首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At the present time there is a clear need to critically test several hypotheses of in vitro cellular senescence. In this report we present a mathematical formalism and related computer simulation which describes cellular senescence in terms of the loss of a particular class of self-replicating particles. The model's behavior is illustrated through several sample cases and the flexibility of the model is discussed in relation to: (1) several “in vitro” aging hypotheses, (2) the proliferation of stem cells and (3) the instability of gene amplified drug resistance.  相似文献   

2.
It has been shown that Krebs ascites tumor cells incubated in vitro with immune gamma globulin and complement lose the bulk of their cytoplasmic RNA to the suspending medium, although the cell membrane remains visibly intact. The present experiments show that about four-fifths of the lost RNA is sedimented by centrifugation of the cell-free medium at 105,000 g. Electron microscopic and chemical analyses of the pellets show them to consist of 150 A ribonucleoprotein particles. It is concluded that most of the RNA passes from the cells in this form. Antibody-complement action causes osmotic swelling of the tumor cells and they become quite fragile. Fragmentation of such preparations yields large numbers of membrane-bounded spheres which may be separated from the heavier nuclei by differential centrifugation. Electron microscopic study of the spheres provides evidence that they can arise from segments of the cell surface as well as from mitochondria and the endoplasmic reticulum.  相似文献   

3.
Initial attachment of bacteriophage P22 to the Salmonella host cell is known to be mediated by interactions between lipopolysaccharide (LPS) and the phage tailspike proteins (TSP), but the events that subsequently lead to DNA injection into the bacterium are unknown. We used the binding of a fluorescent dye and DNA accessibility to DNase and restriction enzymes to analyze DNA ejection from phage particles in vitro. Ejection was specifically triggered by aggregates of purified Salmonella LPS but not by LPS with different O-antigen structure, by lipid A, phospholipids, or soluble O-antigen polysaccharide. This suggests that P22 does not use a secondary receptor at the bacterial outer membrane surface. Using phage particles reconstituted with purified mutant TSP in vitro, we found that the endorhamnosidase activity of TSP degrading the O-antigen polysaccharide was required prior to DNA ejection in vitro and DNA replication in vivo. If, however, LPS was pre-digested with soluble TSP, it was no longer able to trigger DNA ejection, even though it still contained five O-antigen oligosaccharide repeats. Together with known data on the structure of LPS and phage P22, our results suggest a molecular model. In this model, tailspikes position the phage particles on the outer membrane surface for DNA ejection. They force gp26, the central needle and plug protein of the phage tail machine, through the core oligosaccharide layer and into the hydrophobic portion of the outer membrane, leading to refolding of the gp26 lazo-domain, release of the plug, and ejection of DNA and pilot proteins.  相似文献   

4.
Radiolabeled cholesteryl ethers are widely used as non-metabolizable tracers for lipoproteins and lipid emulsions in a variety of in vitro and in vivo experiments. Since cholesteryl ethers do not leave cells after uptake and are not hydrolyzed by mammalian cellular enzymes, these compounds can act as markers for cumulative cell uptakes of labeled particles. We have employed [3H]cholesteryl oleoyl ether to study the uptake and distribution of triglyceride-rich emulsion particles on animal models. However, questionable unexpected results compelled us to analyze the stability of these ethers. We tested the stability of two commercially available radiolabeled cholesteryl ethers - [3H]cholesteryl oleoyl ether and [3H]cholesteryl hexadecyl ether from different suppliers, employing in vitro, in vivo and chemical model systems. Our results show that, among the two cholesteryl ethers tested, one ether was hydrolyzed to free cholesterol in vitro, in vivo and chemically under alkaline hydrolyzing agent. Free cholesterol, unlike cholesteryl ether, can then re-enter the circulation leading to confounding results. The other ether was not hydrolyzed to free cholesterol and remained as a stable ether. Hence, radiolabeled cholesteryl ethers should be analyzed for biological stability before utilizing them for in vitro or in vivo experiments.  相似文献   

5.
There is a critical need for improved and shorter tuberculosis (TB) treatment. Current in vitro models of TB, while valuable, are poor predictors of the antibacterial effect of drugs in vivo. Mathematical models may be useful to overcome the limitations of traditional approaches in TB research. The objective of this study was to set up a prototype mathematical model of TB treatment by rifampin, based on pharmacokinetic, pharmacodynamic and disease submodels.The full mathematical model can simulate the time-course of tuberculous disease from the first day of infection to the last day of therapy. Therapeutic simulations were performed with the full model to study the antibacterial effect of various dosage regimens of rifampin in lungs.The model reproduced some qualitative and quantitative properties of the bactericidal activity of rifampin observed in clinical data. The kill curves simulated with the model showed a typical biphasic decline in the number of extracellular bacteria consistent with observations in TB patients. Simulations performed with more simple pharmacokinetic/pharmacodynamic models indicated a possible role of a protected intracellular bacterial compartment in such a biphasic decline.This modeling effort strongly suggests that current dosage regimens of RIF may be further optimized. In addition, it suggests a new hypothesis for bacterial persistence during TB treatment.  相似文献   

6.
We combine mathematical modeling with experiments in living mice to quantify the relative roles of intrinsic cellular vs. tissue-scale physiological contributors to chemotherapy drug resistance, which are difficult to understand solely through experimentation. Experiments in cell culture and in mice with drug-sensitive (Eµ-myc/Arf-/-) and drug-resistant (Eµ-myc/p53-/-) lymphoma cell lines were conducted to calibrate and validate a mechanistic mathematical model. Inputs to inform the model include tumor drug transport characteristics, such as blood volume fraction, average geometric mean blood vessel radius, drug diffusion penetration distance, and drug response in cell culture. Model results show that the drug response in mice, represented by the fraction of dead tumor volume, can be reliably predicted from these inputs. Hence, a proof-of-principle for predictive quantification of lymphoma drug therapy was established based on both cellular and tissue-scale physiological contributions. We further demonstrate that, if the in vitro cytotoxic response of a specific cancer cell line under chemotherapy is known, the model is then able to predict the treatment efficacy in vivo. Lastly, tissue blood volume fraction was determined to be the most sensitive model parameter and a primary contributor to drug resistance.  相似文献   

7.
Carcinogens influence both the initiation of abnormal cells and the subsequent promotion of such cells into neoplasia. Certain other insults seem limited to the stimulation of cellular proliferation and of carcinogenic potentiation. Common examples include surgical, mechanical, chemical, and temperature wounding of tissue followed by healing. In addition, certain hyperplastic growth induced by some chemicals may also enhance tumorigenesis. We propose that the quantification of carcinogenic potentiation may derive from a common-index-quantity estimated according to enhanced cell proliferation resulting from cytotoxicity or toxic hyperplasia induced by a specific exposure. At this time, it is not possible to define, in a restrictive sense, the molecular events which are critical to potentiation but the processes of cell proliferation resulting from cytotoxicity/hyperplasia seem to serve as indices which contain the necessary (and perhaps several secondary) biological responses. The unique advantage is that cell-culture, animal, and human-level studies can be used to evaluate certain parameters of the mathematical model for an untested treatment protocol or chemical insult suspected to be a cofactor in tumorigenesis. The main thrust of this paper is to propose that tumorigenesis should be studied in terms of cellular-population kinetics in response to a biological challenge rather than according to chemical or energetic parameters of that challenge.This approach leads to mathematical equations which can serve as a unifying concept for carcinogenic risk assessments. Sample results, to illustrate the utility of this model, are given for polynuclear aromatic hydrocarbons, trace metals, ionizing radiations, CO, NO, SO2, O3, and NO2. Treatment, here, is for acute exposure conditions, but because the model is mechanistic, other exposure protocols can be addressed by simply adjusting some of the mathematical parameters according to factors estimated from a relative potency comparison of in vitro and in vivo studies best suited to the particular application of interest.  相似文献   

8.
Few in vitro screening studies on the biological activities of plant extracts that are intended for oral administration consider the effect of the gastrointestinal system. This study investigated this aspect on extracts of Camellia sinensis (green tea) and Salvia officinalis (sage) using antimicrobial activity as a model for demonstration. Both the crude extracts and their products after exposure to simulated gastric fluid (SGF) as well as simulated intestinal fluid (SIF) were screened for antimicrobial activity. The chromatographic profiles of the crude plant extracts and their SGF as well as SIF products were recorded and compared qualitatively by means of high performance liquid chromatography coupled to mass spectrometry. The effect of epithelial transport on the crude plant extracts was determined by applying them to an in vitro intestinal epithelial model (Caco-2). The crude extracts for both plants exhibited reduced antimicrobial activity after exposure to SGF, while no antimicrobial activity was detected after exposure to SIF. These results suggested chemical modification or degradation of the antimicrobial compounds when exposed to gastrointestinal conditions. This was confirmed by a reduction of the peak areas on the LC–UV–MS chromatograms. From the chromatographic profiles obtained during the transport study, it is evident that some compounds in the crude plant extracts were either not transported across the cell monolayer or they were metabolised during passage through the cells. It can be deduced that the gastrointestinal environment and epithelial transport process can dramatically affect the chromatographic profiles and biological activity of orally ingested natural products.  相似文献   

9.
The entry of SARS-CoV-2 into target cells requires the activation of its surface spike protein, S, by host proteases. The host serine protease TMPRSS2 and cysteine proteases Cathepsin B/L can activate S, making two independent entry pathways accessible to SARS-CoV-2. Blocking the proteases prevents SARS-CoV-2 entry in vitro. This blockade may be achieved in vivo through ‘repurposing’ drugs, a potential treatment option for COVID-19 that is now in clinical trials. Here, we found, surprisingly, that drugs targeting the two pathways, although independent, could display strong synergy in blocking virus entry. We predicted this synergy first using a mathematical model of SARS-CoV-2 entry and dynamics in vitro. The model considered the two pathways explicitly, let the entry efficiency through a pathway depend on the corresponding protease expression level, which varied across cells, and let inhibitors compromise the efficiency in a dose-dependent manner. The synergy predicted was novel and arose from effects of the drugs at both the single cell and the cell population levels. Validating our predictions, available in vitro data on SARS-CoV-2 and SARS-CoV entry displayed this synergy. Further, analysing the data using our model, we estimated the relative usage of the two pathways and found it to vary widely across cell lines, suggesting that targeting both pathways in vivo may be important and synergistic given the broad tissue tropism of SARS-CoV-2. Our findings provide insights into SARS-CoV-2 entry into target cells and may help improve the deployability of drug combinations targeting host proteases required for the entry.  相似文献   

10.
The spread of plasmids in model populations of Escherichia coli K12.   总被引:5,自引:0,他引:5  
J Cullum  J F Collins  P Broda 《Plasmid》1978,1(4):545-556
Comparison of R100 with its derepressed derivative R100-1 showed that the capacity to repress tra function does not significantly affect the spread by retransfer of R100. F′lac was used to investigate the contributions of growth and transfer to spread of a plasmid through a recipient population. Ability to transfer F′lac was lost rapidly when donor cultures entered stationary phase, but aggregate-forming ability was lost much more slowly. Comparison of F′lactra+ with F′lactraH88, which is unable to retransfer from recipients, showed the importance of retransfer. We used a mathematical model to calculate the amount of retransfer needed to explain the rate of increase of F′lac progeny. This showed that the lag between a cell receiving F′lac and being able to retransfer it was a less important constraint on this rate of increase than the inherent rate of plasmid transfer by established donors.  相似文献   

11.
The involvement of Cancer Stem Cells (CSCs) in tumor progression and tumor recurrence is one of the most studied subjects in current cancer research. The CSC hypothesis states that cancer cell populations are characterized by a hierarchical structure that affects cancer progression. Due to the complex dynamics involving CSCs and the other cancer cell subpopulations, a robust theory explaining their action has not been established yet. Some indications can be obtained by combining mathematical modeling and experimental data to understand tumor dynamics and to generate new experimental hypotheses. Here, we present a model describing the initial phase of ErbB2+ mammary cancer progression, which arises from a joint effort combing mathematical modeling and cancer biology. The proposed model represents a new approach to investigate the CSC-driven tumorigenesis and to analyze the relations among crucial events involving cancer cell subpopulations. Using in vivo and in vitro data we tuned the model to reproduce the initial dynamics of cancer growth, and we used its solution to characterize observed cancer progression with respect to mutual CSC and progenitor cell variation. The model was also used to investigate which association occurs among cell phenotypes when specific cell markers are considered. Finally, we found various correlations among model parameters which cannot be directly inferred from the available biological data and these dependencies were used to characterize the dynamics of cancer subpopulations during the initial phase of ErbB2+ mammary cancer progression.  相似文献   

12.
The fine structure of invasion of human erythrocytes by merozoites of the malaria parasite Plasmodium falciparum was observed in vitro. The invasion process is similar to that described for P. knowlesi. Merozoites enter apical end first by invagination of the erythrocyte membrane. At the rim of the invagination, where merozoite and erythrocyte are in closest contact, the erythrocyte membrane is thickened. The brushy cell coat of the P. falciparum merozoite appears to be lost at this attachment zone. The part of the merozoite within the erythrocyte invagination has no visible coat. The coat on the portion outside is unaltered. Merozoites can successfully invade erythrocytes after 3 hr in the presence of a concentration of chloroquine harmful to feeding stages.  相似文献   

13.
Murine bone marrow cells can suppress the in vitro primary antibody response of normal spleen cells without apparent cytotoxicity. The bone marrow cells suppress the response to both T-dependent (SRBC) and T-independent (DNP-Ficoll) antigens. When bone marrow cells are fractionated on a sucrose density gradient, the suppressive activity is found in the residue rather than the lymphocyte fraction. The suppressive activity is either unaffected or enhanced by treatment with anti-T- and anti-B-cell serums. Pretreatment of mice with phenylhydrazine which reduces the number of pre-B cells did not reduce the suppressive activity of their bone marrow cells. Suppressive activity is abolished by irradiation of the marrow cells in vitro with 1000 R prior to assay. The activity is present in the marrow of thymus deficient (nude) mice, infant mice, and mice which have been made polycythemic by transfusion. Furthermore, the suppressor cell can phagocytize iron carbonyl particles, is slightly adherent to plastic and Sephadex G-10, and can bind to EA monolayers. We conclude that the suppressor cell is not a mature lymphocyte or granulocyte nor a member of the erythrocytic series, but is likely to be an immature cell possibly of the myeloid series. We speculate on the physiologic role of this cell.  相似文献   

14.
Due to the high mortality incident brought about by traumatic brain injury (TBI), methods that would enable one to better understand the underlying mechanisms involved in it are useful for treatment. There are both in vivo and in vitro methods available for this purpose. In vivo models can mimic actual head injury as it occurs during TBI. However, in vivo techniques may not be exploited for studies at the cell physiology level. Hence, in vitro methods are more advantageous for this purpose since they provide easier access to the cells and the extracellular environment for manipulation.Our protocol presents an in vitro model of TBI using stretch injury in brain microvascular endothelial cells. It utilizes pressure applied to the cells cultured in flexible-bottomed wells. The pressure applied may easily be controlled and can produce injury that ranges from low to severe. The murine brain microvascular endothelial cells (cEND) generated in our laboratory is a well-suited model for the blood brain barrier (BBB) thus providing an advantage to other systems that employ a similar technique. In addition, due to the simplicity of the method, experimental set-ups are easily duplicated. Thus, this model can be used in studying the cellular and molecular mechanisms involved in TBI at the BBB.  相似文献   

15.
An in vitro reaction between mouse lymphoid cells and target fibroblastic cells in wells of microtest plates, which appears to simulate the in vivo rejection of hemopoietic allografts, has been analyzed for metabolic and physiologic requirements. Protein synthesis was required for only the first few hours of culture. Inhibition of RNA synthesis and alteration of cell surface charge with various agents were without obvious effects. Metabolic slowing at 4 °C or deviation of the pH of the culture medium suppressed the reaction. Thymus cells, which are not cytotoxic in this system, significantly but not completely inhibited the cytotoxicity of lymph node cells. Antiserum directed against target cells specifically protected them from the cytotoxic lymphoid cells in the absence of complement.Precursors of cytotoxic lymphoid cells were radiosensitive, unlike the cytotoxic cells themselves. BALB/c anti-C57BL/6 spleen cell serum and 89Sr both are able to prevent rejection of marrow allografts in vitro. Lymphoid cells incubated with this antiserum plus complement lost much of their cytotoxicity but were still effective at high ratios of aggressor to target cells. Lymphoid cells of mice treated with 89Sr were effectively cytotoxic but lost practically all of their cytotoxicity afer incubation with the antiserum plus complement. Thus, it appears that this reaction detects two different cytotoxic lymphoid cells, either of which can function in vitro. Both cell types may need to cooperate in vivo during marrow allograft rejections.  相似文献   

16.
Individuals with elevated levels of plasma low density lipoprotein (LDL) cholesterol (LDL-C) are considered to be at risk of developing coronary heart disease. LDL particles are removed from the blood by a process known as receptor-mediated endocytosis, which occurs mainly in the liver. A series of classical experiments delineated the major steps in the endocytotic process; apolipoprotein B-100 present on LDL particles binds to a specific receptor (LDL receptor, LDL-R) in specialized areas of the cell surface called clathrin-coated pits. The pit comprising the LDL–LDL-R complex is internalized forming a cytoplasmic endosome. Fusion of the endosome with a lysosome leads to degradation of the LDL into its constituent parts (that is, cholesterol, fatty acids, and amino acids), which are released for reuse by the cell, or are excreted. In this paper, we formulate a mathematical model of LDL endocytosis, consisting of a system of ordinary differential equations. We validate our model against existing in vitro experimental data, and we use it to explore differences in system behavior when a single bolus of extracellular LDL is supplied to cells, compared to when a continuous supply of LDL particles is available. Whereas the former situation is common to in vitro experimental systems, the latter better reflects the in vivo situation. We use asymptotic analysis and numerical simulations to study the longtime behavior of model solutions. The implications of model-derived insights for experimental design are discussed.  相似文献   

17.
Sertraline hydrochloride is a first-line antidepressant with potential antineoplastic properties because of its structural similarity with other drugs capable to inhibit the translation-controlled tumor protein (TCTP), a biomolecule involved in cell proliferation. Recent studies suggest it could be repositioned for cancer treatment. In this review, we systematically map the findings that repurpose sertraline as an antitumoral agent, including the mechanisms of action that support this hypotesis. From experimental in vivo and in vitro tumor models of thirteen different types of neoplasms, three mechanisms of action are proposed: apoptosis, autophagy, and drug synergism. The antidepressant is able to inhibit TCTP, modulate chemotherapeutical resistance and exhibit proper cytotoxicity, resulting in reduced cell counting (in vitro) and shrunken tumor masses (in vivo). A mathematical equation determined possible doses to be used in human beings, supporting that sertraline could be explored in clinical trials as a TCTP-inhibitor.  相似文献   

18.
Muscle stem cells (MuSCs, satellite cells) are the major contributor to muscle regeneration. Like most adult stem cells, long-term expansion of MuSCs in vitro is difficult. The in vivo muscle regeneration abilities of MuSCs are quickly lost after culturing in vitro, which prevents the potential applications of MuSCs in cell-based therapies. Here, we establish a system to serially expand MuSCs in vitro for over 20 passages by mimicking the endogenous microenvironment. We identified that the combination of four pro-inflammatory cytokines, IL-1α, IL-13, TNF-α, and IFN-γ, secreted by T cells was able to stimulate MuSC proliferation in vivo upon injury and promote serial expansion of MuSCs in vitro. The expanded MuSCs can replenish the endogenous stem cell pool and are capable of repairing multiple rounds of muscle injuries in vivo after a single transplantation. The establishment of the in vitro system provides us a powerful method to expand functional MuSCs to repair muscle injuries.  相似文献   

19.
POLYPEPTIDES from different sources can be compared conveniently by digesting them with proteolytic enzymes and fingerprinting the resulting smaller peptides. If peptides with identical electrophoretic and chromatographic properties are obtained, the implication is very strong that the sequences of the original polypeptides were, at least in part, the same. The need for such comparisons arises in studies of in vitro polypeptides synthesized in coupled systems directed by viral DNAs. The material synthesized in vitro must be compared with authentic virus-coded material to verify that the system is transcribing DNA to RNA and translating RNA to protein with fidelity. For viruses such as SV40 and polyoma, which can be grown in tissue culture, the virus particles grown in the presence of 35S-methionine are a convenient source of virus-coded proteins. Proteolytic digests of these particles can be compared with digests of 35S-methionine labelled material synthesized in vitro. Preliminary results have shown that, in the case of polyoma virus, matching peptides are obtained from virus particles and polypeptides synthesized in vitro1.  相似文献   

20.
A simple computer model is described for the simulation of insulin binding to cell surface receptors on adipocytes and the subsequent stimulation of glucose uptake. The model is based on the currently accepted physiology and biochemistry of insulin action. The model successfully simulated changes in sensitivity to insulin with changes in receptor numbers seen with in vitro experiments; it is also consistent with the proposal that an increased rate of insulin-receptor complex internalisation should lead to an insulin-resistant state. The model also suggests that such an insulin-resistant state should not be affected by a subsequent increase in the rate of return of internalised receptors to the outer cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号