首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Using 1-6-12 empirical functions with a solvent-averaged electrostatic contribution qIqjε(rIj) × rIj and electrostatic potentials from CNDO-type wavefunctions, the development of specific interactions of ions visualized by the molecular electrostatic potential of PO4-group containing molecules was studied. Going from single molecules to monolayers made up of 37 head groups of phosphatidylcholine (PC) or phosphatidylethanolamine (PE) for quantum-chemical calculations, or of 23 head groups for empirical calculations we found decreasing potential minima. Only the inclusion of the screening effect of water, simulated by a distance dependent dielectric constant, ε(r), gives an explanation of stereospecific interactions of model membranes with ions. This finding can be compared with results of simulation calculations on water structure above a PE head group layer.  相似文献   

2.
G.F. Azzone  T. Pozzan  E. Viola  P. Arslan 《BBA》1978,501(2):317-329
1. The aerobic uptake of inorganic ions, such as 86Rb+ or 125I?, by submitochondrial particles, is about one order of magnitude lower than the uptake of organic ions, such as acridines or 8-anilino-1-naphthalene sulphonate. The values of ΔpH, the transmembrane pH differential, and Δψ, the transmembrane membrane potential are between 60 and 100 mV when calculated on the inorganic ions and between 150 and 240 mV when calculated on the organic ions. The discrepancy between the ΔpH and Δψ values from organic and inorganic ions is large at high but not at low ion/protein ratios.2. In the absence of weak bases and strong acids the values of Δ\?gmH, the proton electrochemical potential difference, are close to 100 mV and the magnitude of ΔpH and Δψ are similar. Weak bases decrease ΔpH and enhance Δψ. Strong acids decrease Δψ and enhance ΔpH. Interchangeability of ΔpH with Δψ occurs at low concentrations of weak bases and strong acids. High concentrations of weak bases and strong acids cause depression of Δ\?gmH.3. Concentrations of weak bases capable of abolishing ΔpH, do not affect ATP synthesis. Concentrations of strong acids capable of abolishing Δψ affect only slightly ATP synthesis. Concentrations of weak bases and strong acids capable of causing a decline of ΔpH + Δψ inhibit ATP synthesis.4. Depression of Δ\?gmH is paralleled by inhibition of ATP synthesis and decline of ΔGp, the phosphate potential. Abolition of ATP synthesis occurs only when Δ\?gmH is below 20 mV. The ΔGp\?gmH ratio increases hyperbolically with the decrease of Δ\?gmH.  相似文献   

3.
The effects of d-glucose addition to a glucose-free luminal perfusate were investigated in the proximal tubule of Necturus kidney, by electrophysiological techniques. The main findings are: (1) In the presence of sodium, d-glucose produces 10.5 mV ± 1.1 (S.E.) depolarization. (2) Phlorizin reduces the magnitude of this response to 2.1 ± 0.1 mV. (3) The glucose-evoked depolarization, ΔVG, does not alter the intracellular K+ activity nor is it affected by peritubular addition of ouabain. (4) Isosmotic reduction of Na+ concentration in luminal perfusate from 95 to 2 mmol/l (choline or Li+ substituting for Na+) does not change the magnitude of ΔVG; complete removal of sodium from the lumen lowers the value of ΔVG (3.2 ± 0.2 mV) but the response is not abolished. This observation suggests that the d-glucose carrier of renal tubules in Necturus is poorly specific with regard to the cotransported cation species.  相似文献   

4.
ADP and Pi-loaded membrane vesicles from l-malate-grown Bacillus alcalophilus synthesized ATP upon energization with ascorbateN,N,N′,N′-tetramethyl-p-phenylenediamine. ATP synthesis occurred over a range of external pH from 6.0 to 11.0, under conditions in which the total protonmotive force Δ\?gmH+ was as low as ?30 mV. The phosphate potentials (ΔGp) were calculated to be 11 and 12 kcal/mol at pH 10.5 and 9.0, respectively, whereas the Δ\?gmH+ values in vesicles at these two pH values were quite different (?40 ± 20 mV at pH 10.5 and ?125 ± 20 mV at pH 9.0). ATP synthesis was inhibited by KCN, gramicidin, and by N,N′-dicyclohexylcarbodiimide. Inward translocation of protons, concomitant with ATP synthesis, was demonstrated using direct pH monitoring and fluorescence methods. No dependence upon the presence of Na+ or K+ was found. Thus, ATP synthesis in B. alcalophilus appears to involve a proton-translocating ATPase which functions at low Δ\?gmH+.  相似文献   

5.
The observed equilibrium constants (Kobs) for the l-phosphoserine phosphatase reaction [EC 3.1.3.3] have been determined under physiological conditions of temperature (38 °C) and ionic strength (0.25 m) and physiological ranges of pH and free [Mg2+]. Using Σ and square brackets to indicate total concentrations Kobs = Σ L-serine][Σ Pi]Σ L-phosphoserine]H2O], K = L-H · serine±]HPO42?][L-H · phosphoserine2?]H2O]. The value of Kobs has been found to be relatively sensitive to pH. At 38 °C, K+] = 0.2 m and free [Mg2+] = 0; Kobs = 80.6 m at pH 6.5, 52.7 m at pH 7.0 [ΔGobs0 = ?10.2 kJ/mol (?2.45 kcal/mol)], and 44.0 m at pH 8.0 ([H2O] = 1). The effect of the free [Mg2+] on Kobs was relatively slight; at pH 7.0 ([K+] = 0.2 m) Kobs = 52.0 m at free [Mg2+] = 10?3, m and 47.8 m at free [Mg2+] = 10?2, m. Kobs was insignificantly affected by variations in ionic strength (0.12–1.0 m) or temperature (4–43 °C) at pH 7.0. The value of K at 38 °C and I = 0.25 m has been calculated to be 34.2 ± 0.5 m [ΔGobs0 = ?9.12 kJ/mol (?2.18 kcal/ mol)]([H2O] = 1). The K for the phosphoserine phosphatase reaction has been combined with the K for the reaction of inorganic pyrophosphatase [EC 3.6.1.1] previously estimated under the same physiological conditions to calculate a value of 2.04 × 104, m [ΔGobs0 = ?28.0 kJ/mol (?6.69 kcal/mol)] for the K of the pyrophosphate:l-serine phosphotransferase [EC 2.7.1.80] reaction. Kobs = [Σ L-serine][Σ Pi][Σ L-phosphoserine][H2O], K = [L-H · serine±]HPO42?][L-H · phosphoserine2?]H2O. Values of Kobs for this reaction at 38 °C, pH 7.0, and I = 0.25 m are very sensitive to the free [Mg2+], being calculated to be 668 [ΔGobs0 = ?16.8 kJ/mol (?4.02 kcal/mol)] at free [Mg2+] = 0; 111 [ΔGobs0 = ?12.2 kJ/mol (?2.91 kcal/mol)] at free [Mg2+] = 10?3, m; and 9.1 [ΔGobs0 = ?5.7 kJ/mol (?1.4 kcal/mol) at free [Mg2+] = 10?2, m). Kobs for this reaction is also sensitive to pH. At pH 8.0 the corresponding values of Kobs are 4000 [ΔGobs0 = ?21.4 kJ/mol (?5.12 kcal/mol)] at free [Mg2+] = 0; and 97.4 [ΔGobs0 = ?11.8 kJ/ mol (?2.83 kcal/mol)] at free [Mg2+] = 10?3, m. Combining Kobs for the l-phosphoserine phosphatase reaction with Kobs for the reactions of d-3-phosphoglycerate dehydrogenase [EC 1.1.1.95] and l-phosphoserine aminotransferase [EC 2.6.1.52] previously determined under the same physiological conditions has allowed the calculation of Kobs for the overall biosynthesis of l-serine from d-3-phosphoglycerate. Kobs = [Σ L-serine][Σ NADH][Σ Pi][Σ α-ketoglutarate][Σ d-3-phosphoglycerate][Σ NAD+][Σ L-glutamat0] The value of Kobs for these combined reactions at 38 °C, pH 7.0, and I = 0.25 m (K+ as the monovalent cation) is 1.34 × 10?2, m at free [Mg2+] = 0 and 1.27 × 10?2, m at free [Mg2+] = 10?3, m.  相似文献   

6.
A family of plasmid cloning vectors has been constructed that make use of the leftward promoter (PL) of phage λ to provide for efficient expression of cloned genes in Escherichia coli. The promoter activity of PL is fully repressed at low temperature by a thermolabile repressor product of the λcI1857 gene, and can be activated by heat induction. Examples are given (β-lactamse, tryptophan synthetase A) where, under optimal conditions, between 30 and 40% of the total protein synthesis is directed by the cloned gene under PL control.  相似文献   

7.
The mean fixation index within subpopulations (FIS) has been defined as F̄IS = ∑wiFISior asF̂IS = ∑wipiqiFISi∑wipiqi. The latter definition is preferred because it can be obtained from the two other fixation indices, FST and FIT and because it is unaffected by the mean gene frequency. The expected frequency of heterozygotes in small subpopulations of dioecious organisms will exceed Hardy-Weinberg expectations and this can be measured by F̂IS. In an isolated subpopulation of constant variance effective size N, F̂IS rapidly tends to 1 − 4N2(N − 1 + [N2 + 1]12)2. In the Island model of population structure, F̂IS is approximately −(1 − m)Nwhere m is the immigration rate.When a sample is drawn from a natural population, the observed FIS will depend upon the genetic structure of the population. The values of FIS expected in three different types of population structure are discussed.  相似文献   

8.
9.
10.
11.
Plasmid pIY2 DNA which encodes for ampicillin-resistance was used to study the energetics of Ca++-induced transformation in Escherichia coli. When cells are exposed to DNA in the presence of carbonylcyanide-m-chlorophenylhydrazone or 2,4-dinitrophenol, two protonophores that collapse the proton electrochemical gradient across the cell membrane (ΔμH+), transformation to ampicillin-resistance is drastically reduced with little or no effect on viability. Furthermore, when the components of ΔμH+ are altered by varying ambient pH or by performing transformation in the presence of valinomycin or nigericin, the efficiency of transformation is directly correlated with the magnitude of the membrane potential and changes in the pH gradient have no significant effect. It is concluded that ΔμH+, more specifically the membrane potential, plays a critical role in Ca++-induced transformation.  相似文献   

12.
A thermodynamic characterization of the Na+-H+ exchange system in Halobacterium halobium was carried out by evaluating the relevant phenomenological parameters derived from potential-jump measurements. The experiments were performed with sub-bacterial particles devoid of the purple membrane, in 1 M NaCl, 2 M KCl, and at pH 6.5–7.0. Jumps in either pH or pNa were brought about in the external medium, at zero electric potential difference across the membrane, and the resulting relaxation kinetics of protons and sodium flows were measured. It was found that the relaxation kinetics of the proton flow caused by a pH-jump follow a single exponential decay, and that the relaxation kinetics of both the proton and the sodium flows caused by a pNa-jump also follow single exponential decay patterns. In addition, it was found that the decay constants for the proton flow caused by a pH-jump and a pNa-jump have the same numerical value. The physical meaning of the decay constants has been elucidated in terms of the phenomenological coefficients (mobilities) and the buffering capacities of the system. The phenomenological coefficients for the Na+-H+ flows were determined as differential quantities. The value obtained for the total proton permeability through the particle membrane via all available channels, LH = (?JH +pH)Δψ,ΔpNa, was in the range of 850–1150 nmol H+·(mg protein)?1·h?1·(pH unit)?1 for four different preparations; for the total Na+ permeability, LNa = (?JNa+pNa)Δψ,ΔpH, it was 1620–2500 nmol Na+·(mg protein)?1·h?1·(pNa unit)?1; and for the proton ‘cross-permeability’, LHNa = (?JH+pNa)Δψ,ΔpH, it was 220–580 nmol H+·(mg protein)?1·h?1·(pNa unit)?1, for different preparations. From the above phenomenological parameters, the following quantities have been calculated: the degree of coupling (q), the maximal efficiency of Na+-H+ exchange (ηmax), the flow and force efficacies (?) of the above exchange, and the admissible range for the values of the molecular stoichiometry parameter (r). We found q ? 0.4; ηmax ? 5%; 0.36 ? r ? 2; ?JNa+ ? 1.3 · 105μmol · (RT unit)?1 at JNa = 1 μmolNa+ · (mgprotein)?1 · h?1; and ?ΔpNa ? 5 · 104 ΔpNa · (mg protein) · h · (RT unit)?1 at ΔpNa = 1 unit, for different preparations.  相似文献   

13.
The enthalpy of the bioluminescent reaction
FMNH2 + RCHO + O2luciferase FMN + RCOO + H3O+ + hv
has been studied by direct calorimetric methods. Bacterial luciferase, isolated from Beneckea harveyi (formerly strain MAV) has been used to catalyze the oxidation of reduced flavin mononucleotide (FMNH2) and a long chain aliphatic aldehyde (dodecanal, RCHO) by molecular oxygen to give the indicated products and blue-green light. The enthalpy measured for this process was found to be ΔHL = ?338.9 k.J (mol FMN)?1 (?81.0 kcal) at 25.00 °C and ?402.9 kJ (mol FMN)?1 (?96.3 kcal) at 7.00 °C. Calculations based on redox electrode potentials indicate a corresponding value of the free energy change, ΔGL = ?464.8 kJ (mol FMN)?1 (?111.1 kcal), at 25 °C. Measurements were performed in 0.15 m phosphate buffer, pH 7.0 and the values were arrived at by correcting the observed heats for the heat associated with the autoxidation process: FMNH2 + O2 ? FMN + H2O2; ΔHD = ?158.5 kJ (mol FMN)?1 (?37.8). These data and a detailed thermodynamic analysis have demonstrated the need for two parameters, referred to as the intrinsic free energy, ΔG1, and intrinsic enthalpy, ΔH1, which are functionally defined by the relations ΔGI = ΔGL ? uhvΔHI = ΔHL ? uhv, where u is the quantum yield of the reaction expressed in einsteins mole?1.These parameters reflect the thermochemistry of the bioluminescent reaction corrected for emitted photons. Thus, they are useful for comparing the thermochemistry of a chemiluminescent process. Their values for the bacterial luciferase system at 25 °C and pH 7.0 are ?391.6 and ?266.9 kJ (mol FMN)?1 (?93.6 and ?63.8 kcal), respectively, assuming a value of 0.3 for the quantum yield. The calorimetric data also suggest the existence of a long-lived species which persists after photon emission.  相似文献   

14.
Delocalized chemiosmotic coupling of oxidative phosphorylation requires that a single-value correlation exists between the extent of Δ\?gmH+ and the kinetic parameters of respiration and ATP synthesis. This expectation was tested experimentally in nigericin-treated plant mitochondria in single combined experiments, in which simultaneously respiration (in State 3 and in State 4) was measured polarographically, FΔψ (which under these conditions was equivalent to Δ\?gmH+) was evaluated potentiometrically from the uptake of tetraphenylphosphonium+ and the rate of phosphorylation was estimated from the transient depolarization of mitochondria during State 4-State 3-State 4 transitions. The steady-state rates of the different biochemical reactions were progressively inhibited by specific inhibitors active with different modalities on various steps of the energy-transducing process: succinate respiration was inhibited competitively with malonate or noncompetitively with antimycin A, or by limiting the rate of transport into the mitochondria of the respiratory substrate with phenylsuccinate; Δ\?gmH+ was dissipated by uncoupling with increasing concentrations of valinomycin; ADP phosphorylation was limited with oligomycin. The results indicate generally that when the rate of respiratory electron flow is decreased, a parallel inhibition of the rate of phosphorylation is also observed, while very limited effects can be detected on the extent of Δ\?gmH+. This behavior is in marked contrast to the effect of uncoupling where the decreased rate of ATP synthesis is clearly due to energy limitation. Extending previous observations in bacterial photosynthesis and in respiration by animal mitochondria and submitochondrial particles the results indicate, therefore, that respiration tightly controls the rate of ATP synthesis, with a mechanism largely independent of Δ\?gmH+. These data cannot be reconciled with a delocalized chemiosmotic coupling model.  相似文献   

15.
16.
The cell cycle time of Calliphora vicina prohaemocytes was examined using the labelled mitoses method after the administration of a pulse of H3-thymidine. The total cycle time occupied 9.1 hr, while G1 + 12M, S and G2 + 12M occupied 1.6 hr, 2.7 hr and 4.8 hr respectively.  相似文献   

17.
Systematic heat of dilution studies of the self-association of flavin mononucleotide (FMN) have been conducted as a function of ionic strength (0.05 – 2.0 m) and pH (5–9) in aqueous solution. The data are adequately described by the expression QT = ΔH ? (ΔHK)12 (QTcT)12 for an isodesmic self-association. QT is the molar heat of dilution, ΔH and K are the derived enthalpy and equilibrium constants for the process FMN + (FMN)i?1 ? (FMN)i, and cT is the concentration of FMN expressed in monomer units. Typical values derived for the various thermodynamic parameters at 25 °C are ΔG = ?3.56 kcal mol?1, ΔH = ?3.72 kcal mol?1, and ΔS = ?0.54 cal (mol · deg)?1. These data, plus nuclear magnetic resonance evidence (Yagi, K., Ohishi, N., Takai, A., Kawano, K., and Kyogoku, Y., 1976, Biochemistry15, 2877–2880) argue in favor of an open-ended association of flavin molecules. The signs of the various thermodynamic parameters suggest that both hydrophobic and surface energy forces contribute significantly to the association, while the lack of any significant ionic strength dependence indicates the lack of any ionic centers in the association.  相似文献   

18.
The model studied is that of Goodwin, in which all but one of the reactions obey linear kinetics, while the end-product inhibits the first reaction in a term of Michaelis-Menten form, with Hill coefficient ?:
z=?∞txn(T)G(t?T)dt
The results obtained relate to time lag in the off diagonal terms in these equations. The time lag is taken in distributed form, for example replacing xn in the first equation by
dxtdt=k1xt??1?b1xt, i=2, …n.
For any non-negative G, time lag in these terms can not destabilize the equilibrium point in the case ? = 1. For a particular class of functions G one can obtain some insight into the consequences of time lag by relating the model to that with a longer loop of reactions. Then known results can be used for general ? and n.  相似文献   

19.
Catalytic activity of thymidylate synthase, as measured in, vivo, is tightly linked to S phase of the cell cycle in Chinese hamster embryo fibroblast cells. This activity, as measured in, vitro, is found in all parts of the cell cycle. Thymidylate synthase activity in nuclear (karyoplast) extracts increased as the cells progressed from G0G1 to S phase. This enzymatic activity in the nuclei of S phase cells is associated with the multienzyme complex (replitase) that also contained DNA polymerase and other enzymes of DNA replication and precursor synthesis. The degree of association of thymidylate synthase with replitase, which increased co-ordinately as the cells progressed from G0G1 phase to S phase, coincided strongly with the level of in, vivo activity of the enzyme.  相似文献   

20.
Purified photochemical reaction centers from Rhodopseudomonas sphaeroides R-26 were reduced with Na2S2O4 so as to block their photochemical electron-transfer reactions. The magnetic field induced an increase in the emission yield. Our results support the hypothesis that under these conditions, charge recombination in the singlet radical pair composed of the oxidized primary donor and reduced primary acceptor predominantly generates the excited singlet state of the reaction center bacteriochlorophyll.The maximum relative fluorescence change and the value of the magnetic field at which half-saturation of the effect is achieved (B12) at room temperature are 5.5% and 75 G, respectively. For the whole cells of Rps. sphaeroides R-26 these parameters are 1.2% and 120 G.The relative fluorescence change at 600 G, ΔFF(600), and B12 are studied as functions of temperature. The temperature dependencies of ΔFF(600) for reaction centers and whole cells of Rps. sphaeroides R-26 are qualitatively the same, with the maximum effect (8% for reaction centers) occurring at 230 K. However, the B12 curves for the two preparations are different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号