首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Papain characteristically has a strong preference for encoded L-aromatic amino acids (Phe > Tyr) at P2 position. We re-examined papain S2 specificity using structural analogs of Phe, in fluorogenic substrates of the series: dansyl-Xaa-Arg-Ala-Pro-Trp (Xaa = P2 residue). Kinetic analyses showed that the S2 pocket accommodates a broad spectrum of Phe derivatives. Papain is poorly stereoselective towards Dns-(D/L)-Phe-Arg-Ala-Pro-Trp and binding is not critically affected by replacement of the benzyl ring by the non-aromatic lateral chain of cyclohexylalanine. The Km was significantly improved by mono- and di-chlorination of Phe, or by its substitution by an electronegative group-like NO2, but the specificity constant was unchanged. Shortening or lengthening the side chain by adding or removing a methylene group impairs the P2/S2 interactions significantly, as do constrained structural analogs of Phe. Incorporation of benzyl-substituted phenylalanyl amino acid could help to design peptide-derived inhibitors with greater affinity and bioavailability.  相似文献   

2.
Pyridoxal 5′-phosphate (PLP) dependent enzymes comprise a large family that plays key roles in amino acid metabolism and are acquiring an increasing interest as drug targets. For the identification of compounds inhibiting PLP-dependent enzymes, a chemogenomics-based approach has been adopted in this work. Chemogenomics exploits the information coded in sequences and three-dimensional structures to define pharmacophore models. The analysis was carried out on a dataset of 65 high-resolution PLP-dependent enzyme structures, including representative members of four-fold types. Evolutionarily conserved residues relevant to coenzyme or substrate binding were identified on the basis of sequence-structure comparisons. A dataset was obtained containing the information on conserved residues at substrate and coenzyme binding site for each representative PLP-dependent enzyme. By linking coenzyme and substrate pharmacophores, bifunctional pharmacophores were generated that will constitute the basis for future development of small inhibitors targeting specific PLP-dependent enzymes.  相似文献   

3.
The reaction of L-aromatic aminoacid decarboxylase (EC 4.1.1.28) with α-methyl-L-DOPA or 5-hydroxy-L-tryptophan leads to the formation of dihydroxyphenylacetone or, respectively, 5-hydroxyindolacetaldeyde. These are produced in amounts far exceeding, on molar basis, that of the coenzyme, pyridoxal-5′-phosphate. The reaction cannot therefore be simply a decarboxylation-dependent transamination, using the coenzyme as an amino group acceptor. Evidence is presented which rules out the possibility that this phenomenon is due to an oxidative deamination.  相似文献   

4.
Using site-directed mutagenesis, the NADH-linked lactate dehydrogenase from Bacillus stearothermophilus has been specifically altered at a single residue to shift the coenzyme specificity towards NADPH. The single change is at position 53 in the amino acid sequence where a conserved aspartate has been replaced by a serine. This substitution was made to reduce steric hindrance on binding of the extra phosphate group of NADPH and to remove the negative charge of the aspartate group. The resultant mutant enzyme is 20 times more catalytically efficient than the wild-type enzyme with NADPH.  相似文献   

5.
The nucleotides 8-amino-, 8-methylamino-, and 8-dimethylaminoadenylic acid have been synthesized and their preferred conformations about the glycosyl bond in qaueous solution have been determined by 1H nuclear magnetic resonance spectroscopy. Paramagnetic relaxation studies, nuclear Overhauser enhancement measurements, chemical shifts, and coupling constant comparisons indicate that their is rotation about the glycosyl bond and that preference for either the anti or syn conformation depends on the extent of alkyl substitution on the 8-amino group. The primary and secondary amines 8-amino- and 8-methylaminoadenylic acid adopt a perferential anti conformation about the glycosyl bond, while the tertiary amine 8-dimethylaminoadenylic acid exists predominantly in the syn form. These three analogs provide a system to study interactions of a dehydrogenase with coenzyme inhibitors having different glycosyl conformer populations. All three analogs are competitive inhibitors of NADH in reaction with chicken muscle lactate dehydrogenase, and the Ki values show little dependence on the nature of the amino substitution. This demonstrates that the distribution of conformations about the nucleotide glycosyl bond does not effect the competition of the nucleotide for lactate dehydrogenase apoenzyme. Several models for enzyme-coenzyme binding are discussed. The available data cannot distinguish whether the enzyme binds nucleotide in both the anti and syn conformations or in purely the anti conformation. However, at some stage of the enzyme-coenzyme interaction, there appears to be a strong stabilization of the nucleotide in the anti conformation about the glycosyl bond.  相似文献   

6.
Acetylcholine is essential to neural function. It synthesis is catalyzed by choline acetyltransferase, the enzyme responsible for the acetylation of choline by acetyl coenzye A, a reaction favored slightly thermodymodynamically and not at all kinetically. An analytically pure enzyme still has not been obtained; however, method of purification have been greatly improved recently. Numerous inhibitors of the enzyme have been synthesized and their structure-action relationships examained. Evidence has been accumulated showing the essential involvement of an imidazole group in the active site of choline acetyltransferase. The literature regarding the controversial role to thiol groups in choline acetyltransferase is reviewed. Recently, derivatives of coenzyme A have been introduced as inhibitors of this enzyme and the specificity of coenzyme A binding has been examined. Possible mechanisms responsible for the control fo acetylcholine synthesis are discussed.  相似文献   

7.
The gene encoding aspartate aminotransferase of a thermophilic Bacillus species, YM-2, has been cloned and expressed efficiently in Escherichia coli. The primary structure of the enzyme was deduced from nucleotide sequences of the gene and confirmed mostly by amino acid sequences of tryptic peptides. The gene consists of 1,176 base pairs encoding a protein of 392 amino acid residues; the molecular mass of the enzyme subunit is estimated to be 42,661 daltons. The active site lysyl residue that binds the coenzyme, pyridoxal phosphate, was identified as Lys-239. Comparison of the amino acid sequence with those of aspartate aminotransferases from other organisms revealed very low overall similarities (13-14%) except for the sequence of the extremely thermostable enzyme from Sulfolobus solfataricus (34%). Several amino acid residues conserved in all the compared sequences include those that have been reported to participate in binding of the coenzyme in three-dimensional structures of the vertebrate and E. coli enzymes. However, the strictly conserved arginyl residue that is essential for binding of the distal carboxyl group of substrates is not found in the corresponding region of the sequences of the thermostable enzymes from the Bacillus species and S. solfataricus. The Bacillus aspartate aminotransferase has been purified from the E. coli clone cell extracts on a large scale and crystallized in the buffered ammonium sulfate solution by the hanging drop method. The crystals are monoclinic with unit cell dimensions a = 121.2 A, b = 110.5 A, c = 81.8 A, and beta = 97.6 degrees, belonging to space group C2, and contain two molecules in the asymmetric unit. The crystals of the enzyme-alpha-methylaspartate complex are isomorphous with those without the substrate analog.  相似文献   

8.
Xu H  West AH  Cook PF 《Biochemistry》2007,46(25):7625-7636
A survey of NADH, alpha-Kg, and lysine analogues has been undertaken in an attempt to define the substrate specificity of saccharopine dehydrogenase and to identify functional groups on all substrates and dinucleotides important for substrate binding. A number of NAD analogues, including NADP, 3-acetylpyridine adenine dinucleotide (3-APAD), 3-pyridinealdehyde adenine dinucleotide (3-PAAD), and thionicotinamide adenine dinucleotide (thio-NAD), can serve as a substrate in the oxidative deamination reaction, as can a number of alpha-keto analogues, including glyoxylate, pyruvate, alpha-ketobutyrate, alpha-ketovalerate, alpha-ketomalonate, and alpha-ketoadipate. Inhibition studies using nucleotide analogues suggest that the majority of the binding energy of the dinucleotides comes from the AMP portion and that distinctly different conformations are generated upon binding of the oxidized and reduced dinucleotides. Addition of the 2'-phosphate as in NADPH causes poor binding of subsequent substrates but has little effect on coenzyme binding and catalysis. In addition, the 10-fold decrease in affinity of 3-APAD in comparison to NAD suggests that the nicotinamide ring binding pocket is hydrophilic. Extensive inhibition studies using aliphatic and aromatic keto acid analogues have been carried out to gain insight into the keto acid binding pocket. Data suggest that a side chain with three carbons (from the alpha-keto group up to and including the side chain carboxylate) is optimal. In addition, the distance between the C1-C2 unit and the C5 carboxylate of the alpha-keto acid is also important for binding; the alpha-oxo group contributes a factor of 10 to affinity. The keto acid binding pocket is relatively large and flexible and can accommodate the bulky aromatic ring of a pyridine dicarboxylic acid and a negative charge at the C3 but not the C4 position. However, the amino acid binding site is hydrophobic, and the optimal length of the hydrophobic portion of the amino acid carbon side chain is three or four carbons. In addition, the amino acid binding pocket can accommodate a branch at the gamma-carbon, but not at the beta-carbon.  相似文献   

9.
3-Amino-L-tyrosine was found to be a substrate of mushroom tyrosinase, contrary to what had previously been reported in the literature. A series of amino derivatives of benzoic acid were tested as substrates and inhibitors of the enzyme. 3-Amino-4-hydroxybenzoic acid, 4-amino-3-hydroxybenzoic acid and 3,4-diaminobenzoic acid were oxidized by this enzyme, as previously reported for Neurospora crassa tyrosinase, but 4-aminobenzoic acid and 3-aminobenzoic acid were not. Interestingly, 3-amino-4-hydroxybenzoic acid was oxidized five times faster than 4-amino-3-hydroxybenzoic acid, confirming the importance of proton transfer from the hydroxyl group at C-4 position. All compounds inhibited the monophenolase activity but their effect on the diphenolase activity was small or negligible. 3-Amino-4-hydroxybenzoic acid was a stronger inhibitor than 4-amino-3-hydroxybenzoic acid, indicating their different binding affinity to the oxy form of the enzyme. Both, however, were weaker inhibitors than 3-amino-L-tyrosine, 4-methoxy-o-phenylenediamine and 3,4-diaminobenzoic acid, which was the strongest inhibitor from among the compounds tested. These results show that the relative positioning of the amino group and the hydroxy group in o-aminophenols with respect to the side chain is important both for binding to the dicopper center and for catalysis.  相似文献   

10.
P450BM-3 is an extensively studied P450 cytochrome that is naturally fused to a cytochrome P450 reductase domain. Crystal structures of the heme domain of this enzyme have previously generated many insights into features of P450 structure, substrate binding specificity, and conformational changes that occur on substrate binding. Although many P450s are inhibited by imidazole, this compound does not effectively inhibit P450BM-3. Omega-imidazolyl fatty acids have previously been found to be weak inhibitors of the enzyme and show some unusual cooperativity with the substrate lauric acid. We set out to improve the properties of these inhibitors by attaching the omega-imidazolyl fatty acid to the nitrogen of an amino acid group, a tactic that we used previously to increase the potency of substrates. The resulting inhibitors were significantly more potent than their parent compounds lacking the amino acid group. A crystal structure of one of the new inhibitors bound to the heme domain of P450BM-3 reveals that the mode of interaction of the amino acid group with the enzyme is different from that previously observed for acyl amino acid substrates. Further, required movements of residues in the active site to accommodate the imidazole group provide an explanation for the low affinity of imidazole itself. Finally, the previously observed cooperativity with lauric acid is explained by a surprisingly open substrate-access channel lined with hydrophobic residues that could potentially accommodate lauric acid in addition to the inhibitor itself.  相似文献   

11.
The mitochondrial gene for the cytochrome b of Complex III has been cloned from a mouse L-cell mutant with increased resistance to 2-n-heptyl-4-hydroxyquinoline-N-oxide and other inhibitors which block reactions at the b562 heme group. Nucleotide sequencing revealed that this gene contained a G:A transition on the coding strand at position 14,830. At the amino acid level, this mutation results in the substitution of an aspartic acid residue for a conserved glycine at position 231 of cytochrome b. Based upon current models for the secondary structure of cytochrome b, the altered amino acid lies in close proximity to one of the invariant histidine residues involved in binding the heme groups. Combining this result with the previous biochemical studies of this mutant, we hypothesize that the insertion of this highly charged side chain alters the conformation around the b562 heme group such that 2-n-heptyl-4-hydroxyquinoline-N-oxide and the other inhibitors of this group have reduced access to the inhibitor binding domain.  相似文献   

12.
Glutamate dehydrogenase binds alpha-ketoglutarate and NADPH to form a ternary complex whose ultraviolet difference spectrum exhibits a blue-shifted coenzyme absorption band and a distinctive aromatic amino acid perturbation. When ammonia is added to this complex at -42 degrees C in 50% methanol, initiating the enzymatic reaction, these two spectral features disappear at different rates. The kinetic independence of these two features is especially evident in the presence of excess L-glutamate. We propose that, under cryogenic conditions at least, there are two forms of the enzyme. The blue shift of the coenzyme absorption band reflects only the physical presence of an alpha-ketoglutarate molecule at the active site, while the distinctive aromatic amino acid perturbation reflects a change in enzyme structure caused by alpha-ketoglutarate binding which may persist in the absence of any bound alpha-ketoglutarate molecule. Simple red and blue shifts of model tyrosine and tryptophan compounds cannot be used to simulate the observed aromatic amino acid perturbation.  相似文献   

13.
J L Dimicoli  J Bieth  J M Lhoste 《Biochemistry》1976,15(10):2230-2236
Trifluoroacetyl di- and tripeptides have been synthesized in order to investigate their interactions with elastase by proton and fluorine magnetic resonance. These substituted peptides behave as substrates or inhibitors of the enzyme, depending upon their length. They are hydrolyzed with production of trifluoracetic acid and unsubstituted parent peptides exclusively. The amino acid specificity observed and the absence of hydrolysis in the presence of an enzyme substituted at the serine residue of the active site indicate that the trifluoracetic hydrolysis occurs at this site. It requires the fixation of the C-terminal amino acids at the two S' subsites, as does the peptidic hydrolysis of unsubstituted or acetylated oligoalanines. Trifluoracetyl tripeptides exhibit a much higher affinity for the protein, as compared with the unsubstituted or acetylated peptides as well as compared with the trifluoroacetyl dipeptides, and they act as powerful inhibitors of the enzyme. The inhibitory binding mode has been shown to involve the fixation of the trifluoroacetyl group at subsite S4 or in its vicinity, allowing for the cooperative fixation of the C-terminal alanine at S1 and the accommodation of a transproline at S2.  相似文献   

14.
d-Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) shows cooperative properties for binding coenzymes. The structure of apo-GAPDH from Palinurus versicolor has been solved at 2.0 A resolution by X-ray crystallography. The final model gives a crystallographic R factor of 0.178 in the resolution range 8 to 2 A. The structural comparison with holo-GAPDH from the same species reveals a conformational change induced by coenzyme binding similar to that observed in Bacillus stearothermophilus GAPDH but to a lesser extent. The differences in magnitude during the apo-holo transition between these two enzymes were analyzed with respect to the change of the amino acid composition in the coenzyme binding pocket. In the crystalline state of apo-GAPDH, the overall structures of the subunits are similar to each other; however, significant differences in temperature factors and minor differences in domain rotation upon coenzyme binding were observed for different subunits. These structural features are discussed in relation to the environmental asymmetry of crystallographically independent subunits.  相似文献   

15.
Aspartate-beta-semialdehyde dehydrogenase (ASADH) lies at the first branch point in the biosynthetic pathway through which bacteria, fungi, and the higher plants synthesize amino acids, including lysine and methionine and the cell wall component diaminopimelate from aspartate. Blocks in this biosynthetic pathway, which is absent in mammals, are lethal, and inhibitors of ASADH may therefore serve as useful antibacterial, fungicidal, or herbicidal agents. We have determined the structure of ASADH from Escherichia coli by crystallography in the presence of its coenzyme and a substrate analogue that acts as a covalent inhibitor. This structure is comparable to that of the covalent intermediate that forms during the reaction catalyzed by ASADH. The key catalytic residues are confirmed as cysteine 135, which is covalently linked to the intermediate during the reaction, and histidine 274, which acts as an acid/base catalyst. The substrate and coenzyme binding residues are also identified, and these active site residues are conserved throughout all of the ASADH sequences. Comparison of the previously determined apo-enzyme structure [Hadfield et al. J. Mol. Biol. (1999) 289, 991-1002] and the complex presented here reveals a conformational change that occurs on binding of NADP that creates a binding site for the amino acid substrate. These results provide a structural explanation for the preferred order of substrate binding that is observed kinetically.  相似文献   

16.
A variety of amino acid and peptide amides have been shown to be inhibitors of dipeptidyl aminopeptidase. Among these compounds derivatives of strongly hydrophobic amino acids are the strongest inhibitors (Phe-NH2, Ki = 1.0 +/- 0.2 mM), while amides of basic amino acids were somewhat less effective (Lys-NH2, Ki = 36 +/- 3 mM). Short chain amino acid amides are notably weaker inhibitors (Gly-NH2, Ki = 293 +/- 50 mM). The interaction of the side chains of compounds with the enzyme appears to be at a site other than that at which the side chain of the amino-penultimate residue of the substrate interacts since the specificity of binding is different. Primary amines have been shown to inhibit, e.g., butylamine, Ki = 340 +/- 40 mM, and aromatic compounds have been shown to stimulate activity toward Gly-Gly-NH2 and Gly-Gly-OEt (phenol, 35% stimulation of activity at a 1:1 molar ratio with the substrate). The data suggest that inhibition involves binding at the site occupied by the free alpha-amino group and the N-terminal amino acid.  相似文献   

17.
Angiotensin I analogues with a phosphonic acid group replacing the C-terminal carboxyl group were shown to be competitive inhibitors of angiotensin-converting enzyme. This new class of inhibitors was used to study the binding requirements of the angiotensin I-like ligands to the enzyme's active site. These studies indicate that angiotensin-converting enzyme recognizes at least five amino acid residues at the C-terminus of the peptide. The effect of pH on the binding of the most potent inhibitor peptide was compared to Captopril. The two inhibitors showed similar Ki-pH profiles despite their structural differences. Chloride enhanced the binding of the peptide inhibitor at both pH 9.0 and pH 6.5. At pH 9.0 the inhibitor peptide and the anion bind randomly to the enzyme, while at pH 6.5 the mechanism is ordered. In the latter case, the anion binds first to the enzyme.  相似文献   

18.
Identifying amino acid positions that determine the specific interaction of proteins with small molecule ligands, is required for search of pharmaceutical targets, drug design, and solution of other biotechnology problems. We studied applicability of an original method SPrOS (specificity projection on sequence) developed to recognize functionally significant positions in amino acid sequences. The method allows residues specific to functional subgroups to be determined within the protein family based on their local surroundings in amino acid sequences. The efficiency of the method has been estimated on the protein kinase family. The residues associated with the protein specificity to inhibitors have been predicted. The results have been verified using 3D structures of protein–ligand complexes. Three small molecule inhibitors have been tested. Residues predicted with SPrOS either in contacted the inhibitor or influenced the conformation of the ligand–binding area. Excluding close homologues from the studied set makes it possible to decrease the number of difficult to interpret positions. The expediency of this procedure was determined by the relationship between an inhibitory spectrum and phylogenic partition. Thus, the method efficiency has been confirmed by matching the prediction results with the protein 3D structures.  相似文献   

19.
Changes in the net protonation of D-amino acid oxidase during binding of competitive inhibitors and during reduction by amino acids have been monitored using phenol red as a pH indicator. At pH 8.0, no uptake or release of protons from solution occurs upon binding the inhibitors benzoate, anthranilate, picolinate, or L-leucine. The Kd values for both picolinate and anthranilate were determined from pH 5.4 to 9.0. The results are consistent with a single group on the enzyme having a pK of 6.3 which must be unprotonated for tight binding, as is the case with benzoate binding (Quay, S., and Massey, V. (1977) Biochemistry 16, 3348-3354) and with tight binding of the inhibitor form with an unprotonated amino group. Upon reduction of the enzyme by amino acid substrates, two protons are released to solution. The first is released concomitantly with reduction to the reduced enzyme-imino acid charge transfer complex. The second is released only upon dissociation of the charge transfer complex to free reduced enzyme and imino acid. The first proton is assigned as arising from the amino acid group and the second from the amino acid alpha-hydrogen. These results are consistent with the flavin in reduced D-amino acid oxidase being anionic.  相似文献   

20.
R Maneckjee  S B Baylin 《Biochemistry》1983,22(26):6058-6063
Human L-Dopa decarboxylase (L-aromatic amino acid decarboxylase, DDC) has been purified from pheochromocytoma tissue, a benign tumor of the catecholamine-synthesizing cells of the adrenal medulla. The binding characteristics of a new radiolabeled enzyme-activated suicide inhibitor of DDC ( [3H]monofluoromethyl-Dopa, [3H]MFMD) have been established, and the covalent linkage of the inhibitor to the enzyme has been used to identify that human DDC exists as a dimer of a 50-kDa subunit. An antibody to human DDC identically precipitates the enzyme activity from different human, rat, and mouse tissues. Our data demonstrate the value of [3H]MFMD for probing the structure of DDC and facilitating the purification of this enzyme, and further emphasize the high degree of conservation of the DDC molecule over a wide variety of species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号