首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heparin depresses the second-order rate constant ka for the inhibition of neutrophil elastase by alpha 1-proteinase inhibitor. High molecular mass heparin decreases ka from 1.3 x 10(7) M-1 s-1 to a limit of 4.6 x 10(4) M-1 s-1. Low molecular mass heparin is about 7-fold less effective. Dermatan sulfate and chondroitin sulfate are less efficient. Heparin preparations used in clinical care also strongly depress ka when tested at concentrations corresponding to their clinical efficacy. Heparin also decreases the ka for the elastase/eglin c and the cathepsin G/alpha 1-proteinase inhibitor systems but not that for the alpha 1-proteinase inhibitor/pancreatic elastase or trypsin pairs. These results, together with Sepharose-heparin binding studies, indicate that the ka-depressing effect of the polymer is related to its ability to form a tight complex with elastase but not with alpha 1-proteinase inhibitor. One mol of high molecular mass heparin binds 3 mol of neutrophil elastase with a Kd of 3.3 nM. Low molecular mass heparin binds elastase with a 1:1 stoichiometry and a Kd of 89 nM. For both heparins ka is lowest when elastase is fully saturated with heparin. From this we conclude that heparin decreases ka, because the heparin-elastase complex is able to slowly react with alpha 1-proteinase inhibitor and not because the inhibitor slowly dissociates the heparin-elastase complex. These findings may have important pathophysiological bearing.  相似文献   

2.
B Faller  Y Mely  D Gerard  J G Bieth 《Biochemistry》1992,31(35):8285-8290
Low molecular mass heparin (5.1 kDa) forms a tight complex with mucus proteinase inhibitor, the physiologic neutrophil elastase inhibitor of the upper respiratory tract. This binding strongly enhances the intrinsic fluorescence of the inhibitor and the rate of neutrophil elastase inhibitor association. One mole of this heparin fragment binds 1 mol of inhibitor with a Kd of 50 nM. From the variation of Kd with ionic strength, it is inferred that (i) 85% of the heparin--inhibitor binding energy i due to electrostatic interactions, (ii) about seven ionic interactions are involved in heparin--inhibitor binding. strength, it is inferred that (i) 85% of the heparin--inhibitor binding energy is due to electrostatic interactions, (ii) about seven ionic interactions are involved in heparin--inhibitor binding. and (iii), about one-third of low quantum yield of Trp30, the single tryptophan residue of the inhibitor, blue-shifts its maximum emission wavelength by 6 nm, decreases the acrylamide quenching rate constant by a factor of 4, and increases the mean intensity weighted lifetime by a factor of 2.5. These important spectroscopic changes evidence a heparin--induced conformational change of the inhibitor which buries Trp30 in a very hydrophobic environment. Heparin accelerates the inhibition of elastase in a concentration-dependent manner. When both enzyme and inhibitor are saturated by the polymer, the second-order association rate constant is 7.7 x 10(7) M-1 s-1, a value that is 27-fold higher than that measured with the free partners. This finding may have important physiologic and therapeutic bearing.  相似文献   

3.
Human plasma alpha1-antitrypsin inhibits human pancreatic trypsin, chymotrypsin and elastase, which are massively released into the blood stream during acute pancreatitis. To examine whether the plasma proteins of individuals with genetic deficiency of alpha1-antitrypsin are protected against the deleterious action of these enzymes by other inhibitors, we have tested their inhibition by alpha2-antiplasmin and antithrombin. We have determined the inhibition rate constants kass and calculated d(t), the in vivo inhibition time. Surprisingly, trypsin is inhibited faster by alpha2-antiplasmin [kass=2.5 x 10(6) M(-1)S(-1), d(t)=2.3 s] and antithrombin [kass=1.7 x 10(5) M(-1)s(-1), d(t)=5.8 s] than by alpha1-antitrypsin [d(t)=17 s or 116 s in alpha1-antitrypsin-sufficient or alpha1-antitrypsin-deficient individuals, respectively]. Low molecular weight heparin accelerates the inhibition of trypsin by antithrombin by a factor of 16 [d(t)=0.36 s]. Antithrombin and alpha2-antiplasmin are not physiological inhibitors of chymotrypsin and elastase. These enzymes are, however, physiologically inhibited by alpha1-antitrypsin and alpha1-antichymotrypsin even in alpha1-antitrypsin-deficient individuals. We conclude that (i) low molecular weight heparin may be helpful in the management of acute pancreatitis, and (ii) genetically determined alpha1-antitrypsin deficiency probably does not lead to a significantly increased risk of plasma protein degradation during this disease.  相似文献   

4.
C Boudier  M Cadène  J G Bieth 《Biochemistry》1999,38(26):8451-8457
Oxidation of mucus proteinase inhibitor (MPI) transforms Met73, the P'1 residue of its active center into methionine sulfoxide and lowers its affinity for neutrophil elastase [Boudier, C., and Bieth, J. G. (1994) Biochem. J. 303, 61-68]. Here, we show that the oxidized inhibitor has also a decreased affinity for neutrophil cathepsin G and pancreatic chymotrypsin. The Ki of the oxidized MPI-cathepsin G complex (1.2 microM) is probably too high to be compatible with significant inhibition of cathepsin G in inflammatory lung secretions. Stopped-flow kinetics shows that, within the inhibitor concentration range used, the mechanism of inhibition of cathepsin G and chymotrypsin by oxidized MPI is consistent with a one-step reaction, [equation in text] whereas the inhibition of elastase takes place in two steps, [equation in text]. Heparin, which accelerates the inhibition of the three proteinases by native MPI, also favors their interaction with oxidized MPI. Flow calorimetry shows that heparin binds oxidized MPI with Kd, Delta H degrees, and Delta S degrees values close to those reported for native MPI. In the presence of heparin, oxidized MPI inhibits cathepsin G via a two-step reaction characterized by Ki = 0.22 microM, k2 = 0.1 s-1, k-2 = 0.023 s-1, and Ki = 42 nM. Under these conditions, in vivo inhibition of cathepsin G is again possible. Heparin also improves the inhibition of chymotrypsin and elastase by oxidized MPI by increasing their kass or k2/Ki and decreasing their Ki. Our data suggest that oxidation of MPI during chronic bronchitis may lead to cathepsin G-mediated lung tissue degradation and that heparin may be a useful adjuvant of MPI-based therapy of acute lung inflammation in cystic fibrosis.  相似文献   

5.
Heparin affin regulatory peptide (HARP) is a polypeptide belonging to a family of heparin binding growth/differentiation factors. The high affinity of HARP for heparin suggests that this secreted polypeptide should also bind to heparan sulfate proteoglycans derived from cell surface and extracellular matrix defined as extracellular compartments. Using Western blot analysis, we detected HARP bound to heparan sulfate proteoglycans in the extracellular compartments of MDA-MB 231 and MC 3T3-E1 as well as NIH3T3 cells overexpressing HARP protein. Heparitinase treatment of BEL cells inhibited HARP-induced cell proliferation, and the biological activity of HARP in this system was restored by the addition of heparin. We report that heparan sulfate, dermatan sulfate, and to a lesser extent, chondroitin sulfate A, displaced HARP bound to the extracellular compartment. Binding analyses with a biosensor showed that HARP bound heparin with fast association and dissociation kinetics (kass = 1.6 x 10(6) M-1 s-1; kdiss = 0.02 s-1), yielding a Kd value of 13 nM; the interaction between HARP and dermatan sulfate was characterized by slower association kinetics (kass = 0.68 x 10(6) M-1 s-1) and a lower affinity (Kd = 51 nM). Exogenous heparin, heparan sulfate, and dermatan sulfate potentiated the growth-stimulatory activity of HARP, suggesting that corresponding proteoglycans could be involved in the regulation of the mitogenic activity of HARP.  相似文献   

6.
This paper describes a non-oxidative impairment of the biological function of alpha 1-proteinase inhibitor by cigarette smoke. Aqueous solutions of cigarette smoke are able to decrease the rate constant kass for the inhibition of porcine pancreatic elastase by human plasma alpha 1-proteinase inhibitor. The value of kass decreases linearly with the concentration of smoke (from 2.2 X 10(5) M-1 s-1 to 0.6 X 10(5) M-1 s-1). This effect is not due to an oxidation of the inhibitor. When pancreatic elastase is reacted with elastin in the presence of alpha 1-proteinase inhibitor and cigarette smoke solution, elastolysis occurs at a rate nearly identical to that observed in the absence of inhibitor. This effect is due to a smoke-induced decrease in kass. These observations may serve as a model of biological regulation of proteolysis via a change in the rate constant for a proteinase-proteinase inhibitor association. The influence of cigarette smoke on the inhibition of human neutrophil elastase by alpha 1-proteinase inhibitor could not be studied in detail because the enzyme precipitates in the presence of concentrated smoke solution.  相似文献   

7.
Three classes of epidermal growth factor receptors on HeLa cells   总被引:5,自引:0,他引:5  
The kinetics of 125I-labeled epidermal growth factor (EGF) binding to receptors on HeLa cells were investigated. Scatchard analysis revealed the presence of 22,000 high affinity receptors (Kd = 0.12 nM) and 25,000 low affinity receptors per cell (Kd = 9.2 nM). The kinetic analysis of EGF binding to high affinity receptors was performed with cells pretreated with the monoclonal antibody 2E9, which prevents specifically EGF binding to low affinity receptors. The study of EGF binding to only low affinity receptors was performed with cells pretreated with the phorbol ester phorbol 12-myristate 13-acetate, which induces a conversion of high affinity receptors to low affinity receptors. This kinetic analysis of EGF binding to HeLa cells revealed the presence of three types of receptors. High affinity receptors were found to consist of one receptor type (type I) with a kinetic association constant (kass) of 6.2 x 10(5) M-1.s-1 and a kinetic dissociation constant (kdis) of 3.5 x 10(-4) s-1. The low affinity receptors were found to consist of two kinetic distinguishable sites: type II or fast sites with kass = 3.3 x 10(6) M-1.s-1 and kdis = 8.1 x 10(-3) s-1 and the type III or slow sites with kass = 3.2 x 10(4) M-1.s-1 and kdis = 1.6 x 10(-4) s-1. The regulatory mechanism which may determine the EGF binding characteristics is discussed.  相似文献   

8.
Alignment of the heparin-activated serpins indicates the presence of two binding sites for heparin: a small high-affinity site on the D-helix corresponding in size to the minimal pentasaccharide heparin, and a longer contiguous low-affinity site extending to the reactive center pole of the molecule. Studies of the complexing of antithrombin and its variants with heparin fractions and with reactive center loop peptides including intermolecular loop-sheet polymers all support a 3-fold mechanism for the heparin activation of antithrombin. Binding to the pentasaccharide site induces a conformational change as measured by circular dichroism. Accompanying this, the reactive center becomes more accessible to proteolytic cleavage and there is a 100-fold increase in the kass for factor Xa but only a 10-fold increase for thrombin, to 6.4 x 10(4) M-1 s-1. To obtain a 100-fold increase in the kass for thrombin requires in addition a 4:1 molar ratio of disaccharide to neutralize the charge on the extended low-affinity site. Full activation requires longer heparin chains in order to stabilize the ternary complex between antithrombin and thrombin. Thus, addition of low-affinity but high molecular weight heparin in conjunction with pentasaccharide gives an overall kass of 2.7 x 10(6) M-1 s-1, close to that of maximal heparin activation.  相似文献   

9.
The molecular basis for binding of alpha-macroglobulin-proteinase complexes to the human two-chain 500/85-kDa (alpha/beta) alpha 2-macroglobulin (alpha 2M) receptor (alpha 2MR)/low density lipoprotein receptor-related protein was analyzed. Ligand blotting experiments showed that a 40-kDa protein, present in the affinity-purified alpha 2MR preparation, is bound to the alpha 2MR alpha-chain and released by heparin. Removal of the 40-kDa protein resulted in a 3-5-fold increase in binding of alpha 2M-trypsin. Nitrocellulose-immobilized pure two-chain alpha 2MR was incubated with human alpha 2M-trypsin, containing four identical subunits, and two monovalent ligands: rat alpha 1-inhibitor-3-chymotrypsin and the 18-kDa receptor binding fragment of the alpha 2M subunit. Binding of alpha 2M-trypsin to the alpha-chain of immobilized alpha 2MR was composed of a high (Kd = 40 pM at 4 degrees C) and a low (Kd = 2 nM) affinity component. alpha 1-Inhibitor-3-chymotrypsin bound to the same sites but with one component (Kd = 0.4 nM). Competition-inhibition experiments and dissociation experiments, using ligands with different valences, as well as experiments with alpha 2MR immobilized at different densities, led to the following model. The low (Kd = 2 nM) affinity of alpha 2M-proteinase is prevalent when only one of the four domains binds to alpha 2MR, i.e. when the receptor density is low or when neighboring receptors are occupied. The high (Kd = 40 pM) affinity is achieved by binding of at least two domains to adjacent receptors.  相似文献   

10.
Human neutrophil elastase has an extended hydrophobic substrate binding site which serves as a target for a number of hydrophobic inhibitors. We show here that the parinaric acids, fluorescent-conjugated tetraenoic fatty acids of plant origin, are inhibitors of neutrophil elastase. cis-Parinaric acid (cis-PA) interacts with the enzyme in two inhibitory modes. The high affinity interaction (Ki = 55 +/- 6 nM) results in partial noncompetitive inhibition of amidolytic activity, with 82% residual activity. A lower affinity interaction with cis-PA (Ki = 4 +/- 1 microM) results in competitive inhibition. trans-PA also acts as a high affinity partial noncompetitive inhibitor of elastase with a Ki equal to that for cis-PA but has no low affinity competitive inhibitory action. The endogenous fluorescence from the 3 tryptophan residues in elastase is partially quenched on binding cis- or trans-PA. Dependence of quenching of tryptophan fluorescence on PA concentration is consistent with binding to a single site with an apparent Kd of 26 +/- 3 nM, which may be equivalent to the high affinity partial noncompetitive inhibitory binding mode. Analysis of quenching according to the modified Forster theory of energy transfer developed by Snyder and Freire (Snyder, B., and Freire, E. (1982) Biophys. J. 40, 137-148) leads to an estimate of apparent closest indole-PA distance of 13 +/- 3 A. Fluorescence of either cis- or trans-PA is apparently unperturbed upon binding in the high affinity mode to elastase, but at micromolar cis-PA concentrations, binding to elastase results in a blue shift and 20% increase in intensity of PA emission, suggesting that the lower affinity competitive inhibitory binding mode of binding to elastase provides a hydrophobic environment for cis-PA.  相似文献   

11.
The effect of bovine thrombomodulin on the specificity of bovine thrombin   总被引:8,自引:0,他引:8  
Bovine lung thrombomodulin is purified and used to investigate the basis of the change in substrate specificity of bovine thrombin when bound to thrombomodulin. Bovine thrombomodulin is a single polypeptide having an apparent molecular weight of 84,000 and associates with thrombin with high affinity and rapid equilibrium, to act as a potent cofactor for protein C activation and antagonist of reactions of thrombin with fibrinogen, heparin cofactor 2, and hirudin. Bovine thrombomodulin inhibits the clotting activity of thrombin with Kd less than 2.5 nM. Kinetic analysis of the effect of bovine thrombomodulin on fibrinopeptide A hydrolysis by thrombin indicates competitive inhibition with Kis = 0.5 nM. The active site of thrombin is little perturbed by thrombomodulin, as tosyl-Gly-Pro-Arg-p-nitroanilide hydrolysis and inhibition by antithrombin III are unaffected. Insensitivity of the reaction with antithrombin III is likewise observed with thrombin bound to thrombomodulin on intact endothelium. Antithrombin III-heparin, human heparin cofactor 2, and hirudin inhibit thrombin-thrombomodulin more slowly than thrombin. These effects may arise from a decrease in Ki of the inhibitors for thrombin-thrombomodulin or from changes in the active site not detected by tosyl-Gly-Pro-Arg-p-nitroanilide or antithrombin III. Bovine prothrombin fragment 2 inhibits thrombin clotting activity (Kd less than 7.5 microM) and acts as a competitive inhibitor of protein C activation (Kis = 2.1 microM). The data are consistent with a mechanism whereby thrombomodulin alters thrombin specificity by either binding to or allosterically altering a site on thrombin distinct from the catalytic center required for binding or steric accommodation of fibrinogen, prothrombin fragment 2, heparin cofactor 2, and hirudin.  相似文献   

12.
High concentrations of salts dramatically affect the interaction of small ligands with HIV-1 protease. For instance, the Km and kcat values for Abz-Thr-Ile-Nle-p-nitro-Phe-Gln-Arg-NH2 (S) increased 120-fold and 3-fold, respectively, as the NaCl concentration in the assay decreased from 4.0 to 0.5 M. The Kd value for the competitive inhibitor amprenavir increased 12-fold over this concentration range of NaCl. The bimolecular rate constant for association of enzyme with amprenavir was independent of NaCl concentration, whereas the dissociation rate constant decreased with increasing NaCl concentration. Polyanionic polymers such as heparin or poly A substituted for NaCl. For example, the value of kcat/Km for S was 0.18 microM(-1) x s(-1) when the enzyme (<10 nM) was assayed in the standard buffer supplemented with 5 mM NaCl. If 0.01% poly A were included, the value of kcat/Km increased to 8.6 microM(-1) x s(-1). A DNA oligomer (23-mer) with an hexachlorofluoresceinyl moiety linked to the 5' end was studied as a model polyanionic polymer. The enzyme bound HF23 (Kd < 1 nM) with concomitant quenching of the hexachlorofluoresceinyl fluorescence. The stoichiometry for binding was 3 mol of enzyme per mol of oligomer. The hydrolytic activity of the enzyme with this oligomer was similar to that observed with poly A or high salt concentration when the molar ratio of oligomer to enzyme was greater than one. The results presented herein demonstrate that polyanionic polymers substitute for salts as effectors of HIV protease.  相似文献   

13.
The binding of human alpha-thrombin (IIa) to fibrin polymer (FnIIp) was studied in the presence and absence of a high affinity 20,300 Mr heparin (H) at pH 7.4, I 0.15, and 23 degrees C. In the absence of heparin, thrombin interacts with a high affinity class of binding sites on fibrin polymer with a dissociation constant of 301 +/- 36 nM in a manner which is independent of the enzyme active site. Studies of thrombin binding as a function of heparin and fibrin polymer concentrations imply that a ternary thrombin-fibrin polymer-heparin complex (IIa.FnIIp.H) is formed. Assembly of the ternary complex occurs randomly through the interactions of all three possible intermediate binary complexes; IIa.H, IIa.FnIIp, and FnIIp.H. Using an independently determined value of 280 +/- 35 nM for the FnIIp.H dissociation constant, global fits of the binding data yield a dissociation constant of 15 +/- 6 nM for the IIa.H interaction and 47 +/- 9 nM for the IIa.H intermediate binary complex interaction with FnIIp. These studies indicate that heparin enhances the binding of thrombin to fibrin polymer 6.4-fold with an overall dissociation constant for ternary complex formation of 705 nM2. The effect of heparin molecular weight on ternary complex formation has also been investigated. Heparins of molecular weights 11,200-20,300 behave similarly with respect to their influence on ternary complex formation, whereas heparins of lower molecular weight are less effective in promoting thrombin binding to fibrin polymer. This effect of heparin is also independent of whether it has high or low affinity for antithrombin III. The demonstration of the formation of a ternary IIa.FnIIp.H complex complements kinetic evidence indicating the formation of an analogous ternary complex with fibrin II monomer (Hogg, P. J., and Jackson, C. M. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 3619-3623). The possible implications of these findings for the in vivo distribution and actions of thrombin and the clinical efficacy of heparin are also discussed.  相似文献   

14.
Guanine nucleotides were observed to modify the binding of 125I-angiotensin II to rat hepatic plasma membrane receptors. GTP and its nonhydrolyzable analogues greatly increased the dissociation rate of bound 125I-angiotensin II and altered hormone binding to the receptor under equilibrium conditions. In the absence of GTP, 125I-angiotensin II labeled both high affinity sites (Kd1 = 0.46 nM, N1 = 650 fmol/mg) and low affinity sites (Kd2 = 4.1 nM, N2 = 1740 fmol/mg). In the presence of guanine nucleotides, the affinities of the two sites were unchanged, but the number of high affinity sites decreased markedly to 52 fmol/mg. In analogous experiments using the angiotensin II antagonist, 125I-sarcosine1,Ala8-angiotensin II (125I-saralasin), guanine nucleotides minimally affected the interaction of 125I-saralasin with its receptor, increasing the dissociation rate 1.9-fold and the Kd 1.4-fold. The guanine nucleotide inhibition of agonist binding required a cation such as Na+ or Mg2+, with a maximal effect occurring at about 1 mM Mg2+. In liver plasma membranes prepared in EDTA, angiotensin II inhibited basal and glucagon-stimulated adenylate cyclase activities by 30% and 10%, respectively. Angiotensin II also caused a 40% inhibition of glucagon-stimulated cyclic AMP accumulation in intact hepatocytes, with a half-maximal effect occurring at 1 nM. The inhibition by angiotensin II of adenylate cyclase in membranes and of cAMP levels in intact cells could be reversed by the antagonist sarcosine1,Ile8-angiotensin II. Vasopressin caused a smaller 26% inhibition of glucagon-stimulated cyclic AMP accumulation. The ability of angiotensin II to inhibit cyclic AMP synthesis may provide an explanation for the observed effects of guanine nucleotides on 125I-angiotensin II binding to plasma membranes.  相似文献   

15.
We assessed the participation of the three known heparin-binding domains of PFn (Hep I, Hep II, Hep III) in their interaction with heparin by making a quantitative comparison of the fluid-phase heparin affinities of PFn and PFn fragments under physiologic pH and ionic strength conditions. Using a fluorescence polarization binding assay that employed a PFn affinity-purified fluorescein-labeled heparin preparation, we found that greater than 98% of the total PFn heparin-binding sites exhibit a Kd in the 118-217 nM range. We also identified a minor (less than 2%) class of binding sites exhibiting very high affinity (Kd approximately 1 nM) in PFn and the carboxyl-terminal 190/170 and 150/136 kDa PFn fragments. This latter activity probably reflects multivalent inter- or intramolecular heparin-binding activity. Amino-terminal PFn fragments containing Hep I (72 and 29 kDa) exhibited low affinity for heparin under physiologic buffer conditions (Kd approximately 30,000 mM). PFn fragments (190/170 and 150/136 kDa) containing both the carboxyl-terminal Hep II and central Hep III domains retained most of the heparin-binding activity of native PFn (Kd = 278-492 nM). The isolated Hep II domain (33-kDa fragment) exhibited appreciable, but somewhat lower (2-5-fold), heparin affinity compared to the 190/170-kDa PFn fragment. Heparin binding to the 100-kDa PFn fragment containing Hep III was barely detectable (Kd greater than 30,000 nM). From these observations, we conclude that PFn contains only one major functional heparin-binding site per subunit, Hep II, that dominates the interaction between heparin and PFn.  相似文献   

16.
Longitudinal tubules and junctional sarcoplasmic reticulum (SR) were prepared from heart muscle microsomes by Ca2+-phosphate loading followed by sucrose density gradient centrifugation. The longitudinal SR had a high Ca2+ loading rate (0.93 +/- 0.08 mumol.mg-1.min) which was unchanged by addition of ruthenium red. Junctional SR had a low Ca2+ loading rate (0.16 +/- 0.02 mumol.mg-1.min) which was enhanced about 5-fold by ruthenium red. Junctional SR had feet structures observed by electron microscopy and a high molecular weight protein with Mr of 340,000, whereas longitudinal SR was essentially devoid of both. Thus, these subfractions have similar characteristics to longitudinal and junctional terminal cisternae of SR from fast twitch skeletal muscle. Ryanodine binding was localized to junctional cardiac SR as determined by [3H]ryanodine binding. Scatchard analysis of the binding data showed two types of binding (high affinity, Kd approximately 7.9 nM; low affinity, Kd approximately 1 microM), contrasting with skeletal junctional terminal cisternae where only one site with Kd of approximately 50 nM was observed. The ruthenium red enhancement of Ca2+ loading rate in junctional cardiac SR was blocked by pretreatment with low concentrations of ryanodine as reported for junctional terminal cisternae of skeletal muscle SR. The Ca2+ loading rate of junctional cardiac SR was enhanced by preincubation with high concentrations of ryanodine. The apparent inhibition constant (Ki approximately 7 nM) and stimulation constant (Km approximately 1.1 microM) for ryanodine on junctional SR corresponded to the Kd for high affinity binding (Kd approximately 7.9 nM) and low affinity binding (Kd approximately 1.1 microM), respectively. These results suggest that high affinity ryanodine binding locks the Ca2+ release channels in the open state and that low affinity binding closes the Ca2+ release channels of the junctional cardiac SR. The characteristics of the Ca2+ release channels of junctional cardiac SR appear to be similar to that of skeletal muscle SR, but the Ca2+ release channels of cardiac SR are more sensitive to ryanodine.  相似文献   

17.
Dog alpha 1-proteinase inhibitor (alpha 1-PI) was found to be an effective inhibitor of bovine chymotrypsin and also of porcine pancreatic elastase as in the case of human inhibitor. The dog inhibitor inactivated both proteinases at a molar ratio of 1:1. However, compared to the human inhibitor, dog alpha 1-PI was a relatively poor inhibitor of bovine trypsin. The association rate constants (kass) of the interactions of dog alpha 1-PI with bovine chymotrypsin and with porcine elastase were determined to be 6.9 +/- 0.3 X 10(6) M-1 s-1 and 6.4 +/- 0.1 X 10(5) M-1 s-1, respectively. These values are 1.3- and 2.7-fold higher than the corresponding values for the human inhibitor. On the other hand, kass for the dog inhibitor with bovine trypsin (2.6 +/- 0.3 X 10(4)M-1 s-1) was found to be about 5 times smaller than that of the human inhibitor.  相似文献   

18.
The extracts of granules isolated from bovine granulocytes show elastase- and chymotrypsin-like activities, as detected with specific synthetic substrates. Extraction of these enzymes depends upon salt concentration. In the course of the present studies a 21-fold purification of the elastase-like enzyme was achieved on a (Ala)3-CH-Sepharose 4B gel. The molecular weight of the enzyme is 33 000, as determined by gel electrophoresis in the presence of sodium dodecyl sulfate. The elastase-like activity is inhibited by phenylmethylsulfonyl fluoride, soybean trypsin inhibitor, basic pancreatic inhibitor and by heparin at different rates. Elastatinal inhibits the enzyme competitively (Ki = 80 microM). The cytosol of bovine granulocytes contains a protein which strongly inhibits the elastase-like enzyme of the bovine granulocyte (Ki = 0.4 nM) as well as porcine pancreatic elastase (Ki = 11 nM).  相似文献   

19.
Lipoprotein lipase (LPL) is dependent on apolipoprotein CII (apoCII), a component of plasma lipoproteins, for function in vivo. The hydrophobic fluorescent probe 1,1'-bis(anilino)-4,4'-bis(naphthalene)-8,8'-disulfonate (bis-ANS) was found to be a potent inhibitor of LPL. ApoCII prevented the inhibition by bis-ANS, and was also able to restore the activity of inhibited LPL in a competitive manner, but only with triacylglycerols with acyl chains longer than three carbons. Studies of fluorescence and surface plasmon resonance indicated that LPL has an exposed hydrophobic site for binding of bis-ANS. The high affinity interaction was characterized by an equilibrium constant Kd of 0.10-0.26 microm and by a relatively high on rate constant kass = 2.0 x 10(4) m(-1) s(-1) and a slow off-rate with a dissociation rate constant kdiss = 1.2 x 10(-4) s(-1). The high affinity binding of bis-ANS did not influence interaction of LPL with heparin or with lipid/water interfaces and did not dissociate the active LPL dimer into monomers. Analysis of fragments of LPL after photoincorporation of bis-ANS indicated that the high affinity binding site was located in the middle part of the N-terminal folding domain. We propose that bis-ANS binds to an exposed hydrophobic area that is located close to the active site. This area may be the binding site for individual substrate molecules and also for apoCII.  相似文献   

20.
The human transferrin receptor (TfR) and its ligand, the serum iron carrier transferrin, serve as a model system for endocytic receptors. Although the complete structure of the receptor's ectodomain and a partial structure of the ligand have been published, conflicting results still exist about the magnitude of equilibrium binding constants, possibly due to different labeling techniques. In the present study, we determined the equilibrium binding constant of purified human TfR and transferrin. The results were compared to those obtained with either iodinated TfR or transferrin. Using an enzyme-linked assay for receptor-ligand interactions based on the published direct calibration ELISA technique, we determined an equilibrium constant of Kd=0.22 nM for the binding of unmodified human Tf to surface-immobilized human TfR. In a reciprocal experiment using soluble receptor and surface-bound transferrin, a similar constant of Kd=0.23 nM was measured. In contrast, covalent labeling of either TfR or transferrin with 125I reduced the affinity 3-5-fold to Kd=0.66 nM and Kd=1.01 nM, respectively. The decrease in affinity upon iodination of transferrin is contrasted by an only 1.9-fold decrease in the association rate constant, suggesting that the iodination affects rather the dissociation than the association kinetics. These results indicate that precautions should be taken when interpreting equilibrium and rate constants determined with covalently labeled components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号