首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《BBA》2022,1863(2):148519
PsbX is a 4.1 kDa intrinsic Photosystem II (PS II) protein, found together with the low-molecular-weight proteins, PsbY and PsbJ, in proximity to cytochrome b559. The function of PsbX is not yet fully characterized but PsbX may play a role in the exchange of the secondary plastoquinone electron acceptor QB with the quinone pool in the thylakoid membrane. To study the role of PsbX, we have constructed a PsbX-lacking strain of Synechocystis sp. PCC 6803. Our studies indicate that the absence of PsbX causes sensitivity to high light and impairs electron transport within PS II. In addition to a change in the QB-binding pocket, PsbX-lacking cells exhibited sensitivity to sodium formate, suggesting altered binding of the bicarbonate ligand to the non-heme iron between the sequential plastoquinone electron acceptors QA and QB. Experiments using 35S-methionine revealed high-light-treated PsbX-lacking cells restore PS II activity during recovery under low light by an increase in the turnover of PS II-associated core proteins. These labeling experiments indicate the recovery after exposure to high light requires both selective removal and replacement of the D1 protein and de novo PS II assembly.  相似文献   

2.
Differences in maximal yields of chlorophyll variable fluorescence (Fm) induced by single turnover (ST) and multiple turnover (MT) excitation are as great as 40%. Using mutants of Chlamydomonas reinhardtii we investigated potential mechanisms controlling Fm above and beyond the QA redox level. Fm was low when the QB binding site was occupied by PQ and high when the QB binding site was empty or occupied by a PSII herbicide. Furthermore, in mutants with impaired rates of plastoquinol reoxidation, Fm was reached rapidly during MT excitation. In PSII particles with no mobile PQ pool, Fm was virtually identical to that obtained in the presence of PSII herbicides. We have developed a model to account for the variations in maximal fluorescence yields based on the occupancy of the QB binding site. The model predicts that the variations in maximal fluorescence yields are caused by the capacity of secondary electron acceptors to reoxidize QA.  相似文献   

3.
Photosystem II (PSII), the light-driven water:plastoquinone (PQ) oxidoreductase of oxygenic photosynthesis, contains a nonheme iron (NHI) at its electron acceptor side. The NHI is situated between the two PQs QA and QB that serve as one-electron transmitter and substrate of the reductase part of PSII, respectively. Among the ligands of the NHI is a (bi)carbonate originating from CO2, the substrate of the dark reactions of oxygenic photosynthesis. Based on recent advances in the crystallography of PSII, we review the structure of the NHI in PSII and discuss ideas concerning its function and the role of bicarbonate along with a comparison to the reaction center of purple bacteria and other enzymes containing a mononuclear NHI site.  相似文献   

4.
Understanding the mechanisms of electron transfer (ET) in photosynthetic reaction centers (RCs) may inspire novel catalysts for sunlight-driven fuel production. The electron exit pathway of type II RCs comprises two quinone molecules working in series and in between a non-heme iron atom with a carboxyl ligand (bicarbonate in photosystem II (PSII), glutamate in bacterial RCs). For decades, the functional role of the iron has remained enigmatic. We tracked the iron site using microsecond-resolution x-ray absorption spectroscopy after laser-flash excitation of PSII. After formation of the reduced primary quinone, QA, the x-ray spectral changes revealed a transition (t½ ≈ 150 μs) from a bidentate to a monodentate coordination of the bicarbonate at the Fe(II) (carboxylate shift), which reverted concomitantly with the slower ET to the secondary quinone QB. A redox change of the iron during the ET was excluded. Density-functional theory calculations corroborated the carboxylate shift both in PSII and bacterial RCs and disclosed underlying changes in electronic configuration. We propose that the iron-carboxyl complex facilitates the first interquinone ET by optimizing charge distribution and hydrogen bonding within the QAFeQB triad for high yield QB reduction. Formation of a specific priming intermediate by nuclear rearrangements, setting the stage for subsequent ET, may be a common motif in reactions of biological redox cofactors.  相似文献   

5.
It has been demonstrated that antimony (Sb) at concentrations ranging from 1.0 to 10.0 mg L−1 inhibits O2 evolution. Deeper insight into the influence of Sb on PSII was obtained with measurements of in vivo chlorophyll fluorescence. The donor and the acceptor sides of PSII were shown to be the target of Sb. Sb treatment induces inhibition of electron transport from QA to QB/QB and accumulation of P680+. S2(QAQB) charge recombination and oxidation by PQ9 molecules became more important in QA reoxidation as the electron transfer in PSII was inhibited. Sb exposure caused a steady increase in the proportion of PSIIX and PSIIβ. These changes resulted in increased fluxes of dissipated energy and decreased index of photosynthesis performance, of maximum quantum yield, and of the overall photosynthetic driving force of PSII.  相似文献   

6.
Lumenal extrinsic proteins PsbO, PsbP, and PsbQ of photosystem II (PSII) protect the catalytic cluster Mn4CaO5 of oxygen-evolving complex (OEC) from the bulk solution and from soluble compounds in the surrounding medium. Extraction of PsbP and PsbQ proteins by NaCl-washing together with chelator EGTA is followed also by the depletion of Ca2+ cation from OEC. In this study, the effects of PsbP and PsbQ proteins, as well as Ca2+ extraction from OEC on the kinetics of the reduced primary electron acceptor (QA ?) oxidation, have been studied by fluorescence decay kinetics measurements in PSII membrane fragments. We found that in addition to the impairment of OEC, removal of PsbP and PsbQ significantly slows the rate of electron transfer from QA ? to the secondary quinone acceptor QB. Electron transfer from QA ? to QB in photosystem II membranes with an occupied QB site was slowed down by a factor of 8. However, addition of EGTA or CaCl2 to NaCl-washed PSII did not change the kinetics of fluorescence decay. Moreover, the kinetics of QA ? oxidation by QB in Ca-depleted PSII membranes obtained by treatment with citrate buffer at pH 3.0 (such treatment keeps all extrinsic proteins in PSII but extracts Ca2+ from OEC) was not changed. The results obtained indicate that the effect of NaCl-washing on the QA ? to QB electron transport is due to PsbP and PsbQ extrinsic proteins extraction, but not due to Ca2+ depletion.  相似文献   

7.
The recent crystallographic structure at 3.0 Å resolution of PSII from Thermosynechococcus elongatus has revealed a cavity in the protein which connects the membrane phase to the binding pocket of the secondary plastoquinone QB. The cavity may serve as a quinone diffusion pathway. By fluorescence methods, electron transfer at the donor and acceptor sides was investigated in the same membrane-free PSII core particle preparation from T. elongatus prior to and after crystallization; PSII membrane fragments from spinach were studied as a reference. The data suggest selective enrichment of those PSII centers in the crystal that are intact with respect to O2 evolution at the manganese-calcium complex of water oxidation and with respect to the integrity of the quinone binding site. One and more functional quinone molecules (per PSII monomer) besides of QA and QB were found in the crystallized PSII. We propose that the extra quinones are located in the QB cavity and serve as a PSII intrinsic pool of electron acceptors.  相似文献   

8.
Herbicides that target photosystem II (PSII) compete with the native electron acceptor plastoquinone for binding at the QB site in the D1 subunit and thus block the electron transfer from QA to QB. Here, we present the first crystal structure of PSII with a bound herbicide at a resolution of 3.2 Å. The crystallized PSII core complexes were isolated from the thermophilic cyanobacterium Thermosynechococcus elongatus. The used herbicide terbutryn is found to bind via at least two hydrogen bonds to the QB site similar to photosynthetic reaction centers in anoxygenic purple bacteria. Herbicide binding to PSII is also discussed regarding the influence on the redox potential of QA, which is known to affect photoinhibition. We further identified a second and novel chloride position close to the water-oxidizing complex and in the vicinity of the chloride ion reported earlier (Guskov, A., Kern, J., Gabdulkhakov, A., Broser, M., Zouni, A., and Saenger, W. (2009) Nat. Struct. Mol. Biol. 16, 334–342). This discovery is discussed in the context of proton transfer to the lumen.  相似文献   

9.
The photosystem Ⅱ (PSII) complex of photosynthetic membranes comprises a number of chlorophyll-binding proteins that are important to the electron flow. Here we report that the chlorophyll b-deficient mutant has decreased the amount of light-harvesting complexes with an increased amount of some core polypeptldes of PSII, including CP43 and CP47. By means of chlorophyll fluorescence and thermolumlnescence, we found that the ratio of Fv/Fm, qP and electron transport rate in the chlorophyll b-deficient mutant was higher compared to the wild type. In the chlorophyll lPdeflclent mutant, the decay of the primary electron acceptor quinones (QA-) reoxidation was decreased, measured by the fluorescence. Furthermore, the thermoluminescence studies in the chlorophyll bdeficient mutant showed that the B band (S2/S3QB-) decreased slightly and shifted up towards higher temperatures. In the presence of dlchlorophenyl-dlmethylurea, which is inhibited in the electron flow to the second electron acceptor quinines (QB) at the PSll acceptor side, the maximum of the Q band (S2QA-) was decreased slightly and shifted down to lower temperatures, compared to the wild type. Thus, the electron flow within PSll of the chlorophyⅡ b-deficient mutant was down-regulated and characterized by faster oxidation of the primary electron acceptor quinine QA-via forward electron flow and slower reduction of the oxidation S states.  相似文献   

10.
In this paper, we have presented a minireview on the interaction of bicarbonate, formate and herbicides with the thylakoid membranes.The regulation of photosynthetic electron transport by bicarbonate, formate and herbicides is described. Bicarbonate, formate, and many herbicides act between the primary quinone electron acceptor QA and the plastoquinone pool. Many herbicides like the ureas, triazines and the phenol-type herbicides act, probably, by the displacement of the secondary quinone electron acceptor QB from its binding site on a QB-binding protein located at the acceptor side of Photosystem II. Formate appears to be an inhibitor of electron transport; this inhibition can be removed by the addition of bicarbonate. There appears to be an interaction of the herbicides with bicarbonate and/or It has been suggested that both the binding of a herbicide and the absence of bicarbonate may cause a conformational alteration of the environment of the QB-binding site. The alteration brought about by a herbicide decreases the affinity for another herbicide or for bicarbonate; the change caused by the absence of bicarbonate decreases the affinity for herbicides. Moreover, this change in conformation causes an inhibition of electron transport. A bicarbonate-effect in isolated intact chloroplasts is demonstrated.Paper presented at the FESPP meeting (Strasbourg, 1984)  相似文献   

11.
In this study, we chose apple leaf as plant material and studied effects of GeO2 on operation of photosynthetic apparatus and antioxidant enzyme activities under strong light. When exogenous GeO2 concentration was below 5.0 mg L–1, maximum photochemical quantum yield of PSII and actual quantum yield of PSII photochemistry increased significantly compared with the control under irradiances of 800 and 1,600 μmol(photon) m–2 s–1. Photosynthetic electron transport chain capacity between QA–QB, QA–PSI acceptor, and QB–PSI acceptor showed a trend of rising up with 1.0, 2.0, and 5.0 mg(GeO2) L–1 and declining with 10.0 mg(GeO2) L–1. On the other hand, dissipated energy via both ΔpH and xanthophyll cycle decreased remarkably compared with the control when GeO2 concentration was below 5.0 mg L–1. Our results suggested that low concentrations of GeO2 could alleviate photoinhibition and 5.0 mg(GeO2) L–1 was the most effective. In addition, we found, owing to exogenous GeO2 treatment, that the main form of this element in apple leaves was organic germanium, which means chemical conversion of germanium happened. The organic germanium might be helpful to allay photoinhibition due to its function of scavenging free radicals and lowering accumulation of reactive oxygen species, which was proven by higher antioxidant enzyme activities.  相似文献   

12.
Alhagi sparsifolia Shap. is exposed to a high-irradiance environment as the main vegetation found in the forelands of the Taklamakan Desert. We investigated chlorophyll a fluorescence emission of A. sparsifolia seedlings grown under ambient (HL) and shade (LL) conditions. Our results indicated that the fluorescence intensity in the leaves was significantly higher for LL-grown plants than that under HL. High values of the maximum quantum yield of PSII for primary photochemistry (φPo) and the quantum yield that an electron moves further than QA - (φEo) in the plants under LL conditions suggested that the electron flow from QA - (primary quinone electron acceptors of PSII) to QB (secondary quinone acceptor of PSII) or QB - was enhanced at LL compared to natural HL conditions. The efficiency/probability with which an electron from the intersystem electron carriers was transferred to reduce end electron acceptors at the PSI acceptor side and the quantum yield for the reduction of end electron acceptors at the PSI acceptor side were opposite to φPo, and φEo. Thus, we concluded that the electron transport on the donor side of PSII was blocked under LL conditions, while acceptor side was inhibited at the HL conditions. The PSII activity of electron transport in the plants grown in shade was enhanced, while the energy transport from PSII to PSI was blocked compared to the plants grown at HL conditions. Furthermore, PSII activity under HL was seriously affected in midday, while the plants grown in shade enhanced their energy transport.  相似文献   

13.
Phosphatidylglycerol (PG), containing the unique fatty acid Δ3, trans-16:1-hexadecenoic acid, is a minor but ubiquitous lipid component of thylakoid membranes of chloroplasts and cyanobacteria. We investigated its role in electron transfers and structural organization of Photosystem II (PSII) by treating Arabidopsis thaliana thylakoids with phospholipase A2 to decrease the PG content. Phospholipase A2 treatment of thylakoids (a) inhibited electron transfer from the primary quinone acceptor QA to the secondary quinone acceptor QB, (b) retarded electron transfer from the manganese cluster to the redox-active tyrosine Z, (c) decreased the extent of flash-induced oxidation of tyrosine Z and dark-stable tyrosine D in parallel, and (d) inhibited PSII reaction centres such that electron flow to silicomolybdate in continuous light was inhibited. In addition, phospholipase A2 treatment of thylakoids caused the partial dissociation of (a) PSII supercomplexes into PSII dimers that do not have the complete light-harvesting complex of PSII (LHCII); (b) PSII dimers into monomers; and (c) trimers of LHCII into monomers. Thus, removal of PG by phospholipase A2 brings about profound structural changes in PSII, leading to inhibition/retardation of electron transfer on the donor side, in the reaction centre, and on the acceptor side. Our results broaden the simple view of the predominant effect being on the QB-binding site.  相似文献   

14.
The inhibitory effect of Cr(VI) on the PSII of Synechocystis sp. was studied. Cr(VI) reduced O2 evolution and inhibited the water‐splitting system in PSII. S‐states test and flash induction test showed that Cr(VI) exposure increased the proportion of inactivated PSII (PSIIX) and PSIIβ reaction centers, which increased the fluxes of dissipated energy. JIP test and QA? reoxidation test demonstrated that Cr(VI) treatment induces inhibition of electron transport from QA? to QB/QB? and accumulation of P680+. More QA? had to be oxidized through S2(QAQB)? charge recombination and oxidation by PQ9 molecules in PSII under Cr(VI) stress. These changes finally decreased the index of photosynthesis performance.  相似文献   

15.
To analyze the role of phosphatidylglycerol (PG) in photosynthetic membranes of cyanobacteria we used two mutants of Synechocystis sp. PCC6803: the PAL mutant which has no phycobilisomes and shows a high PSII/PSI ratio, and a mutant derived from it by inactivating its cdsA gene encoding cytidine 5'-diphosphate diacylglycerol synthase, a key enzyme in PG synthesis. In a medium supplemented with PG the PAL/ΔcdsA mutant cells grew photoautotrophically. Depletion of PG in the medium resulted (a) in an arrest of cell growth and division, (b) in a slowdown of electron transfer from the acceptor QA to QB in PSII and (c) in a modification of chlorophyll fluorescence curve. The depletion of PG affected neither the redox levels of QA nor the S2 state of the oxygen-evolving manganese complex, as indicated by thermoluminescence studies. Two-dimensional PAGE showed that in the absence of PG (a) the PSII dimer was decomposed into monomers, and (b) the CP43 protein was detached from a major part of the PSII core complex. [35S]-methionine labeling confirmed that PG depletion did not block de novo synthesis of the PSII proteins. We conclude that PG is required for the binding of CP43 within the PSII core complex.  相似文献   

16.
Tobacco rbcL deletion mutant, which lacks the key enzyme Rubisco for photosynthetic carbon assimilation, was characterized with respect to thylakoid functional properties and protein composition. The ΔrbcL plants showed an enhanced capacity for dissipation of light energy by non-photochemical quenching which was accompanied by low photochemical quenching and low overall photosynthetic electron transport rate. Flash-induced fluorescence relaxation and thermoluminescence measurements revealed a slow electron transfer and decreased redox gap between QA and QB, whereas the donor side function of the Photosystem II (PSII) complex was not affected. The 77 K fluorescence emission spectrum of ΔrbcL plant thylakoids implied a presence of free light harvesting complexes. Mutant plants also had a low amount of photooxidisible P700 and an increased ratio of PSII to Photosystem I (PSI). On the other hand, an elevated level of plastid terminal oxidase and the lack of F0 ‘dark rise’ in fluorescence measurements suggest an enhanced plastid terminal oxidase-mediated electron flow to O2 in ΔrbcL thylakoids. Modified electron transfer routes together with flexible dissipation of excitation energy through PSII probably have a crucial role in protection of PSI from irreversible protein damage in the ΔrbcL mutant under growth conditions. This protective capacity was rapidly exceeded in ΔrbcL mutant when the light level was elevated resulting in severe degradation of PSI complexes.  相似文献   

17.
3-Acetyl-5-isopropyltetramic acid (3-AIPTA), an analogue of the phytotoxin tenuazonic acid, is a tetramic acid derivate. It is demonstrated here that 3-AIPTA is a multi-target inhibitor of root and shoot growth as well as photosynthesis. Based on fast chlorophyll fluorescence kinetics, 3-AIPTA blocks electron transport beyond QA on the acceptor side of PSII by competing with QB for the QB-binding site, but does not affect the donor side and the light harvesting function of the PSII antenna. Additionally, higher 3-AIPTA concentration also inhibits the reduction of end acceptors of PSI. Evidences from JIP-test and competitive replacement with [14C]atrazine showed that 3-AIPTA, like tenuazonic acid, does not share the same binding environment with the atrazine-like PSII inhibitors although they possess the common action target of the QB-site. It is deduced that tetramic acid families of natural products, where 3-AIPTA and tenuazonic acid belong to, is a novel inhibitor type of the photosynthetic electron transport chain.  相似文献   

18.
The nature of Cu2+ inhibition of photosystem II (PSII) photochemistry in pea (Pisum sativum L.) thylakoids was investigated monitoring Hill activity and light emission properties of photosystem II. In Cu2+-inhibited thylakoids, diphenyl carbazide addition does not relieve the loss of Hill activity. The maximum yield of fluorescence induction restored by hydroxylamine in Tris-inactivated thylakoids is markedly reduced by Cu2+. This suggests that Cu2+ does not act on the donor side of PSII but on the reaction center of PSII or on components beyond. Thermoluminescence and delayed luminescence studies show that charge recombination between the positively charged intermediate in water oxidation cycle (S2) and negatively charged primary quinone acceptor of pSII (QA) is largely unaffected by Cu2+. The S2QB charge recombination, however, is drastically inhibited which parallels the loss of Hill activity. This indicates that Cu2+ inhibits photosystem II photochemistry primarily affecting the function of the secondary quinone electron acceptor, QB. We suggest that Cu2+ does not block electron flow between the primary and secondary quinone acceptor but modifies the QB site in such a way that it becomes unsuitable for further photosystem II photochemistry.  相似文献   

19.
Bentley FK  Luo H  Dilbeck P  Burnap RL  Eaton-Rye JJ 《Biochemistry》2008,47(44):11637-11646
PsbM and PsbT have been assigned to electron densities on both photosystem II (PSII) monomers at the PSII dimer interface in X-ray crystallographic structures from Thermosynechoccocus elongatus and T. vulcanus. Our results show that removal of either or both proteins from Synechocystis sp. PCC 6803 resulted in photoautotrophic strains but the DeltaPsbM:DeltaPsbT mutant did not form stable dimers. A CP43-less PSII monomer accumulated in both single mutants, although absence of PsbT destabilized PSII to a greater extent than removing PsbM. Additionally, DeltaPsbT cells exhibited slowed electron transfer between the plastoquinone electron acceptors, Q(A) and Q(B); however, S-state cycling in both mutants was similar to wild type. Oxygen evolution in these mutants rapidly inactivated following exposure to high light where recovery required protein synthesis and could proceed in the dark in DeltaPsbM cells but required light in DeltaPsbT cells. Interestingly, the extent of recovery of oxygen-evolving activity was greatest in the DeltaPsbM:DeltaPsbT strain. We also found recovery required Psb27 in DeltaPsbT cells although, under our conditions, the DeltaPsb27 strain remained similar to wild type. In contrast, the DeltaPsbM:DeltaPsb27 mutant could not assemble PSII beyond a CP43-minus intermediate. Our results suggest essential roles for Psb27 in biogenesis in the DeltaPsbM strain and for repair from photodamage in cells lacking PsbT.  相似文献   

20.
Purple, photosynthetic reaction centers from Rhodobacter sphaeroides bacteria use ubiquinone (UQ10) as both primary (QA) and secondary (QB) electron acceptors. Many quinones reconstitute QA function, while a few will act as QB. Nine quinones were tested for their ability to bind and reconstitute QA and QB functions. Only ubiquinone (UQ) reconstitutes both functions in the same protein. The affinities of the non-native quinones for the QB site were determined by a competitive inhibition assay. The affinities of benzoquinones, naphthoquinone (NQ), and 2-methyl-NQ for the QB site are 7 ± 3 times weaker than that at QA site. However, di-ortho-substituted NQs and anthraquinone bind tightly to the QA site (K d ≤ 200 nM), and ≥1,000 times more weakly to the QB site, perhaps setting a limit on the size of the site. With a low-potential electron donor, 2-methyl, 3-dimethylamino-1,4-NQ, (Me-diMeAm-NQ) at QA, QB reduction is 260 meV, more favorable than with UQ as QA. Electron transfer from Me-diMeAm-NQ at the QA site to NQ at the QB site can be detected. In the QB site, the NQ semiquinone is estimated to be ≈60–100 meV higher in energy than the UQ semiquinone, while in the QA site, the semiquinone energy level is similar or lower with NQ than with UQ. Thus, the NQ semiquinone is more stable in the QA than in the QB site. In contrast, the native UQ semiquinone is ≈60 meV lower in energy in the QB than in the QA site, stabilizing forward electron transfer from QA to QB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号