechanisms, melatonin attenuates several side effects of radiotherapy and chemotherapy. Interestingly, melatonin has shown some synergistic properties with IR and chemotherapy, which is distinct from classical antioxidants that are mainly used for the alleviation of adverse events of radiotherapy and chemotherapy. In this review, we describe the anticarcinogenic effects of melatonin and also its possible application in clinical oncology.  相似文献   

19.
Melatonin in Chinese medicinal herbs   总被引:13,自引:0,他引:13  
Chen G  Huo Y  Tan DX  Liang Z  Zhang W  Zhang Y 《Life sciences》2003,73(1):19-26
Melatonin is a highly conserved molecule that not only exists in animals, but also is present in bacteria, unicellular organisms and in plants. Since melatonin is an antioxidant, in plants melatonin was speculated to protect them from intrinsic and environmental oxidative stress. More importantly, melatonin in edible plants inevitably enters animals and human through feed and food. In this study, more than 100 Chinese medicinal herbs were analyzed using the methods of solid phase extraction and HPLC-FD on-line with MS to determine whether melatonin is present in these commonly used herbs. Melatonin was detected in majority of these plants. Sixty-four of them contain melatonin in excess of 10 ng per gram dry mass. Melatonin levels in several herbs are in excess of 1000 ng/g. It is well known that normal average physiological plasma levels of melatonin are only 10-60 pg/mL. These high level-melatonin containing plants are traditionally used to treat diseases which presumably involve free radical damage. The current study provides new information concerning one potentially effective constituent present in a large number of medicinal herbs. The results suggest that these herbs should be reevaluated in reference to their nutritional and medicinal value.  相似文献   

20.
为研究干旱胁迫下施加褪黑素对北美红栎幼树光合性能和抗氧化酶系统的影响,以当年生北美红栎幼树实生苗为试验材料,利用不同浓度的聚乙二醇(PEG-6000)溶液模拟干旱,研究干旱胁迫对北美红栎幼树光合性能及抗氧化酶活性的影响。结果表明:在PEG模拟的干旱胁迫下,北美红栎幼树的光合作用受到抑制并破坏了体内的氧化还原平衡,抗氧化物酶活性提高。在干旱胁迫开始前喷施100μM的褪黑素能够提高北美红栎幼树清除活性氧的能力,维持干旱胁迫条件下较高的净光合速率并能有效地缓解由于干旱胁迫对植物造成的损伤。试验结果为实践中栽培管理北美红栎幼树提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号