首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Choi JH  Shin YL  Kim GH  Seo EJ  Kim Y  Park IS  Yoo HW 《Hormone research》2005,63(6):294-299
BACKGROUND: Endocrine abnormalities, including hypocalcemia, thyroid dysfunction, and short stature, are associated with chromosome 22q11.2 microdeletion syndrome. This study was undertaken to examine the frequencies and clinical features of endocrine abnormalities in patients with 22q11.2 microdeletion syndrome. METHODS: We analyzed 61 patients with 22q11.2 microdeletion syndrome diagnosed based on the verification of microdeletion by fluorescent in situ hybridization (FISH) using a probe of the DiGeorge syndrome critical region (TUPLE1) at 22q11.2 and a control probe, ARSA at 22q13. Serum total calcium, phosphorus, and intact parathyroid hormone (PTH) levels were measured, thyroid function test was performed, and serum IGF-1 and IGFBP-3 levels were also estimated. Height and weight of patients were compared with individual chronological ages. RESULTS: Hypocalcemia was found in 20 patients (32.8%), and overt hypoparathyroidism in 8 (13.1%). Two patients (3.3%) showed autoimmune thyroid diseases, 1 each with Graves' disease and Hashimoto thyroiditis. Ten patients (16.4%) were below the third percentile in height, but the serum IGF-1 level was normal in 9 out of these 10 patients. CONCLUSION: Our findings show that patients with chromosome 22q11.2 microdeletion syndrome present with variable endocrine manifestations and variable clinical phenotypes. In addition to FISH analysis, careful endocrine evaluations are required in patients with this microdeletion syndrome, particularly for those with hypoparathyroidism or thyroid dysfunction.  相似文献   

2.
We report a 6-year-old patient with hemophilia A, who also exhibited clinical features typical of 22q11.2 deletion syndrome (22qDS). The specific traits were mild mental retardation, speech delay, hypernasal speech, deficits in voice quality and articulation, narrow palpebral fissures, broad and depressed nasal root, high-arched palate, microstomia, and overfolded ears. The patient had no associated congenital cardiac or palatal malformations. It can be particularly difficult to identify this syndrome in newborns and infants without congenital heart defects. This case underlines that microdeletion of chromosome 22q11.2 should be considered in any patient who exhibits typical clinical features of 22qDS, regardless of whether they have another single-gene disorder.  相似文献   

3.
Microdeletions within chromosome 22q11.2 cause a variable phenotype, including DiGeorge syndrome (DGS) and velocardiofacial syndrome (VCFS). About 97% of patients with DGS/VCFS have either a common recurrent ~3 Mb deletion or a smaller, less common, ~1.5 Mb nested deletion. Both deletions apparently occur as a result of homologous recombination between nonallelic flanking low-copy repeat (LCR) sequences located in 22q11.2. Interestingly, although eight different LCRs are located in proximal 22q, only a few cases of atypical deletions utilizing alternative LCRs have been described. Using array-based comparative genomic hybridization (CGH) analysis, we have detected six unrelated cases of deletions that are within 22q11.2 and are located distal to the ~3 Mb common deletion region. Further analyses revealed that the rearrangements had clustered breakpoints and either a ~1.4 Mb or ~2.1 Mb recurrent deletion flanked proximally by LCR22-4 and distally by either LCR22-5 or LCR22-6, respectively. Parental fluorescence in situ hybridization (FISH) analyses revealed that none of the available parents (11 out of 12 were available) had the deletion, indicating de novo events. All patients presented with characteristic facial dysmorphic features. A history of prematurity, prenatal and postnatal growth delay, developmental delay, and mild skeletal abnormalities was prevalent among the patients. Two patients were found to have a cardiovascular malformation, one had truncus arteriosus, and another had a bicuspid aortic valve. A single patient had a cleft palate. We conclude that distal deletions of chromosome 22q11.2 between LCR22-4 and LCR22-6, although they share some characteristic features with DGS/VCFS, represent a novel genomic disorder distinct genomically and clinically from the well-known DGS/VCF deletion syndromes.  相似文献   

4.
5.
Velocardiofacial and DiGeorge syndromes, also known as 22q11.2 deletion syndrome (22q11DS), are congenital-anomaly disorders caused by a de novo hemizygous 22q11.2 deletion mediated by meiotic nonallelic homologous recombination events between low-copy repeats, also known as segmental duplications. Although previous studies exist, each was of small size, and it remains to be determined whether there are parent-of-origin biases for the de novo 22q11.2 deletion. To address this question, we genotyped a total of 389 DNA samples from 22q11DS-affected families. A total of 219 (56%) individuals with 22q11DS had maternal origin and 170 (44%) had paternal origin of the de novo deletion, which represents a statistically significant bias for maternal origin (p = 0.0151). Combined with many smaller, previous studies, 465 (57%) individuals had maternal origin and 345 (43%) had paternal origin, amounting to a ratio of 1.35 or a 35% increase in maternal compared to paternal origin (p = 0.000028). Among 1,892 probands with the de novo 22q11.2 deletion, the average maternal age at time of conception was 29.5, and this is similar to data for the general population in individual countries. Of interest, the female recombination rate in the 22q11.2 region was about 1.6–1.7 times greater than that for males, suggesting that for this region in the genome, enhanced meiotic recombination rates, as well as other as-of-yet undefined 22q11.2-specific features, could be responsible for the observed excess in maternal origin.  相似文献   

6.
BACKGROUND: 22q11 deletion syndrome (22q11DS) is characterized by conotruncal cardiac defects and hypoplasia of parathyroid glands and thymus, which result in variable hypoparathyroidism (HPT) and immune deficiency. METHODS: To study the course of HPT and the spectrum of other associated manifestations we evaluated all patients with 22q11DS, confirmed by fluorescence in situ hybridization, and HPT who were under follow-up at the Calcium-bone clinic, The Hospital for Sick Children, Toronto. Patients were clinically assessed and their hospital records were reviewed. RESULTS: Eighteen patients were included. At follow-up assessment at median age of 7.3 years HPT was judged complete in 11 (61%) and partial in 7 patients (39%). Patients with complete HPT presented with hypocalcemia later (median age at diagnosis 2.4 vs. 0.0 years) and more often with a hypocalcemic seizure than patients with partial HPT (73 vs. 29%). The spectrum of other associated manifestations did not differ between the groups. CONCLUSIONS: HPT in patients with 22q11DS is often partial. Many of the patients present with a hypocalcemic seizure which is predictive of complete HPT. Patients with complete and partial HPT do not differ in respect to their other associated features. Patients with features of 22q11DS should be actively screened for hypocalcemia to prevent development of symptomatic hypocalcemia.  相似文献   

7.
We present a mother and her son, both carrying a deletion of chromosome 22q.11.2. They manifest clinical heterogeneity. The mother has schizophrenia, an IQ of 70. Tetralogy of Fallot, a hypernasal voice, but does not have the characteristic facies. Her son has mild psychomotor developmental delay. Tetralogy of Fallot and mild facial features characteristic of VCFS.  相似文献   

8.
DiGeorge syndrome in humans is charaterized by immunodeficiency, heart defects, mental retardation and facial dysmorphism; cytogenetic analysis has shown that deletions at 22q11 occur in approximately 25% of cases. To generate DNA markers from this region, we have microdissected and microcloned band q11 of human Chromosome (Chr) 22. Nineteen thousand clones were obtained from material dissected from 20 chromosome fragments. Seventeen of 61 clones analyzed (28%) were repetitive, 27 (44%) gave no signal, and 17 (28%) detected single copy sequences of which ten mapped to Chr 22. Two of these were found to be deleted in patients with DiGeorge syndrome and either monosomy for 22q11-pter or visible interstitial deletions of 22q11. These two markers are also hemizygous in patients with no visible chromosomal abnormality, demonstrating that submicroscopic deletions are common in DiGeorge syndrome patients.  相似文献   

9.
DiGeorge syndrome (DGS), a developmental field defect of the third and fourth pharyngeal pouches, is characterized by aplasia or hypoplasia of the thymus and parathyroid glands and by conotruncal cardiac malformations. Cytogenetic studies support the presence of a DGS critical region in band 22q11. In the present study, we report the results of clinical, cytogenetic, and molecular studies of 14 patients with DGS. Chromosome analysis, utilizing high-resolution banding techniques, detected interstitial deletions in five probands and was inconclusive for a deletion in three probands. The remaining six patients had normal karyotypes. In contrast, molecular analysis detected DNA deletions in all 14 probands. Two of 10 loci tested, D22S75 and D22S259, are deleted in all 14 patients. A third locus, D22S66, is deleted in the eight DGS probands tested. Physical mapping using somatic cell hybrids places D22S66 between D22S75 and D22S259, suggesting that it should be deleted in the remaining six cases. Parent-of-origin studies were performed in five families. Four probands failed to inherit a maternal allele, and one failed to inherit a paternal allele. On the basis of these families, and of six maternally and five paternally derived unbalanced-translocation DGS probands in the literature, parent of origin or imprinting does not appear to play an important role in the pathogenesis of DGS. Deletion of the same three loci in all 14 DGS probands begins to delineate the region of chromosome 22 critical for DGS and confirms the hypothesis that submicroscopic deletions of 22q11 are etiologic in the vast majority of cases.  相似文献   

10.
Hemizygous microdeletion at the chromosomal locus 22q11.2 is a copy number variation with strong genetic linkage to schizophrenia and related disorders. This association, along with its phenotypic overlap with the 22q11.2 microdeletion syndrome, has motivated the establishment of Df[h22q11]/+ mice, in which the human 22q11.2 orthologous region is deleted. Previous investigations using this model showed the presence of reduced prepulse inhibition (PPI) of the acoustic startle reflex, a form of sensorimotor gating known to be impaired in a number of psychiatric disorders. Concomitantly to reduced PPI, however, Df[h22q11]/+ mice are also characterized by a robust increase in baseline startle reactivity, which may complicate or confound the interpretation of PPI. Therefore, the present study re‐examined the relationship between acoustic startle reactivity and PPI in this mouse model. We found that while PPI is reduced in Df[h22q11]/+ mice when using its relative indexation (ie, % PPI), this deficit is no longer apparent when using the absolute quantification, that is, the direct comparison between pulse‐alone and prepulse‐plus‐pulse conditions with successively increasing prepulse intensities. We further identified marked negative correlations between % PPI and startle reactivity in Df[h22q11]/+ mice. Moreover, when stratifying Df[h22q11]/+ mice into subgroups displaying low‐ and high‐startle reactivity, only the latter subgroup displayed a significant reduction in % PPI. Collectively, our data suggest that alterations in baseline startle reactivity can confound the outcomes and interpretation of PPI in this mouse model of the human 22q11.2 microdeletion syndrome.  相似文献   

11.
In a group of 140 patients with typical phenotype, the 22q11.2 microdeletion was detected in 43 patients (32%) using FISH and MLPA methods. There were no deletions of other chromosomal loci causing to phenotypes similar to the 22q11.2 deletion syndrome (22q11.2DS). Sequencing of the TBX1 gene did not detect any mutations, except for some common neutral polymorphisms. For the first time in the Russian Federation, the diagnostic efficiency of 22q11.2DS appeared to be 32%, as a result of the application of a combination of genetic approaches for a large group of patients with suspected 22q11.2DS.  相似文献   

12.
This review of the diagnosis, causes, prevention and treatment of hypocalcemia emphasizes the high incidence of this biological alteration in patients with 22q11 microdeletion. It also points out its large spectrum of presentation, from cases where the most prominent feature of the syndrome is hypocalcemia with hypoparathyroidism, to cases with asymptomatic, latent or late-onset hypocalcemia. Hence, the advice to perform genetic analysis of the 22q11 region in patients with late-onset or recurrent hypoparathyroidism and to systematically include serum calcium in the survey of patients with known 22q11 microdeletion, especially during infancy, adolescence and pregnancy and especially during cardiac surgery or sepsis.  相似文献   

13.
14.
It is well established that DiGeorge syndrome (DGS) may be associated with monosomy of 22q11-pter. More recently, DNA probes have been used to detect hemizygosity for this region in patients with no visible karyotypic abnormality. However, DGS has also been described in cases where the cytogenetic abnormality does not involve 22q11; for instance, four cases of 10p- have been reported. In this study we have prospectively analyzed patients, by using DNA markers from 22q11, to assess the frequency of 22q11 rearrangements in DGS. Twenty-one of 22 cases had demonstrable hemizygosity for 22q11. Cytogenetic analysis had identified interstitial deletion in 6 of 16 cases tested; in 6 other cases no karyotype was available. When these results are combined with those from our previous studies, 33 of 35 DGS patients had chromosome 22q11 deletions detectable by DNA probes.  相似文献   

15.
22q11.2 microduplications of a 3-Mb region surrounded by low-copy repeats should be, theoretically, as frequent as the deletions of this region; however, few microduplications have been reported. We show that the phenotype of these patients with microduplications is extremely diverse, ranging from normal to behavioral abnormalities to multiple defects, only some of which are reminiscent of the 22q11.2 deletion syndrome. This diversity will make ascertainment difficult and will necessitate a rapid-screening method. We demonstrate the utility of four different screening methods. Although all the screening techniques give unique information, the efficiency of real-time polymerase chain reaction allowed the discovery of two 22q11.2 microduplications in a series of 275 females who tested negative for fragile X syndrome, thus widening the phenotypic diversity. Ascertainment of the fragile X-negative cohort was twice that of the cohort screened for the 22q11.2 deletion. We also report the first patient with a 22q11.2 triplication and show that this patient's mother carries a 22q11.2 microduplication. We strongly recommend that other family members of patients with 22q11.2 microduplications also be tested, since we found several phenotypically normal parents who were carriers of the chromosomal abnormality.  相似文献   

16.
Chromosome 22q11.2 deletion syndrome, one of the most common human genomic syndromes, has highly heterogeneous clinical presentation. Patients usually harbor a 1.5 to 3 Mb hemizygous deletion at chromosome 22q11.2, resulting in pathognomic TBX1, CRKL and/or MAPK1 haploinsufficiency. However, there are some individuals with clinical features resembling the syndrome who are eventually diagnosed with genomic disorders affecting other chromosomal regions. The objective of this study was to evaluate the additive value of high-resolution array-CGH testing in the cohort of 41 patients with clinical features of 22q11.2 deletion syndrome and negative results of standard cytogenetic diagnostic testing (karyotype and FISH for 22q11.2 locus). Array-CGH analysis revealed no aberrations at chromosomes 22 or 10 allegedly related to the syndrome. Five (12.2 %) patients were found to have other genomic imbalances, namely 17q21.31 microdeletion syndrome (MIM#610443), 1p36 deletion syndrome (MIM#607872), NF1 microduplication syndrome (MIM#613675), chromosome 6pter-p24 deletion syndrome (MIM#612582) and a novel interstitial deletion at 3q26.31 of 0.65 Mb encompassing a dosage-dependent gene NAALADL2. Our study demonstrates that the implementation of array-CGH into the panel of classic diagnostic procedures adds significantly to their efficacy. It allows for detection of constitutional genomic imbalances in 12 % of subjects with negative result of karyotype and FISH targeted for 22q11.2 region. Moreover, if used as first-tier genetic test, the method would provide immediate diagnosis in ~40 % phenotypic 22q11.2 deletion subjects.  相似文献   

17.
We describe an uncommon association of deletion 22q11 in a patient with Klinefelter syndrome. Even though congenital heart defects (CHD) are not associated with Klinefelter syndrome, further investigation of this patient with patent ductus arteriosus showed a microdeletion of chromosome 22q11.2. While this finding may be coincidental, it is important to further evaluate patients when the clinical features are suggestive of a secondary abnormality.  相似文献   

18.
We report the case of a child with 22q11 microdeletion who presented with abdominal lymphatic dysplasia resulting in exsudative enteropathy. This primitive and localized lymphatic malformation is consistent with the vascular theory in the velocardiofacial syndrome.  相似文献   

19.
Congenital heart defects (CHDs) are found in 75% of patients with DiGeorge/velocardiofacial (DG/VCF) syndromes with deletion 22q11.2 (del22q11). The purpose of this study was to analyse clinical features and, particularly, types and subtypes of CHDs associated with del22q11 in our series of patients and in those reported in other studies. All patients with CHD and del22q11 present major or minor clinical features of DG/VCF syndrome. Many children, particularly in the neonatal age, have only a "subtle" phenotype, so that accurate phenotypical evaluation is mandatory for selecting patients with CHD at risk for del22q11. Conotruncal cardiac defects are the most common CHDs in patients with DG/VCF syndrome, but other defects can also occur. Peculiar anatomical subtypes are found in patients with del22q11. They are frequently complex, consisting in malalignment with deficiency of the infundibular septum and anomalies of the aortic arch and pulmonary arteries.  相似文献   

20.
The 22q11 deletion syndrome (22q11DS) is a developmental syndrome comprising of heart, palate, thymus and parathyroid glands defects. Individuals with 22q11DS usually carry a 1.5- to 3-Mb heterozygous deletion on chromosome 22q11.2. However, there are many patients with features of 22q11DS without a known cause from conventional karyotype and FISH analysis. Six patients with features of 22q11DS, a normal chromosomal and FISH 22q11 analysis, were selected for investigation by microarray genomic comparative hybridisation (array CGH). Array-CGH is a powerful technology enabling detection of submicroscopic chromosome duplications and deletions by comparing a differentially labelled test sample to a control. The samples are co-hybridised to a microarray containing genomic clones and the resulting ratio of fluorescence intensities on each array element is proportional to the DNA copy number difference. No chromosomal changes were detected by hybridisation to a high resolution array representing chromosome 22q. However, one patient was found to have a 6-Mb deletion on 5q11.2 detected by a whole genome 1-Mb array. This deletion was confirmed with fluorescence in-situ hybridisation (FISH) and microsatellite marker analysis. It is the first deletion described in this region. The patient had tetralogy of Fallot, a bifid uvula and velopharyngeal insufficiency, short stature, learning and behavioural difficulties. This case shows the increased sensitivity of array CGH over detailed karyotype analysis for detection of chromosomal changes. It is anticipated that array CGH will improve the clinicians capacity to diagnose congenital syndromes with an unknown aetiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号