首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycyrrhiza glabra is one of the most important and well-known medicinal plants which produces various triterpene saponins such as glycyrrhizin. Beta-amyrin 11-oxidase (CYP88D6) plays a key role in engineering pathway of glycyrrhizin production and converts an intermediated beta-amyrin compound to glycyrrhizin. In this study, pBI121GUS-9:CYP88D6 construct was transferred to G. glabra using Agrobacterium rhizogene ATCC 15834. The quantitation of transgene was measured in putative transgenic hairy roots using qRT-PCR. The amount of glycyrrhizin production was measured by HPLC in transgenic hairy root lines. Gene expression analysis demonstrated that CYP88D6 was over-expressed only in one of transgenic hairy root lines and was reduced in two others. Beta-amyrin 24-hydroxylase (CYP93E6) was significantly expressed in one of the control hairy root lines. The amount of glycyrrhizin metabolite in over-expressed line was more than or similar to that of control hairy root lines. According to the obtained results, it would be recommended that multi-genes of glycyrrhizin biosynthetic pathway be transferred simultaneously to the hairy root in order to increase glycyrrhizin content.  相似文献   

2.
The genus Acrocomia, popularly known as macaw palm or macaúba, occurs in savanna areas and open forests of tropical America, with distribution from Central to southern South America. They are important oleaginous palm trees, due to their role in ecosystems and local economies and their potential for biofuel production and vegetable oil. Although the taxonomy of the genus is not resolved because of observed phenotypic diversity in A. aculeata (Jacq.) Lodd. ex Mart., there are several conflicting treatments. Some authors recognize three caulescent spp. occurring in South America: A. aculeata, A. intumescens Drude, and A. totai Mart, although a new one was described recently—Acrocomia corumbaensis. Because some Latin American governments want to expand production of macaw palm in their territory as raw material for agro-energy, several groups have been encouraged to study this genus, focusing on the production of biodiesel, seed germination, phenotypic aspects, and genetic diversity. The goal of this review is to compile key information available in the literature and herbarium data, focusing on South American populations of the genus.  相似文献   

3.
Genotypic and phenotypic characterization of Bacillus spp. from polluted freshwater has been poorly addressed. The objective of this research was to determine the diversity and enzymatic potentialities of Bacillus spp. strains isolated from the Almendares River. Bacilli strains from a polluted river were characterized by considering the production of extracellular enzymes using API ZYM. 14 strains were selected and identified using 16S rRNA, gyrB and aroE genes. Genotypic diversity of the Bacillus spp. strains was evaluated using pulsed field gel electrophoresis. Furthermore, the presence of genetic determinants of potential virulence toxins of the Bacillus cereus group and proteinaceous crystal inclusions of Bacillus thuringiensis was determined. 10 strains were identified as B. thuringiensis, two as Bacillus megaterium, one as Bacillus pumilus and one as Bacillus subtilis. Most strains produced proteases, amylases, phosphatases, esterases, aminopeptidases and glucanases, which reflect the abundance of biopolymeric matter in Almendares River. Comparison of the typing results revealed a spatio-temporal distribution among B. thuringiensis strains along the river. The results of the present study highlight the genotypic and phenotypic diversity of Bacillus spp. strains from a polluted river, which contributes to the knowledge of genetic diversity of Bacilli from tropical polluted freshwater ecosystems.  相似文献   

4.
5.
Cassava is a widely grown staple in Sub-Saharan Africa and consumed as a cheap source of calories, but the crop is deficient in micronutrients including pro-vitamin A carotenoids. This challenge is currently being addressed through biofortification breeding that relies on phenotypic selection. Gene-based markers linked to pro-vitamin A content variation are expected to increase the rate of genetic gain for this critical trait. We sequenced four candidate carotenoid genes from 167 cassava accessions representing the diversity of elite breeder lines from IITA. Total carotenoid content was determined using spectrophotometer and total β-carotene was quantified by high-performance liquid chromatography. Storage root yellowness due to carotenoid pigmentation was assessed. We carried out candidate gene association analysis that accounts for population structure and kinship using genome-wide single nucleotide polymorphisms (SNPs) generated through genotyping-by-sequencing. Significant SNPs were used to design competitive allele-specific PCR assays and validated on the larger population for potential use in marker-assisted selection breeding. Candidate gene sequencing of the genes β-carotene hydroxylase (crtRB), phytoene synthase (PSY2), lycopene epsilon cyclase (lcyE), and lycopene beta cyclase (lcyB) yielded a total of 37 SNPs. Total carotenoid content, total β-carotene, and color parameters were significantly associated with markers in the PSY2 gene. The SNPs from lcyE were significantly associated with color while those of lcyB and crtRB were not significantly associated with carotenoids or color parameters. These validated and breeder-friendly markers have potential to enhance the efficiency of selection for high β-carotene cassava, thus accelerating genetic gain.  相似文献   

6.
Casuarina is a widely cultivated plantation tree species in coastal India, primarily due to its fast growth, high productivity and suitable for pulp and paper production. However, genetic studies of Casuarina have been hindered by lack of genomic resources and genetic markers. Knowledge of the genetic diversity and population structure of Casuarina germplasms will provide the basis for utilizing and improving resource in the breeding program. Keeping this in view, in the present study, we have identified a total of 11,503 simple sequence repeat (SSR) makers from 86,415 expressed sequence tags (ESTs) of Casuarina equisetifolia and C. junghuhniana after redundancy elimination. Dinucleotide repeats were the most abundant accounting for 72.5 % of all microsatellites, followed by trimer (23.4 %), hexamer (1.7 %), tetramer (1.5 %), and very few pentamer (0.6 %) repeats. Of these, 50 markers were used to estimate genetic diversity and population structure among 96 accessions of C. cunninghamiana and C. junghuhniana. EST-SSR markers revealed high level of polymorphism, detecting a total of 829 alleles with an average of 17 alleles per locus. Polymorphic information content (PIC) values ranged from 0.32 to 0.93, with an average of 0.78 per locus. The average observed (H o ) and expected heterozygosity (H e ) obtained was high and fairly similar in C. cunninghamiana and C. junghuhniana, thereby suggesting highly heterogeneous nature of Casuarina. Population structure using a Bayesian model-based clustering approach identified clear delineation between C. cunninghamiana and C junghuhniana. Further, these markers were also evaluated in four species of Casuarina confirming high rate of cross-species transferability. The results of this study can provide valuable insights for genetic and genomic research in Casuarina.  相似文献   

7.
Rice is one of the most important food crops in the world. Genetic diversity is essential for cultivar improvement programs. We compared genetic diversity derived from insertion–deletion (in–del) or base substitutions by amplified fragment length polymorphism (AFLP), from transposon transposition mutations by transposon display (TD), and from cytosine methylation by methylation-sensitive amplified polymorphism (MSAP) in japonica, indica, and Tongil type varieties of Oryza sativa L. Polymorphic profiles from the three marker systems allowed us to clearly distinguish the three types of varieties. The indica type varieties showed the highest genetic diversity followed by the Tongil and japonica type varieties. Of the three marker systems, TD produced the highest marker indices, and AFLP and MSAP produced similar marker indices. Pair-wise comparisons of the three marker systems showed that the correlation between the two genetic markers systems (AFLP and TD, r = 0.959) was higher than the correlations between the genetic and epigenetic marker systems (AFLP and MSAP, r = 0.52; TD and MSAP, r = 0.505). Both genetic marker systems had similar levels of gene differentiation (G ST ) and gene flow (N m ), which differed in the epigenetic marker system. Although the G ST of the epigenetic marker system was lower than the genetic marker systems, the N m of the epigenetic marker system was higher than in the genetic marker systems, indicating that epigenetic variations have a greater influence than genetic variations among the O. sativa L. types.  相似文献   

8.
The diversity of rhizobia that establish symbiosis with Lotus corniculatus has scarcely been studied. Several species of Mesorhizobium are endosymbionts of this legume, including Mesorhizobium loti, the type species of this genus. We analysed the genetic diversity of strains nodulating Lotus corniculatus in Northwest Spain and ten different RAPD patterns were identified among 22 isolates. The phylogenetic analysis of the 16S rRNA gene showed that the isolated strains belong to four divergent phylogenetic groups within the genus Mesorhizobium. These phylogenetic groups are widely distributed worldwide and the strains nodulate L. corniculatus in several countries of Europe, America and Asia. Three of the groups include the currently described Mesorhizobium species M. loti, M. erdmanii and M. jarvisii which are L. corniculatus endosymbionts. An analysis of the recA and atpD genes showed that our strains belong to several clusters, one of them very closely related to M. jarvisii and the remanining ones phylogenetically divergent from all currently described Mesorhizobium species. Some of these clusters include L. corniculatus nodulating strains isolated in Europe, America and Asia, although the recA and atpD genes have been sequenced in only a few L. corniculatus endosymbionts. The results of this study revealed great phylogenetic diversity of strains nodulating L. corniculatus, allowing us to predict that even more diversity will be discovered as further ecosystems are investigated.  相似文献   

9.
10.
Knowledge of rhizobium diversity is helping to enable the utilization of rhizobial resources. To analyze the phenotypic and genetic diversity and the symbiotic divergence of rhizobia of Medicago sativa, 30 endophytic and non-endophytic isolates were collected from different parts of five alfalfa varieties in three geographic locations in Gansu, China. Numerical analyses based on 72 phenotypic properties and restriction fragment length polymorphism (RFLP) fingerprinting indicated the abundant phenotypic and genetic diversity of the tested strains. According to the phylogenetic analysis of 16S RNA, atpD, glnII, and recA gene sequences, Rhizobium and Ensifer were further classified into four different genotypes: Rhizobium radiobacter, Rhizobium sp., Rhizobium rosettiformans, and Ensifer meliloti. The differences in architecture and functioning of the rhizobial genomes and, to a lesser extent, environment diversification helped explain the diversity of tested strains. The tested strains exhibited similar symbiotic feature when inoculated onto M. sativa cvs. Gannong Nos. 3 and 9 and Qingshui plants for the clustering feature of their parameter values. An obvious symbiotic divergence of rhizobial strains was observed in M. sativa cvs. Longzhong and WL168HQ plants because of the scattered parameter values. Their symbiotic divergence differed according to alfalfa varieties, which indicated that the sensitivity of different alfalfa varieties to rhizobial strains may differ. Most of the tested strains exhibited plant growth-promoting traits including phosphate solubilization and production of indole-3-acetic acid (IAA) when colonizing plant tissues and soil.  相似文献   

11.
Naturally rare species have a higher probability of stochastic extinction due to genetic, demographic, or environmental hazards; human disturbance may intensify these threats. Rare species may therefore be in need of short-term intervention to survive. The ecosystem with the second highest biodiversity in Brazil, the Cerrado, is suffering from fragmentation and threats to its flora. Dimorphandra wilsonii, a 30-m tall endemic tree of the Brazilian Cerrado, is listed as critically endangered; only 21 adult trees have been identified. We carried out mating system and pollen flow analyses to understand the current gene flow and limitations in the reproduction of D. wilsonii. With seven fluorescently labelled microsatellite primers, we genotyped 20 adult trees and 269 progeny from 13 mother trees. D. wilsonii displayed low levels of genetic diversity; bottleneck events are likely to have occurred (H e ?=?0.60 and 0.29; H o ?=?0.71 and 0.33, for adults and progeny, respectively). This species is predominantly outcrossing (t m ?=?0.88), with some selfing (1-t m ?=?0.12), as well as crossing between related individuals (t m -t s ?=?0.11). None of the studied trees was reproductively isolated; a high proportion of pollen (55 %) came from trees yet to be discovered. Two genetic clusters (Northern and Southern) were identified, with high values of genetic divergence among the Southern sites. Planting of seedlings and monitoring of seed dispersion in order to maintain the genetic diversity and genetic structure of D. wilsonii are strategies that may ensure the continuation of D. wilsonii, but this species does not seem to require reproductive intervention to remain viable.  相似文献   

12.
Miscanthus genetic resources are widely distributed throughout China. However, genetic studies on Miscanthus lagged far behind other crops (e.g., sorghum, maize). To establish the comprehensive genetics knowledge of Miscnathus in China, here we report the genetic and phylogenetic diversity of 174 domestic Miscanthus accessions, along with an external Miscanthus × giganteus control. Cytological observations and flow cytometry analyses indicated that there were two major Miscanthus cytotypes in China: diploid (86.86%) and tetraploid (12.57%) without triploid. A total of 108 polymorphic loci generated from 25 SSR primers were used to evaluate the genetic variation. Large variations in genetic similarity coefficients (GSCs), ranging from 0.08 to 0.97 with a mean value of 0.39, were observed between these Miscanthus accessions. Our phylogenetic data revealed that these accessions were clustered into four main clades: M. section Miscanthus, M. section Diandranthus, M. section Triarrhena, and hybrids. The average percentage of polymorphic loci (P), gene diversity (H), and Shannon’s diversity index (I) among Miscanthus species are 70.93%, 0.22, and 0.34, respectively. These were consistent with the analysis of molecular variance (AMOVA) results, showing that 85% of genetic variation was found within clades. This study investigated the clear phylogenetic relationship of Miscanthus species in China, which will be valuable for further utilization of the germplasm in genetic improvement and hybrid breeding of Miscanthus.  相似文献   

13.
Three Azorean endemic Ammi species were initially described: Ammi trifoliatum (Wats.) Trel., Ammi seubertianum (Wats.) Trel. and Ammi huntii (Wats.) Trel. Many taxonomic changes have been conducted, and one to three species have been considered. Two species are currently accepted: A. trifoliatum, which occurs in almost every island, and A. seubertianum, with a narrower distribution. In this research, the population genetic diversity and structure of the Azorean Ammi species were assessed using eight specifically designed SSR markers. A wide sampling of A. seubertianum and A. trifoliatum was conducted in seven Azorean islands, and four A. huntii herbarium samples were also included to further contribute to the taxonomy of this genus in Azores. Flores populations showed the highest genetic diversity, while North of Topo, in São Jorge, showed the lowest. None of the populations analysed displayed signs of putative inbreeding. The population genetic structure analyses conducted partially provided support for the two currently accepted species, but other possible cryptic taxa may also be present. The complex clustering obtained seems to result from a combined action of geography, geology and ecology, and although island-specific genetic patterns were found, environmental conditions connected to different altitudes and the existence of micro-niches may also play an important role. A thorough morphological revision and ecophysiological studies should be conducted to clarify the number of endemic taxonomic entities present in the Azores archipelago.  相似文献   

14.
Understanding patterns of genetic diversity of plants is important in guiding conservation programs. The aim of our study was to characterize genetic diversity in Afzelia quanzensis, an economically important African tree species. We genotyped 192 individuals at 10 nuclear microsatellite loci. Samples were collected from nine sites in Zimbabwe, five in the north and four in the south, separated by a mountain range, the Kalahari-Zimbabwe axis. Overall, genetic diversity was relatively low across all sites (expected heterozygosity (H E)?=?0.452, mean number of alleles (A)?=?4.367, allelic richness (A R)?=?2.917, effective number of alleles (A E)?=?2.208, and private allelic richness (PAR)?=?0.197). Genetic diversity estimates, H E, A, A R, and PAR, were not significantly different between northern and southern sites. Allelic richness was significantly higher in southern sites. Significant population differentiation was observed among all sites (F ST ?=?0.0936, G′ ST ?=?0.1982, G ST ?=?0.1001, D JOST?=?0.0598). STRUCTURE analysis and principal components analysis identified two gene pools, one predominantly made up of southern individuals, and the other of northern individuals. A Monmonier’s function detected a genetic barrier that coincided with the Kalahari-Zimbabwe axis. The relatively low level of genetic diversity in A. quanzensis may reduce adaptability and limit future evolutionary responses. All sites should be monitored for deleterious effects of low genetic diversity, and genetic resource management should take into consideration the existence of the distinct gene pools to capture the entire extant genetic variation.  相似文献   

15.
The genome of Helicobacter pylori contains many putative genes, including a genetic region known as the Integrating Conjugative Elements of H. pylori type four secretion system (ICEHptfs). This genetic regions were originally termed as “plasticity zones/regions” due to the great genetic diversity between the original two H. pylori whole genome sequences. Upon analysis of additional genome sequences, the regions were reported to be extremely common within the genome of H. pylori. Moreover, these regions were also considered conserved rather than genetically plastic and were believed to act as mobile genetic elements transferred via conjugation. Although ICEHptfs(s) are highly conserved, these regions display great allele diversity, especially on ICEHptfs4, with three different subtypes: ICEHptfs4a, 4b, and 4c. ICEHptfs were also reported to contain a novel type 4 secretion system (T4SS) with both epidemiological and in vitro infection model studies highlighting that this novel T4SS functions primarily as a virulence factor. However, there is currently no information regarding the structure, the genes responsible for forming the T4SS, and the interaction between this T4SS and other virulence genes. Unlike the cag pathogenicity island (PAI), which contains CagA, a gene found to be essential for H. pylori virulence, these novel T4SSs have not yet been reported to contain genes that contribute significant effects to the entire system. This notion prompted the hypothesis that these novel T4SSs may have different mechanisms involving cag PAI.  相似文献   

16.
The taxonomic and genetic diversity of Cortinarius section Calochroi in one of the most biodiversity-rich regions in Europe, the Iberian Peninsula, was investigated through morphological and phylogenetic methods. This combined methodological approach allowed the identification of 15 known species and one new species, Cortinarius ortegae, which is described here. A dichotomous key is provided for field recognition of Calochroi species inhabiting different Iberian and Balearic Island woodlands. Polymorphism analyses within some studied species showed that the distribution of intraspecific lineages is dependent on geography and, in some cases, tree host. Furthermore, the dating analysis suggested that diversification within Calochroi started in the Pliocene and most of the current genetic diversity originated in the Pleistocene. This temporal scenario supports hypotheses in which climatic oscillations in the Quaternary may have been driving the evolution of this group of ectomycorrhizal fungi.  相似文献   

17.
Crassostrea gigas is a model mollusk, but its genetic features have not been studied comprehensively. In this study, we used whole-genome resequencing data to identify and characterize nucleotide diversity and population recombination rate in a diverse collection of 21 C. gigas samples. Our analyses revealed that C. gigas harbors both extremely high genetic diversity and recombination rates across the whole genome as compared with those of the other taxa. The noncoding regions, introns, intergenic spacers, and untranslated regions (UTRs) showed a lower level diversity than the synonymous sites. The larger introns tended to have lower diversity. Moreover, we found a negative association of the non-synonymous diversity with gene expression, which suggested that purifying selection played an important role in shaping genetic diversity. The nucleotide diversity at the 100- and 50-kb levels was positively correlated with population recombination rates, which was expected if the diversity was shaped by purifying selection or hitchhiking of advantageous mutants. Our work gives a general picture of the oyster’s polymorphism pattern and its association with recombination rates.  相似文献   

18.
The genetic diversity and population structure of the endemic species of Baikal Siberia Oxytropis triphylla, O. bargusinensis, and O. interposita were studied for the first time on the basis of the nucleotide polymorphism of intergenic spacers psbA–trnH, trnL–trnF, and trnS–trnG of chloroplast DNA. All populations of these species were characterized by a high haplotype (0.762–0.924) and relatively low nucleotide (0.0011–0.0022) diversity. Analysis of the distribution of variability in O. triphylla and O. bargusinensis showed that there was no significant genetic differentiation between populations of each species; the gene flow was 4.43 and 8.91, respectively. The high level of genetic diversity in the studied populations indicates a relatively stable state of these populations. A study of the phylogenetic relationships of closely related species confirms the concept of the origin of O. bargusinensis and O. tompudae as a result of intersectional hybridization of the species of the sections Orobia and Verticillares.  相似文献   

19.
Zanthoxylum is an economically and ecologically important genus of the Rutaceae family, of which Z. bungeanum and Z. armatum have a long history of cultivation in China. However, how the natural processes such as selection and drift and agriculture practices have influenced the genetic variation of cultivated Zanthoxylum species during long-term domestication remains elusive. Herein, we determined the population genetic structure of current widely cultivated Zanthoxylum species, Z. bungeanum and Z. armatum. Microsatellite markers revealed a high level of genetic variation and significant genetic differentiation for both species despite Z. bungeanum showed higher genetic diversity than Z. armatum. AMOVA indicated that most of the genetic variation exists within individuals rather than among provenances for both species. Population structure analyses generated three distinct groups within the entire accessions. All Z. bungeanum accessions were distinguished into two major geographic groups, north and south groups, with Qinling Mountains as the main geographic barrier to gene flow while a significant genetic differentiation was observed between cultivated and wild Z. armatum accessions. Mantel test of Z. bungeanum displayed a significant correlation between genetic and geographic distances within each inferred group but no correlation between genetic and geographic distance was observed when comparing genetic and geographic distances focusing only on pairwise of north vs. south provenances, ruling out the hypothesis that gene flow between north and south provenances followed an isolation-by-distance model. Our research provided a fundamental genetic profile that will improve the conservation and responsible exploitation of the extant germplasm of Zanthoxylum.  相似文献   

20.
In aquaculture, cultured fish often undergo continuous cross-fertilization without any inflow of new broodstock. This lowers genetic diversity, leading to increased disease rates and decreased survival rates. To improve the mass production and easy culture of Israeli carp, it is essential to investigate the population structure and genetic diversity of these fish. However, such a survey has not yet been performed on Korean Israeli carp. In this study, we used seven microsatellite markers to analyze the genetic diversity and association of cultured Israeli carp from Korea and China. The average numbers of alleles per locus (N A ) for two Korean (KorA and KorB) and two Chinese (ChA and ChB) populations were as follows: KorA (10.42), KorB (14.43), ChA (20.57) and ChB (20.71). The expected heterozygosity (H e ) ranged from 0.672 to 0.897 and from 0.827 to 0.938 in the Korean sample and Chinese sample respectively. The genetic diversity of the Korean Israeli carp was about half that of the Chinese carp. The diversity of the Korean Israeli carp was very low, suggesting that the immunity of this population could be weak, and that diversity–recovery studies are urgently needed. Therefore, our results may therefore form the foundation for future research efforts towards genetic monitoring and selective breeding, continuous research needs to be conducted in order to recover the genetic diversity of the Korean Israeli carp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号