首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aims

Despite extensive studies on effects of elevated CO2 concentration ([CO2]e) on plant growth, few studies have investigated the responses of native grassland plant species to [CO2]e in terms of nutrient acquisition.

Methods

The effects of [CO2]e (769 ± 23 ppm) on Artemisia frigida and Stipa krylovii, two dominant species in Inner Mongolia steppe were investigated by growing them for 7 weeks in Open-Top Chambers (OTC).

Results

Exposure to [CO2]e enhanced shoot and root growth of A. frigida and S. krylovii. Elevated [CO2] increased photosynthetic rates (Pn) by 34 % in A. frigida but decreased Pn by 52 % in S. krylovii. Moreover, root-secreted acid phosphatase activity in A. frigida was stimulated by [CO2]e, while exudation of malate from roots of S. krylovii was suppressed by [CO2]e. Exposure to [CO2]e led to a decrease in P concentration in shoots and roots of A. frigida and S. krylovii, but total amount of P accumulated in shoots and roots of both species was increased by [CO2]e.

Conclusions

The two dominant species in temperate steppes differed in their responses to [CO2]e, such that A. frigida was more adapted to [CO2]e than S. krylovii under low availability of soil P.
  相似文献   

2.
To clarify the response of soil organic carbon (SOC) content to season-long grazing in the semiarid typical steppes of Inner Mongolia, we examined the aboveground biomass and SOC in both grazing (G-site) and no grazing (NG-site) sites in two typical steppes dominated by Leymus chinensis and Stipa grandis, as well as one seriously degraded L. chinensis grassland dominated by Artemisia frigida. The NG-sites had been fenced for 20 years in L. chinensis and S. grandis grasslands and for 10 years in A. frigida grassland. Aboveground biomass at G-sites was 21–35% of that at NG-sites in L. chinensis and S. grandis grasslands. The SOC, however, showed no significant difference between G-site and NG-site in both grasslands. In the NG-sites, aboveground biomass was significantly lower in A. frigida grassland than in the other two grasslands. The SOC in A. frigida grassland was about 70% of that in L. chinensis grassland. In A. frigida grassland, aboveground biomass in the G-site was 68–82% of that in the NG-site, whereas SOC was significantly lower in the G-site than in the NG-site. Grazing elevated the surface soil pH in L. chinensis and A. frigida communities. A spatial heterogeneity in SOC and pH in the topsoil was not detected the G-site within the minimal sampling distance of 10 m. The results suggested that compensatory growth may account for the relative stability of SOC in G-sites in typical steppes. The SOC was sensitive to heavy grazing and difficult to recover after a significant decline caused by overgrazing in semiarid steppes.  相似文献   

3.
R.Z. Wang 《Photosynthetica》2004,42(2):511-519
Photosynthetic pathways (C3, C4, and CAM) and morphological functional types (e.g. shrubs, high perennial grasses, short perennial graminaceous plants, annual grasses, annual forbs, perennial forbs, halophytes, and hydrophytes) were identified for the species from salinity grasslands in Northeastern China, using the data from both stable carbon isotope ratios (δ13C) and from the references published between 1993 and 2002. 150 species, in 99 genera and 37 families, were found with C3 photosynthesis, and most of these species are dominants [e.g. Leymus chinensis (Trin.) Tzvel., Calamagrostis epigeios (L.), Suaeda corniculata (C.A. Mey.) Bunge]. 40 species in 25 genera and 8 families were identified with C4 photosynthesis [e.g. Chloris virgata Sw., Aeluropus littoralis (Gouan) Parlat] and 1 species with CAM photosynthesis. Gramineae is the leading family with C4 photosynthesis (27 species), Chenopodiaceae ranks the second (5 species). The significant increase of C4 proportions with intense salinity suggested this type plant is remarkable response to the grassland salinization in the region. 191 species were classified into eight morphological functional types and the changes of most of these types (e.g. PEF, HAL, and HPG) were consistent with habitats and vegetation dynamics in the saline grassland. My findings suggest that the photosynthetic pathways, combined with morphological functional types, are efficient means for studying the linkage between species and ecosystems in this type of saline grassland in Northeastern China.  相似文献   

4.
Above-ground biomass (AGB) is an important indicator of grassland ecosystem performance. Easily measured plant functional traits (PFTs) may provide useful predictors of the response of plants to grazing. Understanding the response of PFTs to grazing and the relationship between PFTs and AGB is very important for effectively predicting the response of ecosystems to grazing and rangeland management. A grazing experiment was conducted in Gangcha County, Qinghai Province, in the northeastern part of the Qinghai–Tibet Plateau in 2012 and 2013. We investigated the response of PFTs in three dominant species (Elymus nutans, Kobresia humilis, and Stipa purpurea) to grazing, using six stocking rates. Plant height (PH), plant weight, leaf area, and leaf dry biomass of these three dominant species had significantly negative relationships with stocking rate. Leaf thickness (LT) of these three species usually showed a unimodal response to grazing. Specific leaf area generally showed a quadratic relationship with grazing intensity. No consistent effects of grazing were observed on nitrogen content per unit mass (N mass) and nitrogen content per unit area (N area). PH, leaf area, and leaf dry mass (LDM) were positively associated with AGB, but LT, N mass, and N area had no statistically significant association with AGB. We thus conclude that PH, leaf area, and LDM best predict the effects of grazing on AGB. Finally, 2.87 sheep/ha is recommended as the optimal stocking rate in this region to maintain the health of this grassland ecosystem and to allow for sustainable development.  相似文献   

5.
6.
Over the last few decades, due to increase in grazing intensity, animal trampling has led to soil structure deterioration in Inner Mongolia, China. We investigated two different steppe ecosystems: Leymus chinensis (LCh, characterized by relatively higher precipitation) and Stipa grandis (SG) and two grazing intensities: ungrazed since 1979 (UG79) and grazed (continuously grazed, CG, at the Stipa grandis site and winter grazed, WG, at Leymus chinensis). Soil mechanical and hydraulic properties of semiarid steppe soils from each site and treatment were determined for soil aggregates and disturbed and bulk soil samples from different depths (4?C8, 18?C22, 30?C34 and 56?C60 cm for disturbed and bulk samples and 0?C15 cm for the aggregates). Grazing causes a significant increase in tensile strength of aggregates and in the precompression stress of the bulk soil as well as a decrease in air and saturated hydraulic conductivity, irrespective of the vegetation type. Furthermore, exclusion from grazing led to more pronounced recovery of soil strength and pore continuity and hydraulic conductivity at the LCh site but it also depended on the moisture conditions of the sites. Under wetter conditions as well as after repeated freezing and thawing the soil strength declined.  相似文献   

7.
Fundulus grandis (Baird and Girard), the Gulf Killifish, is an abundant species throughout the marshes of the northern Gulf of Mexico. Its wide distribution and high site fidelity makes it an ideal indicator species for brackish and salt marshes, which experience a variety of anthropogenic disturbances. Despite the ecological, commercial, and scientific importance of F. grandis, age determination methods have not been validated and little is known of its growth pattern. By combining a tag-recapture study with a chemical marker to stain otoliths, we validated an ageing method for F. grandis adults (49–128 mm TL) using whole sagittal otoliths and determined growth rates of recaptured individuals in winter (n = 58) and summer (n = 36) in Louisiana. Mean somatic growth in length was significantly greater during the winter (0.085 mm d?1) than summer (0.054 mm d?1). In contrast, mean otolith growth was significantly greater in summer (1.37 μm d?1) than winter (0.826 μm d?1). The uncoupling of somatic and otolith growth may be primarily attributed to warm summer temperatures, which led to enhanced otolith growth while simultaneously reducing somatic growth. Fundulus grandis was aged to a maximum of 2.25 years. The parameters of the von Bertalanffy growth model were estimated as: L  = 87.27 mm, k = 2.43 year?1, and t 0 = ?0.022. These findings reveal essential age and growth information for F. grandis and provide a benchmark to evaluate responses to environmental disturbances.  相似文献   

8.
Insertion/deletion (InDel) markers are valuable for genetic applications in plant species, and the public databases of expressed sequence tags (ESTs) have facilitated the development of genic InDel markers. In this study, we developed a novel set of 144 InDel markers in an important tree genus Eucalyptus L’Hérit. using the ESTs of GenBank. Amplicon sequencing against two parents of a mapping population (Eucalyptus urophylla S. T. Blake × E. tereticornis Smith) revealed that the InDel size ranged from 2 to 44 bases, and the dinucleotide type was the most abundant (37.3 %). The cross-species/subgenus amplification rate ranged from 62.5 % in E. tessellaris F. Muell. (subgenus Blakella) to 99.3 % in E. grandis Hill ex Maiden (subgenus Symphyomyrtus) with an average of 85.4 %. There were 121 EST-InDels (84.0 %) polymorphic among 12 individuals of E. grandis, and the mean number of alleles per polymorphic locus (N a), observed heterozygosity (H o), expected heterozygosity (H e) and polymorphic information content (PIC) were 4.0, 0.278, 0.538 and 0.465, respectively. Physical positions of 143 EST-InDels were predicted on the E. grandis genome sequence. A total of 81 EST-InDels were incorporated into prior dense genetic maps of E. urophylla and E. tereticonis, and extensive synteny and colinearity were observed between E. grandis genome sequence and the mapped EST-InDel markers. These EST-InDels will provide a valuable resource of functional markers for genetic diversity evaluation, genome comparison, QTL mapping and marker-assisted breeding in Eucalyptus.  相似文献   

9.
Lifespan of fine root plays an important role in regulating carbon (C) cycling in terrestrial ecosystems. Determination of root lifespan and elucidation of its regulatory mechanism in different plant communities are essential for accurate prediction of C cycling from ecosystem to regional scales. There are three major types of grasslands in the temperate steppes of Inner Mongolia, each dominated by a different species of common grass: Stipa krylovi, Stipa grandis, and Stipa breviflora. There have been no studies to compare the root dynamics among the three types of grasslands. In the present study, we determined root lifespan of the three grasslands using the rhizotron technique. We found that root lifespan differed substantially among the three major types of grasslands within the temperate steppes of Inner Mongolia, such that root lifespan of S. breviflora > S. grandis > S. krylovii grasslands. Root lifespan across the three types of grasslands displayed a similar temporal pattern, such that root lifespan followed the order of autumn-born roots > summer-born roots > spring-born roots. The spatial and temporal differences in root lifespan across the three types of grasslands were mainly related to contents of soluble sugars in roots of the dominant species and BNPP/ANPP ratio of the communities. The differences in root lifespan across the major types of grasslands and different seasons highlight the potential importance of taking these differences into account in models of future carbon cycling and climate change.  相似文献   

10.
Leymus chinensis (Trin.) Tzvel is a rhizomatous grass species in the Eastern Eurasian steppe zone that is often limited by low soil nitrogen availability. Although a previous study showed that the rhizomes of L. chinensis have the capacity to take up nitrogen, the importance of such uptake for nitrogen nutrition is unclear. Moreover, little is known regarding the inorganic nitrogen uptake kinetics of roots and rhizomes in response to nitrogen status. Here, we first found that ammonium is preferred over nitrate and glycine for L. chinensis growth. Using the 15N-labelling method, we found that the rate of ion influx into roots was approximately five-fold higher than into rhizomes under the same nitrogen content, and the ion influxes into roots and rhizomes under 0.05 mM N were greater than in the presence of 3 mM N, especially in the form of NH4+. Using a non-invasive micro-test technique, we characterised the patterns of NH4+ and NO3 fluxes in the root mature zone, root tip, rhizome mature zone, and rhizome tip following incubation in the solution with different N compounds and different N concentrations. These results suggest a dynamic balance between the uptake, utilisation, and excretion of nitrogen in L. chinensis.  相似文献   

11.
Although plant performance under elevated CO2 (EC) and drought has been extensively studied, little is known about the leaf traits and photosynthetic performance of Stipa bungeana under EC and a water deficiency gradient. In order to investigate the effects of EC, watering, and their combination, S. bungeana seedlings were exposed to two CO2 regimes (ambient, CA: 390 ppm; elevated, EC: 550 ppm) and five levels of watering (?30%, ?15%, control, +15%, +30%) from 1 June to 31 August in 2011, where the control water level was 240 mm. Gas exchange and leaf traits were measured after 90-d treatments. Gas-exchange characteristics, measured at the growth CA, indicated that EC significantly decreased the net photosynthetic rate (P N), water-use efficiency, nitrogen concentration based on mass, chlorophyll and malondialdehyde (MDA) content, while increased stomatal conductance (g s), intercellular CO2 concentration (C i), dark respiration, photorespiration, carbon concentration based on mass, C/N ratio, and leaf water potential. Compared to the effect of EC, watering showed an opposite trend only in case of P N. The combination of both factors showed little influence on these physiological indicators, except for g s, C i, and MDA content. Photosynthetic acclimation to EC was attributed to the N limitation, C sink/source imbalance, and the decline of photosynthetic activity. The watering regulated photosynthesis through both stomatal and nonstomatal mechanisms. Our study also revealed that the effects of EC on photosynthesis were larger than those on respiration and did not compensate for the adverse effects of drought, suggesting that a future warm and dry climate might be unfavorable to S. bungeana. However, the depression of the growth of S. bungeana caused by EC was time-dependent at a smaller temporal scale.  相似文献   

12.
Four scion-rootstock combination [i.e., X/X and X/SP, ‘Xuegan’ (Citrus sinensis) grafted on ‘Xugan’ and ‘Sour pummelo’ (Citrus grandis), respectively, and SP/X and SP/SP, ‘Sour pummelo’ grafted on ‘Xuegan’ and ‘Sour pummelo’, respectively] plants were treated for 18 weeks with 0 (?Al) or 1.2 mM AlCl3·6H2O (+Al). Thereafter, leaf, stem and root concentrations of phosphorus and aluminum (Al), leaf and root levels of organic acids (OAs), Al-induced release of OA anions (i.e., malate and citrate), photosynthesis and chlorophyll a fluorescence (OJIP) transients were measured. Al-induced decrease of photosynthesis and damage of photosynthetic electron transport chain were less pronounced in X/X and X/SP leaves than in SP/SP and SP/X leaves, which might be related with the higher Al-induced root efflux of OA anions and leaf P concentration. C. sinensis rootstock alleviated the influences of Al-toxicity on leaf photosynthetic electron transport chain by enhancing Al-induced release of root OA anions, hence lessening Al-induced photosynthesis inhibition in SP/X plants, while the reverse was the case for C. grandis rootstock in X/SP plants. In conclusion, the tolerance of grafted Citrus plants to Al depends on the scion as well as rootstock genotype, and the scion-rootstock interaction.  相似文献   

13.
The smallest 32 amino acid α-amylase inhibitor from Amaranthus hypochondriacus (AAI) is reported. The complete gene of pre-protein (AhAI) encoding a 26 amino acid (aa) signal peptide followed by the 43 aa region and the previously identified 32 aa peptide was cloned successfully. Three cysteine residues and one disulfide bond conserved within known α-amylase inhibitors were present in AhAI. Identical genomic and open reading frame was found to be present in close relatives of A. hypochondriacus namely Amaranthus paniculatus, Achyranthes aspera and Celosia argentea. Interestingly, the 3′UTR of AhAI varied in these species. The highest expression of AhAI was observed in A. hypochondriacus inflorescence; however, it was not detected in the seed. We hypothesized that the inhibitor expressed in leaves and inflorescence might be transported to the seeds. Sub-cellular localization studies clearly indicated the involvement of AhAI signal peptide in extracellular secretion. Full length rAhAI showed differential inhibition against α-amylases from human, insects, fungi and bacteria. Particularly, α-amylases from Helicoverpa armigera (Lepidoptera) were not inhibited by AhAI while Tribolium castaneum and Callosobruchus chinensis (Coleoptera) α-amylases were completely inhibited. Molecular docking of AhAI revealed tighter interactions with active site residues of T. castaneum α-amylase compared to C. chinensis α-amylase, which could be the rationale behind the disparity in their IC50. Normal growth, development and adult emergence of C. chinensis were hampered after feeding on rAhAI. Altogether, the ability of AhAI to affect the growth of C. chinensis demonstrated its potential as an efficient bio-control agent, especially against stored grain pests.  相似文献   

14.
Shan D  Zhao M L  Han B  Han G D 《农业工程》2006,26(10):3175-3182
The Stipa grandis steppe in the Inner Mongolia Autonomous Region occupies an area of 2798081 hm2. On the basis of the genetic variation, it was found that its adaptability to the environmental conditions under grazing pressure was significant. Using the Inter-Simple Sequence Repeat (ISSR) procedure, the changes to the genetic diversity of the Stipa grandis population under different grazing pressures were observed. Plant samples were collected from a series of grazing gradients of the Stipa grandis steppe in Dalinuoer National Nature Reserve in the Inner Mongolia (located at 116°38′–116°41′E and 43°25′–43°27′N.), which has the following vegetation types in abundance: Leymus chinensis is the constructive species; the dominant species include Stipa grandis, Cleistogenes squarrosa, and Artemisia frigida; the companion species is Potentilla acaulis and others. According to the grazing pressure, the following four grazing gradients were identified from the dwellings of the herdsmen to the enclosure site: (1) no grazing (CK enclosure site); (2) light grazing (LG); (3) moderate grazing (MG); (4) heavy grazing (HG). Young leaves of each Stipa grandis were collected during the growing season. The results showed that the Stipa grandis showed abundant genetic diversity despite the fact that certain polymorphic loci were lost; at the same time, new polymorphic loci emerged when grazing pressure increased; a total of 10 primers were used, and 74 bands were produced in total, of which 65 bands were polymorphic; the total percentage of polymorphism was 89%; the percentage of polymorphic loci of the Stipa grandis population decreased with the increase of grazing pressure; the percentage of polymorphic loci was 62.2% in the no-grazing (CK) population, 64.9% in the light-grazing (LG) population, 58.1% in the moderate-grazing (MG) population, and 56.8% in the heavy-grazing (HG) population; the genetic diversity of the population in the descending order using the Shannon's information index is as follows: (1) light grazing (0.3486); (2) no grazing (0.3339); (3) moderate grazing (0.3249); (4) heavy grazing (0.2735) with the same distributional pattern as the Nei's genetic diversity index. The test showed the following: As the grazing pressures increased, the change of genetic diversity decreased; the genetic differentiation coefficient among the population (Gst) was 0.1984, which showed the presence of small partial genetic diversity (19.8%) among populations; gene flow (Nm*) between primers varied from 0.9806 to 3.4463, and the mean gene flow (Nm*) was 2.0202; the UPGMA cluster figure that was constructed on the basis of the genetic distance matrix showed four populations that became genetically closer at each step: (1) The first group was the moderate-grazing (MG) population and the heavy- grazing (HG) population; (2) The second group consisted of the no-grazing (CK) population and the light-grazing (LG) population; (3) The two groups gathered together.  相似文献   

15.
16.
Four plant species, Elymus mollis Trin., Carex kobomugi Ohwi, Glehnia littoralis F. Schmidt ex Miq., and Vitex rotundifolia L.f., are dominant perennial species in coastal sand dunes of Korea. We examined a physiological adaptation of these species by measurements of diurnal variation in photosynthesis and chlorophyll (Chl) fluorescence and solute patterns in leaves during one season (June), which is favorable for plant growth of all four species. All four species adopted different strategies in order to utilize radiation and to maintain water status under a fluctuating microclimate. Although the lowest water contents among four plant species was found, E. mollis with a high Chl and K+ content showed better photosynthetic performance, with high stomatal conductance (g s), net photosynthetic rate (P N), instantaneous carboxylation efficiency (CE), and water-use efficiency. Midday depression of P N in E. mollis and G. littoralis, without a reduction of gs, was associated with a reduction in CE and maximum photochemical efficiency of PSII, indicating nonstomatal limitation. Photosynthesis depression in both C. kobomugi and V. rotundifolia, with relatively low g s values, could be attributed to both stomatal and nonstomatal limitations. The high storage capacity for inorganic ions in E. molli, C. kobomugi, and G. littoralis may play an efficient role in regulating photosynthesis and maintaining leaf water status through stomatal control, and can also play an important role in osmotic adjustment.  相似文献   

17.
18.
Species composition and photosynthetic characteristics of dominant species of ungrazed plot (UG), overgrazed plot (OG), and restored grazed plot (RG) were determined in the Xilin River Basin, Inner Mongolia, China. Both heavily grazing and restoration significantly affected the composition of different species and life forms. Leymus chinensis, Stipa grandis, and Cleistogenes polyphylla, three dominant perennial grasses in UG plot, contributed 58.9 % aboveground biomass to that of whole community, and showed higher net photosynthetic rate (P N), transpiration rate (E), and intrinsic water-use efficiency (WUE). In OG plot, relative biomass of L. chinensis and S. grandis significantly decreased, while relative biomass of three shrubs/sub-shrubs, Caragana microphylla, Artemisia frigida, and Kochia prostrata, obviously increased. Heavy grazing significantly decreased P N, E, and WUE of L. chinensis and S. grandis, while shrubs/sub-shrubs showed significantly higher photosynthetic activity and WUE than the grasses. After 18-year restoration, photosynthetic activities of L. chinensis and S. grandis were significantly higher than those in the OG plot. The proportion of L. chinensis, S. grandis, and C. microphylla significantly increased, and relative biomass of C. polyphylla, A. frigida, and K. prostrata markedly declined in RG plot. We found close relationships between physiological properties of species and their competitive advantage in different land use types. Higher photosynthetic capability means more contribution to total biomass. The variations in physiological characteristics of plants could partly explain the changes in species composition during degrading and restoring processes of Inner Mongolia typical steppes.  相似文献   

19.
Most endangered plant species in a fragmented forest behave as a unique source population, with a high dependence on frugivorous birds for recruitment and persistence. In this study, we combined field data of dispersal behavior of birds and GIS information of patch attributes to estimate how frugivorous birds could affect the effective dispersal pattern of Chinese yew (Taxus chinensis) in a fragmented and disturbed forest. Nine bird species were observed to visit T. chinensis trees, with Urocissa erythrorhyncha, Zoothera dauma and Picus canus being the most common dispersers. After foraging, six disperser species exhibited different perching patterns. Three specialist species, P. canus, Turdus hortulorum, and Z. dauma stayed in the source patch, while three generalist species, U. erythrorhyncha, Hypsipetes mcclellandii, and H. castanonotus, could perch in bamboo patches and varied in movement ability due to body size. As a consequence of perching, dispersers significantly contributed to the seed bank, but indirectly affected seedling recruitment. Moreover, the recruitment of T. chinensis was also affected by patch attributes in a fragmented forest (distances to source patch, patch type, size). Our results highlighted the ability of unique source population regeneration of T. chinensis in a fragmented forest, with high dependence on both frugivorous birds and patch attributes, which should be considered in future planning for forest management and conservation.  相似文献   

20.
Pollen analyses of spider web samples, collected from the recently planted Tectona grandis (T. grandis, teak)-dominated tropical deciduous forest of Bhulsidih Village, Korba District (Chhattisgarh, central India), shed light on the relationship between the extant vegetation and pollen rain. The study revealed the dominance of pollen of herbs and trees, whereas shrubs, fern spores and algal remains are meagre. Among the tree taxa, Sapotaceae, Syzygium, Holoptelea, Lannea coromandelica, Shorea robusta and Grewia are dominating with moderate to low and intermittent presence of Madhuca indica, Terminalia, Mitragyna, Schleichera, Anacardiaceae, Diospyros, Emblica officinalis and Flacourtia. However, the rest of the forest constituents are either not represented at all despite their presence in the floristics, which could be attributed to their low pollen productivity owing to entomophily as well as their poor pollen preservation pattern. On the other hand, the ground vegetation is represented by the very high frequency of grasses (Poaceae) along with Tubuliflorae, Chenopodiaceae/Amaranthaceae and Cerealia, however, Artemisia, Xanthium, Malvaceae, Caryophyllaceae and Justicia in moderate to lower values. Ferns, which occur abundantly along the adjoining stream banks, are marked by the sporadic retrieval of trilete spores that could be ascribed to the prevailing damp condition around the sampling provenance. The study, in addition to understanding the pollen–vegetation relationship, could also be helpful in aerobiological study, especially in assessing the allergenicity of various pollen grains/spores in the area of investigation, causing bronchial asthma, hay fever (allergic rhinitis/pollinosis), naso-bronchial allergy and other respiratory disorders along with conjunctivitis, contact dermatitis, eczema, food allergies and other health disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号