首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The effects of 10 mM putrescine (Put) treated by spraying on leaves on growth, chlorophyll content, photosynthetic gas-exchange characteristics, and chlorophyll fluorescence were investigated by growing cucumber plants (Cucumis sativus L. cv. ChangChun mici) using hydroponics with or without 65 mM NaCl as a salt stress. Salt stress caused the reduction of growth such as leaf area, root volume, plant height, and fresh and dry weights. Furthermore, net photosynthesis rate (P n), stomatal conductance (g s), intercellular CO2 concentration (C i), and transpiration rate (T r) were also reduced by NaCl, but water use efficiency (WUE; P n/T r) showed a tendency to be enhanced rather than reduced by NaCl. However, Put alleviated the reduction of P n by NaCl, and showed a further reduction of C i by NaCl. The reduction of g s and T r by NaCl was not alleviated at all. The enhancement of WUE by NaCl was shown to have no alleviation at day 1 after starting the treatment, but after that, the enhancement was gradually reduced till the control level. Maximum quantum efficiency of PSII (F v/F m) showed no effects by any conditions based on the combination of NaCl and Put, and in addition, kept constant values in plants grown in each nutrient solution during this experimental period. The efficiency of excitation energy capture by open photosystem II (PSII) (F v′/F m′), actual efficiency of PSII (ΦPSII), and the coefficient on photochemical quenching (qP) of plants with NaCl were reduced with time, and the reduction was alleviated till the control level by treatment with Put. The F v′/F m′, ΦPSII, and qP of plants without NaCl and/or with Put showed no variation during the experiment. Non-photochemical quenching of the singlet excited state of chlorophyll a (NPQ) showed quite different manner from the others as mentioned above, namely, continued to enhance during the experiment.  相似文献   

2.
3.
4.
在高温强光条件下,研究了外源水杨酸对黄瓜叶片叶绿素荧光参数和叶黄素循环的影响.结果表明,在高温强光胁迫前2 d用50~400 μmol·L-1水杨酸处理叶片,抑制了高温强光下原初光能转换效率(Fv/Fm)、光合电子传递量子效率(ΦPSⅡ)、最大荧光(Fm)和光化学猝灭系数(qP)的下降,分别比对照提高了16.1%~30.2%、11.9%~33.0%、7.2%~41.0%和27.2%~160.8%,促进了非光化学猝灭系数(NPQ)的升高,比对照提高了13.1%~62.9%,而对初始荧光(Fo)影响不大.水杨酸处理可减小高温强光下叶黄素循环库的下降幅度,使(A+Z)/(V+A+Z)升高,分别比对照高29.5%和24.6%.这些结果说明,水杨酸可通过提高非辐射能量耗散,对高温强光引起的黄瓜叶片光合机构的破坏具有保护作用.  相似文献   

5.
外源亚精胺对盐胁迫下黄瓜幼苗光合作用的影响   总被引:8,自引:0,他引:8  
李军  高新昊  郭世荣  张润花  王旭 《生态学杂志》2007,26(10):1595-1599
采用营养液栽培,研究了外源亚精胺对50mmol·L-1NaCl胁迫下黄瓜幼苗植株生长、叶片叶绿素含量、光合气体交换参数和叶绿素荧光参数(PSⅡ光化学效率)的影响。结果表明:NaCl胁迫显著降低了黄瓜植株生长量、净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)(P<0.05),但对PSⅡ实际光化学效率(ФPSⅡ)、光化学淬灭(qP)、有效光化学效率(Fv′/Fm′)、非光化学淬灭(qN)和PSⅡ最大光化学效率(Fv/Fm)无显著影响(P>0.05);外源亚精胺显著提高了盐胁迫下黄瓜植株生长量、叶绿素含量、净光合速率、气孔导度、胞间CO2浓度,增加了ФPSⅡ、qP、Fv′/Fm′,降低了qN(P<0.05);外源亚精胺对Fv/Fm影响不显著(P>0.05)。外源施加亚精胺可增强盐胁迫下黄瓜植株的光合能力,主要是由于减弱了盐胁迫对植株的气孔限制,但对PSⅡ实际光化学效率影响较小,且叶面喷施比根施处理对改善盐胁迫下植株的生长和光合作用更有效。  相似文献   

6.
外源亚精胺对高温胁迫下黄瓜幼苗氮素代谢的影响   总被引:3,自引:0,他引:3  
以较为耐热的黄瓜品种‘津春4号’为试材,在人工气候箱中,采用石英砂培加营养液浇灌的栽培方式,研究了外源亚精胺( Spd)对高温胁迫(42℃)下黄瓜幼苗氮素代谢的影响.结果表明:短期高温胁迫处理,尤其是4h内,植株硝态氮含量降低而铵态氮含量升高;外源Spd预处理使幼苗体内硝态氮和铵态氮含量升高且硝酸还原酶(NR)活性增强.较长期高温胁迫处理下,幼苗根系中硝态氮含量升高但向地上部运输受阻,根系NR钝化,根系和叶片中铵态氮含量均显著升高;高温胁迫下喷施Spd,除进一步促进根系吸收硝态氮且向地上部运输外,根系和叶片NR活性亦有所升高,从较长期的效果看,外源Spd还具有防止铵态氮过度积累、促进幼苗体内氮素代谢趋于正常的作用.  相似文献   

7.
褪黑素对高温胁迫下黄瓜幼苗抗坏血酸代谢系统的影响   总被引:2,自引:0,他引:2  
以‘津春4号’黄瓜幼苗为试材,采用叶面喷施的方法,研究了外源褪黑素对高温胁迫下黄瓜幼苗叶片抗坏血酸代谢系统的影响.结果表明:高温胁迫后,黄瓜幼苗叶片过氧化氢(H2O2)和丙二醛(MDA)含量明显增加;还原型抗坏血酸(AsA)和还原型谷胱甘肽(GSH)含量持续下降,脱氢抗坏血酸(DHA)和氧化型谷胱甘肽(GSSG)含量逐渐升高,AsA/DHA和GSH/GSSG大幅下降;抗坏血酸过氧化物酶(APx)、单脱氢抗坏血酸还原酶(MDHAR)、脱氢抗坏血酸还原酶(DHAR)和谷胱甘肽还原酶(GR)活性明显升高,并在12 h达到最大.外施褪黑素能有效抑制高温胁迫下黄瓜幼苗叶片H2O2和MDA的积累,提高抗氧化物质AsA和GSH含量及抗坏血酸代谢相关酶APx、MDHAR、DHAR和GR活性,从而增强对H2O2的清除能力,抑制活性氧的产生,维持细胞膜的稳定性,减轻高温对植株造成的伤害,提高黄瓜幼苗抵御高温胁迫的能力.  相似文献   

8.
The multifunctional enzyme, putrescine synthase has been purified fromCucumis sativus and characterized. This enzyme harbours agmatine iminohydrolase, ornithine transcarbamylase, putrescine transcarbamylase and carbamate kinase activities, whose concerted action results in agmatine → putrescine conversion. The enzyme resolved into two aggregation forms, enzyme aggregated and enzyme monomer upon electrophoresis at pH 8.3. Evidence has been provided by two-dimensional gel electrophoresis that both enzyme aggregated and enzyme monomer comprise of identical polypeptide chains. Under non-reducing conditions on sodium dodecyl sulphate-polyacrylamide gel electrophoresis, the protein moves as a single 150 KDa polypeptide; however, in the presence of 2-mercaptoethanol on sodium dodecyl sulphate-polyacrylamide gel elec trophoresis, it migrates as 3 polypeptides of molecular weight 48,000, 44,000 and 15,000. The enzyme undergoes age-dependentin vivo proteolytic degradation from a 66 KDa polypeptide (primary translational product), through 48 KDa polypeptide to 44 KDa species and finally to small molecular weight peptides. Preliminary results of this work were presented at Golden Jubilee and Annual General Body Meetings of Society of Biological Chemists (India) and the Second Congress of Asian and Ocean Biochemists (1980) held at Bangalore, 1981,Indian J. Biochem. Biophys.,18, 113.  相似文献   

9.
高温胁迫下外源褪黑素对黄瓜幼苗活性氧代谢的影响   总被引:3,自引:3,他引:3  
以黄瓜品种‘津春4号’为试材,用叶面喷施的方法,研究了高温胁迫条件下外源褪黑素(melatonin,MT)对黄瓜幼苗活性氧(ROS)代谢的影响.结果表明:外源MT能显著降低高温胁迫下黄瓜叶片超氧阴离子自由基(O2-.)产生速率、过氧化氢(H2O2)含量、电解质漏渗率(relative electric conductivity, REC)及丙二醛(MDA)含量,增强黄瓜幼苗叶片中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)活性,提高抗坏血酸(AsA)、谷胱甘肽(GSH)及可溶性蛋白质含量.说明MT预处理能抑制高温胁迫条件下黄瓜幼苗体内ROS的产生,提高抗氧化酶系的活性及抗氧化物质的含量,降低膜质过氧化水平,保护脂膜的完整性,减少电解质的外渗,减轻高温胁迫对幼苗造成的伤害,提高幼苗抗高温胁迫的能力.  相似文献   

10.

Key message

Our results based on proteomics data and physiological alterations proposed the putative mechanism of exogenous Spd enhanced salinity tolerance in cucumber seedlings.

Abstract

Current studies showed that exogenous spermidine (Spd) could alleviate harmful effects of salinity. It is important to increase our understanding of the beneficial physiological responses of exogenous Spd treatment, and to determine the molecular responses underlying these responses. Here, we combined a physiological analysis with iTRAQ-based comparative proteomics of cucumber (Cucumis sativus L.) leaves, treated with 0.1 mM exogenous Spd, 75 mM NaCl and/or exogenous Spd. A total of 221 differentially expressed proteins were found and involved in 30 metabolic pathways, such as photosynthesis, carbohydrate metabolism, amino acid metabolism, stress response, signal transduction and antioxidant. Based on functional classification of the differentially expressed proteins and the physiological responses, we found cucumber seedlings treated with Spd under salt stress had higher photosynthesis efficiency, upregulated tetrapyrrole synthesis, stronger ROS scavenging ability and more protein biosynthesis activity than NaCl treatment, suggesting that these pathways may promote salt tolerance under high salinity. This study provided insights into how exogenous Spd protects photosynthesis and enhances salt tolerance in cucumber seedlings.
  相似文献   

11.
为了探讨油菜素内酯对植物耐盐性的调控,以甘蓝型油菜"南盐油1号"为试验材料,研究了外源24-表油菜素内酯(24-EBL)对100、200 mmol/L Na Cl胁迫下油菜幼苗干重(DW)、相对含水量(RWC)、渗透调节能力(OAA)、叶片气体交换参数、气孔限制值(Ls)等的调节效应,还测定了不同器官的Na+、K+、Cl-含量,并计算各器官的K+/Na+和SK,Na。结果表明:(1)在不同浓度的盐胁迫下,油菜幼苗DW显著下降,胁迫下外源喷施10-12、10-10、10-8、10-6mol/L 24-EBL作用下,油菜植株干重均不同程度的上升,且植株干重都在10-10mol/L 24-EBL(EBL2)处理下达到最大值,分别比100、200 mmol/L Na Cl胁迫下增加29%和20%。与对照相比,非盐胁迫下外源喷施10-12、10-10、10-8、10-6mol/L 24-EBL,油菜幼苗植株干重与对照相比均无显著变化。(2)不同Na Cl浓度胁迫下,油菜叶片的RWC显著下降,外施EBL2可显著提高油菜叶片的RWC和OAA。(3)不同浓度Na Cl胁迫下,油菜幼苗叶片净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)和蒸腾速率(Tr)均不同程度下降,而Ls显著上升,而外喷EBL2可不同程度的提高Pn、Gs、Ci、Tr,降低Ls。(4)与对照相比,Na Cl胁迫下油菜幼苗叶片、叶柄和根的Na+和Cl-含量均显著上升,Na Cl浓度愈高,Na+和Cl-含量上升愈显著。而K+含量均下降,外源EBL2可显著降低幼苗各器官的Na+和Cl-含量,对幼苗叶片K+含量没有影响,但提高了叶柄和根中的K+含量。上述表明,合适浓度的24-EBL外喷可明显提高油菜的耐盐水平,且不同浓度Na Cl胁迫下,最适24-EBL浓度均为10-10mol/L。主要是因为外源喷施24-EBL能显著改善离子稳态和渗透调节能力,从而改善盐胁迫下油菜幼苗的光合作用、水分状况,提高其耐盐性。而24-EBL对盐处理下油菜植株气孔限制的显著改善是其促进其光合、水分利用的重要原因,也是其对100 mmol/L Na Cl处理的油菜生长调控效果优于200 mmol/L Na Cl处理的重要原因之一。结果还显示,在叶片中,24-EBL外施可通过排Na+和Cl-来维持植株离子稳态,而对K+影响不大;在根、茎中可通过排Na+、排Cl-、吸K+维持稳态。  相似文献   

12.
采用营养液水培的方法,研究了外源一氧化氮(Nitricoxide,NO)对50mmol·L^-1 NaCl胁迫下黄瓜幼苗生长、活性氧代谢和光合特性的影响。结果表明:10~4001μmol·L^-1 NO供体硝普钠(Sodium nitroprusside,SNP)能显著缓解NaCl胁迫对黄瓜植株造成的伤害,100μmol·L^-1 SNP缓解效果最好,可提高幼苗的生长量,增强幼苗叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)活性,提高了叶片叶绿素和脯氨酸(Pro)含量、净光合速率(Pn)、蒸腾速率(n)及气孔导度(Gs);降低了叶片丙二醛(MDA)和过氧化氢(H2O2)的含量、超氧阴离子(O2^-)的产生速率、质膜透性和胞间二氧化碳浓度(Ci)。  相似文献   

13.
Summary Sudden illumination of sunflower (Helianthus annuus L. cv. CGL 208) leaves and canopies led to excess absorbed PFD and induced apparent reflectance changes in the green, red and near-infrared detectable with a remote spectroradiometer. The green shift, centered near 531 nm, was caused by reflectance changes associated with the de-epoxidation of violaxanthin to zeaxanthin via antheraxanthin and with the chloroplast thylakoid pH gradient. The red (685 nm) and near-infrared (738 nm) signals were due to quenching of chlorophyll fluorescence. Remote sensing of shifts in these spectral regions provides non-destructive information on in situ photosynthetic performance and could lead to improved techniques for remote sensing of canopy photosynthesis.CIW Publication #1072  相似文献   

14.
The lower oxygen limit (LOL) in plants may be identified through the measure of respiratory gases [i.e. the anaerobic compensation point (ACP) or the respiratory quotient breakpoint (RQB)], but recent work shows it may also be identified by a sudden rise in dark minimum fluorescence (F o). The interrelationship between aerobic respiration and fermentative metabolism, which occur in the mitochondria and cytosol, respectively, and fluorescence, which emanates from the chloroplasts, is not well documented in the literature. Using spinach (Spinacia oleracea), this study showed that Fo and photochemical quenching (q P) remained relatively unchanged until O2 levels dropped below the LOL. An over-reduction of the plastoquinone (PQ) pool is believed to increase F o under dark + anoxic conditions. It is proposed that excess cytosolic reductant due to inhibition of the mitochondria’s cytochrome oxidase under low-O2, may be the primary reductant source. The maximum fluorescence (F m) is largely unaffected by low-O2 in the dark, but was severely quenched, mirroring changes to the xanthophyll de-epoxidation state (DEPS), under even low-intensity light (≈4 μmol m−2 s−1). In low light, the low-O2-induced increase in F o was also quenched, likely by non-photochemical and photochemical means. The degree of quenching in the light was negatively correlated with the level of ethanol fermentation in the dark. A discussion detailing the possible roles of cyclic electron flow, the xanthophyll cycle, chlororespiration and a pathway we termed ‘chlorofermentation’ were used to interpret fluorescence phenomena of both spinach and apple (Malus domestica) over a range of atmospheric conditions under both dark and low-light.  相似文献   

15.
The translocation and metabolism of polyamines during soybean germination were studied using 15N-labelled putrescine as a precursor. Both 15N-labelled and unlabelled polyamines were simultaneously detected using a novel application of ionspray ionization-mass spectrometry. 15N-putrescine was rapidly transported to the shoots and roots, where it was converted to spermidine and spermine. The main 15N-polyamine that accumulated in the root was 15N-spermine. It was found that there were differences in the way endogenous putrescine and exogenous 15N-putrescine were metabolized in soybean seedlings.  相似文献   

16.
17.
Journal of Plant Research - This research hypothesized that tolerance of cucumber seedlings to salinity stress could be increased by hydrogen sulfide (H2S) treatments. In pot experiments, the...  相似文献   

18.
The relationship between the activity of xanthophyll cycle and chlorophyll (Chl) metabolism was investigated using two cultivars, Helan No. 3 (seawater-tolerant cultivar) and Yuanye (seawater-sensitive cultivar), of spinach (Spinacia oleracea L.) plants cultured in Hoagland’s nutrient solution, with or without seawater (40%). The results showed that, in plants of two cultivars with seawater, the xanthophyll cycle seems to show a principal protection mechanism against photoinhibition under seawater stress. Furthermore, accumulation of reactive oxygen species (ROS) in chloroplasts of two cultivars was enhanced by seawater to lower the activity of porphobilinogen deaminase. Namely, the conversion of porphobilinogen into uroporphyrinogen III involved in Chl biosynthetic processes was inhibited by seawater. In Helan No. 3 spinach plants with seawater, higher activity of xanthophyll cycle in the leaves dissipated more excess light energy, which appeared to lower the levels of ROS in chloroplasts. As a consequence, the Chl biosynthesis in Helan No. 3 leaves with seawater showed only a weak inhibition and the activity of chlorophyllase (Chlase) was not affected by seawater stress. In contrast, a more pronounced accumulation of ROS in chloroplasts of Yuanye leaves, which possess lower xanthophyll cycle activity, severely inhibited Chl biosynthesis and remarkably enhanced the activity of Chlase, which aggravates the decomposition of Chl. These results suggest that higher activity of xanthophyll cycle in seawater-tolerant spinach plays a role in maintaining Chl metabolic processes, probably by decreasing the levels of ROS, when the plants are cultured in the nutrient solution with seawater (40%).  相似文献   

19.
A homogenous PreParation of Putrescine synthase, the versatile multifunctional enzyme involved in agmatine →Putrescine conversion inCucumis sativus was found to catalyze enzymatic decarboxylation of arginine also. Similarly, the Purified arginine decarboxylase mediated the comPonent as well as the comPlete set of couPled reactions harboured by Putrescine synthase. Both the enzyme PreParations exhibited identical electroPhoretic and chromatograPhic behaviour and were immunologically indistinguishable. All the enzymic activities are stabilized concurrently by feeding arginine to the intact seedlings. Therefore, it is concluded that the multifunctional Putrescine synthase inCucumis sativus seedlings also harbours arginine decarboxylase activity unlike its counterPart inLathyrus sativus.  相似文献   

20.
外源亚精胺对盐胁迫下黄瓜幼苗体内抗氧化酶活性的影响   总被引:10,自引:0,他引:10  
张润花  郭世荣  樊怀福  李娟 《生态学杂志》2006,25(11):1333-1337
以不同耐盐性黄瓜品种“长春密刺”和“津春2号”为材料,采用营养液栽培,研究了外源亚精胺(Spd)对NaCl胁迫下黄瓜幼苗叶片与根系中超氧阴离子(O2-.)产生速率、超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性的影响。结果表明,外源Spd对未经盐胁迫处理(对照)黄瓜幼苗体内O2-.产生速率、SOD、CAT和POD活性均无显著性影响;盐胁迫处理提高了O2-.产生速率,SOD、POD和CAT活性都有不同程度的升高;外源Spd处理进一步提高了盐胁迫下SOD、POD和CAT活性,减缓了O2-.产生速率。与耐盐型“长春密刺”品种相比,盐胁迫对盐敏感型“津春2号”影响较大,外源Spd对盐敏感型黄瓜品种盐胁迫伤害的缓解作用较大。表明盐胁迫下外源Spd可缓解盐胁迫对膜的伤害,从而提高黄瓜幼苗的耐盐性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号