首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Following the approach of Schaffer (1974, Ecology 55, 291-303.) and Charlesworth & Leon (1976, Am. Nat. 110, 449-459.) the tradeoff between fecundity and survival/growth is investigated in an age-structured population with density independent life history parameters. The results of the above authors are generalized by allowing the tradeoff curve to vary with age; the life cycle is assumed to have two stages: an initial stage during which the organism generally improves in her capacity to reproduce, grow and survive, and a final stage during which her general performance remains constant or declines. The principal result is that, during the final stage, RV per unit size should decrease and over the course of the entire life, should either decrease, or increase at first and then decrease. With the additional assumption that the tradeoff curves at different ages are similar in shape, it is shown that unit fecundity should increase throughout the reproductive life of the organism.  相似文献   

3.
Species following a fast life history are expected to express fitness costs mainly as increased mortality, while slow‐lived species should suffer fertility costs. Because observational studies have limited power to disentangle intrinsic and extrinsic factors influencing senescence, we manipulated reproductive effort experimentally in the cavy (Cavia aperea) which produces extremely precocial young. We created two experimental groups: One was allowed continuous reproduction (CR) and the other intermittent reproduction (IR) by removing males at regular intervals. We predicted that the CR females should senesce (and die) earlier and produce either fewer and/or smaller, slower growing offspring per litter than those of the IR group. CR females had 16% more litters during three years than IR females. CR females increased mass and body condition more steeply and both remained higher until the experiment ended. Female survival showed no group difference. Reproductive senescence in litter size, litter mass, and reproductive effort (litter mass/maternal mass) began after about 600 days and was slightly stronger in CR than IR females. Litter size, litter mass, and offspring survival declined with maternal age and were influenced by seasonality. IR females decreased reproductive effort less during cold seasons and only at higher age than CR females. Nevertheless, offspring winter mortality was higher in IR females. Our results show small costs of reproduction despite high reproductive effort, suggesting that under ad libitum food conditions costs depend largely on internal regulation of allocation decisions.  相似文献   

4.
The measurement of costs of reproduction is of interest because such costs are generally assumed by life history theory. There is some controversy concerning how to measure costs: common methods include experimental manipulations of life history, such as preventing some individuals from reproducing, or estimates of genetic correlations. These two methods often yield similar results, suggesting that one can serve as a substitute for the other. There are now experiments which demonstrate that there are different mechanisms underlying the response to an experimental manipulation versus a genetic correlation, so the two methods are not equivalent in estimating costs.  相似文献   

5.
Plant reproduction yields immediate fitness benefits but can be costly in terms of survival, growth, and future fecundity. Life-history theory posits that reproductive strategies are shaped by trade-offs between current and future fitness that result from these direct costs of reproduction. Plant reproduction may also incur indirect ecological costs if it increases susceptibility to herbivores. Yet ecological costs of reproduction have received little empirical attention and remain poorly integrated into life-history theory. Here, we provide evidence for herbivore-mediated ecological costs of reproduction, and we develop theory to examine how these costs influence plant life-history strategies. Field experiments with an iteroparous cactus (Opuntia imbricata) indicated that greater reproductive effort (proportion of meristems allocated to reproduction) led to greater attack by a cactus-feeding insect (Narnia pallidicornis) and that damage by this herbivore reduced reproductive success. A dynamic programming model predicted strongly divergent optimal reproductive strategies when ecological costs were included, compared with when these costs were ignored. Meristem allocation by cacti in the field matched the optimal strategy expected under ecological costs of reproduction. The results indicate that plant reproductive allocation can strongly influence the intensity of interactions with herbivores and that associated ecological costs can play an important selective role in the evolution of plant life histories.  相似文献   

6.
While the number of studies providing evidence of actuarial senescence is increasing, and covers a wide range of taxa, the process of reproductive senescence remains poorly understood. In fact, quite high reproductive output until the last years of life has been reported in several vertebrate species, so that whether or not reproductive senescence is widespread remains unknown. We compared age-specific changes of reproductive parameters between two closely related species of long-lived seabirds: the small-sized snow petrel Pagodroma nivea, and the medium-sized southern fulmar Fulmarus glacialoides. Both are sympatric in Antarctica. We used an exceptional dataset collected over more than 40 years to assess age-specific variations of both breeding probability and breeding success. We found contrasted age-specific reproductive patterns between the two species. Reproductive senescence clearly occurred from 21 years of age onwards in the southern fulmar, in both breeding probability and success, whereas we did not report any decline in the breeding success of the snow petrel, although a very late decrease in the proportion of breeders occurred at 34 years. Such a contrasted age-specific reproductive pattern was rather unexpected. Differences in life history including size or migratory behaviour are the most likely candidates to account for the difference we reported in reproductive senescence between these sympatric seabird species.  相似文献   

7.
Viney M  Cable J 《Current biology : CB》2011,21(18):R767-R774
Parasites and parasitism is common. Worm macroparasites have evolved life-history traits that allow them to successfully transmit between spatially and temporally separated patches of host resource and to survive within these environments. Macroparasites have common life-history strategies to achieve this, but these general themes are modified in a myriad of ways related to the specific biology of their hosts. Parasite life histories are also dynamic, responding to conditions inside and outside of hosts, and they continue to evolve, especially in response to our attempts to control them and the harm that they cause.  相似文献   

8.
An animal's life history can be summarized by key variables that account for its life course from conception to death. Biological parameters that are of interest relate to reproductive effort and developmental rates (e.g., gestation length, neonatal weight, prenatal and postnatal growth rates, weaning age, and weaning weight) and the rate of reproduction (e.g., age at first and last reproduction, interbirth interval, the number of offspring per litter, birth rate, and the intrinsic rate of natural increase [rmax]). The rather obvious fact that such variables differ from species to species and from individual to individual has been the subject of much interest since the late 1960s, following the observation that species seem to be arranged in a spectrum that ranges from small animals that breed rapidly and develop early, have many young per litter, and have short lives, to large animals that breed slowly and develop late, have few young per litter, and have long lives. © 1998 Wiley-Liss, Inc.  相似文献   

9.
10.
Mammals display considerable geographical variation in life history traits. To understand how climatic factors might influence this variation, we analysed the relationship between life history traits – adult body size, litter size, number of litters per year, gestation length, neonate body mass, weaning age and age at sexual maturity – and several environmental variables quantifying the seasonality and predictability of temperature and precipitation across the distribution range of five terrestrial mammal groups. Environmental factors correlated strongly with each other; therefore, we used principal components analysis to obtain orthogonal climatic predictors that could be used in multivariate models. We found that in bats, primates and even‐toed ungulates adult body size tends to be larger in species inhabiting cold, dry, seasonal environments, whereas in carnivores and rodents a smaller body size is characteristic of warm, dry environments, suggesting that low food availability might limit adult size. Species inhabiting cold, dry, seasonal habitats have fewer, larger litters and shorter gestation periods; however, annual fecundity in these species is not higher, implying that the large litter size of mammals living at high latitudes is probably a consequence of time constraints imposed by strong seasonality. On the other hand, the number of litters per year and annual fecundity were greater in species inhabiting environments with higher seasonality in precipitation. Lastly, we found little evidence for specific effects of environmental variability. Our results highlight the complex effects of environmental factors in the evolution of life history traits in mammals. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 719–736.  相似文献   

11.
Many viral, bacterial and protozoan parasites of invertebrates first propagate inside their host without releasing any transmission stages and then kill their host to release all transmission stages at once. Life history and the evolution of virulence of these obligately killing parasites are modelled, assuming that within-host growth is density dependent. We find that the parasite should kill the host when its per capita growth rate falls to the level of the host mortality rate. The parasite should kill its host later when the carrying capacity, K, is higher, but should kill it earlier when the parasite-independent host mortality increases or when the parasite has a higher birth rate. When K(t), for parasite growth, is not constant over the duration of an infection, but increases with time, the parasite should kill the host around the stage when the growth rate of the carrying capacity decelerates strongly. In case that K(t) relates to host body size, this deceleration in growth is around host maturation.  相似文献   

12.
Summary We examined the effect of reproduction on growth in 33 genotypes of Plantago major and 14 genotypes of P. rugelii. These two herbaceous perennials have contrasting life histories; P. major reproduces at a smaller size, and allocates a larger proportion of its biomass to reproduction, than P. rugelii. The effect of reproduction on frowth was determined experimentally using photoperiod manipulations to control level of reproduction. The difference in growth between reproductive treatments was divided by the difference in capsule weight to produce a measure of reproductive cost per g of capsule for genotypes of the two species. In both species there was substantial variation among genotypes in the effect of reproduction on growth. Much of this variation could be correlated with differences among genotypes in the extent of reproductive investment and plant size. Cost in terms of reduction in growth per g of capsule increased with reproductive investment in P. rugelii, and with plant size in P. major. We suggest the differences between species in timing and extent of reproduction are related to the differences between species in effect of reproduction on growth. Plantago rugelii may reproduce to a lesser extent than P. major because cost per g of capsule in terms of reduced vegetative biomass, increases with reproductive output in the former species, but not in the latter. Similarly, P. major may reproduce earlier than P. rugelii because cost per g of capsule increases with plant size in P. major, but not in P. rugelii.  相似文献   

13.
Complex life-histories are common in nature, have many importantbiological consequences, and are an important focal area forintegrative biology. For organisms with complex life-histories,a legacy is something handed down from an ancestor or previousstage, and can be genetic, nutritional/provisional, experiential,as well as the result of random chance and natural variationin the environment. As we learn more about complex life-histories,it becomes clear that legacies are inexorably linked in theshort- and long-term through ecology and evolution. Understandingthe consequences and drivers of life-history patterns can thereforeonly be understood by considering all types of legacies andintegrating legacies across the entire life cycle. Larry McEdwardwas a leader in the field of ecological physiology, and evolutionaryecology of marine invertebrate larvae with complex life-histories.Through his scientific work and publications, devotion to students,colleagues, family, and friends, Larry has left a lasting legacythat will impact the future development of the field of larvalecology and complex life-histories.  相似文献   

14.
15.
Summary Natural populations live in heterogeneous environments, where habitat variation drives the evolution of phenotypic plasticity. The key feature of population structure addressed in this paper is the net flow of individuals from source (good) to sink (poor) habitats. These movements make it necessary to calculate fitness across the full range of habitats encountered by the population, rather than independently for each habitat. As a consequence, the optimal phenotype in a given habitat not only depends on conditions there but is linked to the performance of individuals in other habitats. We generalize the Euler-Lotka equation to define fitness in a spatially heterogeneous environment in which individuals disperse among habitats as newborn and then stay in a given habitat for life. In this case, maximizing fitness (the rate of increase over all habitats) is equivalent to maximizing the reproductive value of newborn in each habitat but not to maximizing the rate of increase that would result if individuals in each habitat were an isolated population. The new equation can be used to find optimal reaction norms for life history traits, and examples are calculated for age at maturity and clutch size. In contrast to previous results, the optimal reaction norm differs from the line connecting local adaptations of isolated populations each living in only one habitat. Selection pressure is higher in good and frequent habitats than in poor and rare ones. A formula for the relative importance of these two factors allows predictions of the habitat in which the genetic variance about the optimal reaction norm should be smallest.  相似文献   

16.
17.
This paper presents a heuristic model illustrating some major problems in analyzing seasonal life histories of multigeneration insects. The concept of the critical interval is introduced and defined as the age classes that survive at the end of a period of population growth. These conclusions follow from the results: The optimal age for occupying a habitat depends upon the duration of the habitat as well as the life history of the insect. Two positions of the initial age distribution may give local maxima for fitness. The critical interval should often include the youngest age classes to maximize fitness while the optimal position of the initial age distribution may be at a much older age. In this case, conflicts arise between the positions of the critical interval at the end of one growing period and the initial age distribution at the start of the next. The length of the critical interval that maximizes fitness in a particular environment may be relatively small in which case mortality at the end of a growing period may be high and timing would appear to be poor even though fitness is maximized. In this model, optimum generation lengths exist which are not the shortest attainable. Finally, the length of time that a habitat remains suitable influences all of the above results and must be taken into account in analyzing the adaptedness of life history traits.  相似文献   

18.
The adaptive significance of midlife menopause in human females has long engaged the attention of evolutionary anthropologists. In spite of extensive debate, the problem has only recently been examined in the context of primate life histories. Here I extend those investigations by comparing life history traits in 16 primate species to test predictions generated from life history theory. In humans, late ages of maturity and higher than expected birth rates are systematically associated with extended postmenopausal longevity. Links among these adjustments on the primate pattern can explain how selection could slow somatic senescence without favoring extension of the fertile span. This conclusion is consistent with the observation that our fertile spans are similar to those of other pongids. The shape of the argument herein demonstrates the utility of life history theory for solving problems of adaptive evolution in female life history traits, with consequences for broader arguments regarding human evolution.  相似文献   

19.
Although studies on laboratory species and natural populations of vertebrates have shown reproduction to impair later performance, little is known of the age-specific associations between reproduction and survival, and how such findings apply to the ageing of large, long-lived species. Herein we develop a framework to examine population-level patterns of reproduction and survival across lifespan in long-lived organisms, and decompose those changes into individual-level effects, and the effects of age-specific trade-offs between fitness components. We apply this to an extensive longitudinal dataset on female semi-captive Asian timber elephants (Elephas maximus) and report the first evidence of age-specific fitness declines that are driven by age-specific associations between fitness components in a long-lived mammal. Associations between reproduction and survival are positive in early life, but negative in later life with up to 71% of later-life survival declines associated with investing in the production of offspring within this population of this critically endangered species.  相似文献   

20.
Spatial variation in vital rates can affect the dynamics and persistence of a population. We evaluated the prediction that age-specific probabilities of survival and first reproduction for Weddell seals would vary as a function of birth location in Erebus Bay, Antarctica. We used multi-state mark–resight models and 25 years of data to estimate demographic rates for female seals. We predicted that probabilities of survival and first reproduction would be higher for seals born at near-shore colonies or more southerly-located colonies with consistent ice conditions. Contrary to predictions, results revealed higher age-specific probabilities of first reproduction at offshore colonies relative to near-shore colonies and no spatial variation in survival rates. For 7-year old females (average age at 1st reproduction=7.6 years old) born at offshore colonies to mothers aged 10.8 years (average maternal age), probability of first reproduction was 0.43 (SE=0.07), whereas probability of first reproduction for females born at near-shore colonies was 0.30 (SE=0.05) based on estimates from our top-ranked model. Breeding probabilities following first reproduction were also higher at offshore colonies. Thus, our results (1) provide evidence of spatial variation in breeding probabilities, (2) reveal the importance of birth location on a female's vital rates, and (3) suggest that the effect persisted for many years. Birth-colony effects may be attributed to spatial variation in prey availability, or to heterogeneity in female quality in this population. If females who are superior competitors consistently chose offshore colonies for pupping, pups born at these locations may have inherited those superior qualities and displayed higher probabilities of first reproduction, relative to seals born at other colonies. Further research into physical or food-related differences among colonies may offer insight into spatial variation in breeding probabilities documented in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号