首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
λ reverse (λrev) (Zissler et al., 1971a) is a recombination proficient derivative of a A phage which had lost the phage recombination genes by deletion. In this work, phages with the Rev phenotype have been obtained by a method of selection different from that of Zissler et al. (1971a). Comparison of DNA from two of our isolates and one of Zissler's by electron microscopic heteroduplex mapping shows that all three phages carry substitutions of non-λ DNA which are indistinguishable in extent, location and base sequence. Genetic and biochemical characterization of λrev strongly suggests that the substituted DNA codes for recombination functions different from the λ recombination functions which are deleted. These substituted genes apparently derive from the host chromosome or a prophage, and may be the same as the genes responsible for the SbcA and Rac phenotypes in the host.  相似文献   

2.
The transfecting efficiency of P22 DNA on “rough” strains of Salmonella typhimurium or non-restricting mutants of Escherichia coli K12 approaches 3 × 10?8 plaques/genome equivalent. It increases 20-fold upon complete erosion of the terminally redundant regions of the DNA molecule with either λ exonuclease or exonuclease III. Eroded DNA molecules form circles and linear oligomers upon annealing. The circular monomers display transfecting activity about ten times higher than that of eroded linear monomers or hydrogen-bonded oligomers. recB recC sbcB strains of E. coli K12 are transfected with P22 DNA with an efficiency of 1.5 × 10?6 plaques/genome equivalent. The activity of DNA molecules on these strains is not augmented by erosion. This suggests that the activation by erosion, seen in assays on rec+ genotypes, is due to the formation of hydrogen-bonded circular molecules, which more readily escape degradation by the recBC nuclease.  相似文献   

3.
T7 bacteriophage infects with equal efficiency restriction-proficient Escherichia coli K12 cells and the restriction-deficient mutants. To the contrary, the purified phage DNA transfects wild-type cells at a very low efficiency (10?9 plaques/genome equivalent). Mutations in the recB recC (exonuclease V) and sbcB (exonuclease I) loci increase the transfecting efficiency tenfold. A 1000-fold increase is obtained with cells deficient in restriction. No further increase is observed in hosts carrying both sets of mutations. The transfecting activity of the DNA on restriction-deficient hosts increases another 20-fold (up to 4 × 10?5 plaques/genome equivalent) by complete erosion of the redundant regions of DNA with λ exonuclease, both in rec+ and recB recC sbcB genotypes. Circles and linear oligomers arising from the annealing of eroded DNA show the same transfecting activity as the unannealed monomers. The terminal redundancy of the genome, as measured by the onset of annealability of eroded molecules, was found to comprise 50 to 100 base-pairs.  相似文献   

4.
Initiation of synthesis of the structural proteins of Semliki Forest virus.   总被引:6,自引:0,他引:6  
Insertion of phage λ DNA into the normal attachment site of the DNA of the host Escherichia coli has been studied by ultracentrifugation analysis of the conversion of covalent circles of F′450 (F′gal attλ bio) to F′450(λ) circles. We have found that integration proceeds at the normal rate if, in addition to the int gene product and a proper combination of phage and bacterial attachment sites, a large pool of λ DNA and some activity of the excision gene xis are present. In addition, turnoff of both phage DNA synthesis and xis gene activity are required.  相似文献   

5.
When λ bacteriophages were treated with a photosensitizing agent, psoralen or khellin, and 360 nm light, monoadducts and interstrand crosslinks were produced in the phage DNA. The DNA from the treated phages was injected normally into Escherichia coli uvrA? (λ) cells and it was converted to the covalent circular form in yields similar to those obtained in experiments with undamaged λ phages. In excision-proficient host cells, however, there was a dose-dependent reduction in the yield of rapidly sedimenting molecules, and a corresponding increase in slow sedimenting material, the extent of this conversion corresponding to about one cut per two crosslinks. Presumably, the damaged λ DNA molecules were cut by the uvrA endonuclease of the host cell, but were not restored to the original covalent circular form.The presence of psoralen damage in λ phage DNA greatly increased the frequency of genetic exchanges in λ phage-prophage crosses in homoimmune lysogens (Lin et al., 1977). As genetic recombination is thought to depend on cutting and joining in DNA molecules, experiments were performed to test whether psoralen-damaged λ DNA would cause other λ DNA in the same cell to be cut. E. coli (λ) host cells were infected with 32P-labeled λ phages and incubated to permit the labeled DNA to form covalent circles. When these host cells were superinfected with untreated λ phages, there was no effect upon the circular DNA. When superinfected with λ phages that had been treated with psoralen and light, however, many of the covalent circular molecules were cut. The cutting of undamaged molecules in response to the damaged DNA was referred to as “cutting in trans”. It required the uvrA+ and recA+ host gene functions, but neither recB+ nor any phage gene functions. It occurred normally in non-lysogenic hosts treated with chloramphenicol before infection. Cutting in trans may be one of the steps in recA-controlled recombination between psoralen crosslinked phage λ DNA and its homologs.  相似文献   

6.
Efficient lysogenization of Escherichia coli K12 by bacteriophage λ requires the high level of synthesis of the phage repressor shortly after infection. This high level of synthesis of repressor requires the action of the λ eII and cIII proteins. Certain mutants of λ (λcIIIs) appear to have excess cIIcIII activity and can lysogenize more efficiently than λ+. The basis for the enhanced lysogenization is that, while two or more infecting phage are necessary for λ+ to lysogenize, a single infecting λcIIIs particle is sufficient for lysogenization. Also, repressor levels in cells infected with λcIIIs are higher than in those infected with λ+. I report here that repressor overproduction by λcIIIs (1) is due to a much higher rate of repressor synthesis than that of λ+; (2) is most marked at low multiplicities of infection, possibly because λcIIIs produces repressor much more efficiently than λ+ as a singly infecting phage.  相似文献   

7.
DNAase II has been shown to cleave condensed mouse liver chromatin at 100-bp2 intervals while chromatin in the extended form is cleaved at 200-bp intervals (Altenburger et al., 1976). Evidence is presented here that DNA digestion patterns of a half-nucleosomal periodicity are also obtained upon DNAase II digestion of chicken erythrocyte nuclei and yeast nuclei, both of which differ in their repeat lengths (210 and 165 bp) from mouse liver chromatin. In the digestion of mouse liver nuclei a shift from the 100-bp to the 200-bp cleavage mode takes place when the concentration of monovalent cations present during digestion is decreased below 1 mM. When soluble chromatin prepared by micrococcal nuclease is digested with DNAase II the same type of shift occurs, albeit at higher ionic strength.In order to map the positions of the DNAase II cleavage sites on the DNA relative to the positions of the nucleosome cores, the susceptibility of DNAase II-derived DNA termini to exonuclease III was investigated. In addition, oligonucleosome fractions from HaeIII and micrococcal nuclease digests were end-labelled with polynucleotide kinase and digested with DNAase II under conditions leading to 100 and 200-bp digestion patterns. Analysis of the chain lengths of the resulting radioactively labelled fragments together with the results of the exonuclease assay allow the following conclusions. In the 200-bp digestion mode, DNAase II cleaves exclusively in the internucleosomal linker region. Also in the 100-bp mode cleavage occurs initially in the linker region. Subsequently, DNAase II cleaves at intranucleosomal locations, which are not, however, in the centre of the nucleosome but instead around positions 20 and 125 of the DNA associated with the nucleosome core. At late stages of digestion intranucleosomal cuts predominate and linkers that are still intact are largely resistant to DNAase II due to interactions between adjacent nucleosomes. These findings offer an explanation for the sensitivity of DNAase II to the higher-order structure of chromatin.  相似文献   

8.
Genetic recombination in Escherichia coli depends on the recA+ gene and can be increased in frequency by certain treatments that damage DNA. In previous studies (Ross &; Howard-Flanders, 1977a,b), E. coli (λ) cells were infected with undamaged λ phages and then with λ phages that were either undamaged, or had interstrand crosslinks produced in their DNA by treatment with psoralen and light. When the superinfecting DNA contained psoralen crosslinks, the intact DNA was cut. This cutting, referred to as cutting in trans, occurred only in DNA genetically homologous to the damaged DNA, required recA+ and behaved as expected of a step in damage-induced genetic recombination.In the present studies, we investigated the effect on cutting in trans of lig-7, a thermosensitive allele of the structural gene for E. coli polynucleotide ligase and also of uvrA, which controls the excision of damaged bases from DNA. The ligase deficiency caused gaps due to the action of the uvrA+ endonuclease on damaged DNA to remain open for at least 25 minutes. For low levels of damage, cutting in trans was also enhanced in the lig-7 cells at non-permissive temperatures but was not increased in wild-type cells. The enhanced cutting in trans depended upon genetic homology, as expected if it reflected elevated levels of damage-induced genetic recombination. Presumably, the unrepaired gaps in the damaged DNA made it a good substrate for the enzymes that promote cutting in trans of its homologs.  相似文献   

9.
The wild-type (dam+) and mutant (damh) forms of the bacteriophage T2 DNA adenine methylase have been partially purified; these enzymes methylate the sequence, 5/t' … G-A-Py … 3′ (Hattman et al., 1978a). However, in vitro methylation studies using phage λ DNA revealed the following: (1) T2 dam+ and damh enzymes differ in their ability to methylate λ DNA; under identical reaction conditions the T2 damh enzyme methylated λ DNA to a higher level than did the dam+ enzyme. However, the respective methylation sites are equally distributed on the l and r strands. (2) Methylation with T2 damh, but not T2 dam+ protected λ against P1 restriction. This was demonstrated by transfection of Escherichia coli (P1) spheroplasts and by cleavage with R·EcoP1. (3) T2 dam+ and damh were similarly capable of methylating G-A-T-C sequences on λ DNA; e.g. λ·dam3 DNA (contains no N6-methyladonine) methylated with either enzyme was made resistant to cleavage by R·DpnII. In contrast, only the T2 damh modified DNA was resistant to further methylation by M·EcoP1 (which methylates the sequence 5′ … A-G-A-C-Py … 3′; Hattman et al., 1978b). (4) λ·dam3 DNA was partially methylated to the same level with T2 dam+ or T2 damh; the two enzymes produced different patterns of G-A-C versus G-A-T methylation. We propose that the T2 dam+ enzyme methylates G-A-C sequences less efficiently than the T2 damh methylase; this property does not entirely account for the large difference in methylation levels produced by the two enzymes.  相似文献   

10.
A novel exonuclease, designated as MszExo I, was cloned from Methylocaldum szegediense, a moderately thermophilic methanotroph. It specifically digests single-stranded DNA in the 3ʹ to 5ʹ direction. The protein is composed of 479 amino acids, and it shares 47% sequence identity with E. coli Exo I. The crystal structure of MszExo I was determined to a resolution of 2.2 Å and it aligns well with that of E. coli Exo I. Comparative studies revealed that MszExo I and E. coli Exo I have similar metal ion binding affinity and similar activity at mesophilic temperatures (25–47°C). However, the optimum working temperature of MszExo I is 10°C higher, and the melting temperature is more than 4°C higher as evaluated by both thermal inactivation assays and DSC measurements. More importantly, two thermal transitions during unfolding of MszExo I were monitored by DSC while only one transition was found in E. coli Exo I. Further analyses showed that magnesium ions not only confer structural stability, but also affect the unfolding of MszExo I. MszExo I is the first reported enzyme in the DNA repair systems of moderately thermophilic bacteria, which are predicted to have more efficient DNA repair systems than mesophilic ones.  相似文献   

11.
12.
The right operator in bacteriophage lambda vs326 has one-twentieth the in vitro binding affinity for repressor as λv+; for comparison λv3 has one-quarter the affinity of λv+. In vivo, both mutants constitutively express genes in the right operon. Both λv3 and λvs326 express gene O constitutively because they complement λimm434Oam? in a λ lysogen, vs, more efficiently than v3. The v3 allele in cis (but not in trans) to vs326 gives significantly greater phage yields in a λ lysogen than λvs326 alone, cro gene function, measured by arrest of exonuclease synthesis, suggested the following series of increasing degree of conatitutivity: v3, vs326, v3 vs326. λv2 vs326 forms plaques on lysogens that carry λcI857, but λv2 v3 does not. These results indicate that vs326, like v3, is an operator constitutive mutation but stronger in its effects. These mutants exemplify a uniform correlation between relative weakness of repressor binding and degree of constitutive gene expression.  相似文献   

13.
The Exo5 family consists of bi-directional, single-stranded DNA-specific exonucleases that contain an iron-sulfur cluster as a structural motif and have multiple roles in DNA metabolism. S. cerevisiae Exo5 is essential for mitochondrial genome maintenance, while the human ortholog is important for nuclear genome stability and DNA repair. Here, we identify the Exo5 ortholog in Schizosaccharomyes pombe (spExo5). The activity of spExo5 is highly similar to that of the human enzyme. When the single-stranded DNA is coated with single-stranded DNA binding protein RPA, spExo5 become a 5′-specific exonuclease. Exo5Δ mutants are sensitive to various DNA damaging agents, particularly interstrand crosslinking agents. An epistasis analysis places exo5+ in the Fanconi pathway for interstrand crosslink repair. Exo5+ is in a redundant pathway with rad2+, which encodes the flap endonuclease FEN1, for mitochondrial genome maintenance. Deletion of both genes lead to severe depletion of the mitochondrial genome, and defects in respiration, indicating that either spExo5 or spFEN1 is necessary for mitochondrial DNA metabolism.  相似文献   

14.
The effects of substituting specific amino acids at specified loci in the bacterio-phage T4 DNA polymerase molecule have been studied. Gene 43 (DNA polymerase) amber mutants grown on suppressor strains which substitute serine, glutamine, or tyrosine at specific sites in the polymerase molecule, produce enzymes with substantially different physical, enzymatic and biological properties when compared to wild type. When amB22, a gene 43 mutant which makes a DNA polymerase fragment with only 3′-exonuclease activity, was grown in Escherichia coli B40(sup+1), -(sup+ 2) or -(sup+3), enzymes with different temperature sensitivities and nuclease to polymerase ratios were produced. Measurements of spontaneous mutation rates in these suppressed strains indicated that the two with higher than normal exonuclease activity were antimutators, and the one with a slightly lower exonuclease activity was a mutator. The substituted amino acids at the amB22 site perturbed the 3′-exonuclease activity creating either antimutator or mutator phenotypes. Thus, the B22 enzymes provide additional biochemical evidence to support the hypothesis that the exonuclease to polymerase ratio may influence the spontaneous mutation rate in phage T4.  相似文献   

15.
Dimers of escherichia coli F' factors   总被引:1,自引:0,他引:1  
Covalently closed circular DNA dimers of several E.coli sex factors have been isolated. One of these, F′451, a dimer of F′450, has a molecular weight of ca. 230 × 106 daltons. F′451 (λ) containing a λ prophage has a molecular weight of 260 × 106 and is probably the largest covalent closed circle of DNA yet reported. These dimers arise spontaneously and are of unknown origin and significance.  相似文献   

16.
Induction of bacteriophage λ in the presence of a P2 prophage results in inactivation of cellular transfer RNA, inhibition of amino acid and uridine incorporation in the host, as well as inhibition of phage replication. A red gam double mutation allows λ to escape from interference, and a mutation in gene O or P abolishes the effects on the host.It is shown here that phage and plasmid DNA extracted from cells undergoing P2-λ interference are still active in a transfection assay. Mutations in bacterial gene dna B or in phage site ori suppress the inhibition of amino acid incorporation, whereas genes dnaE and dna G have no such effect. Derepression of bacterial exonuclease VIII totally suppresses the interference, and mutations in genes recA and lexA, which control the SOS functions, suppress it partially if the λ phage is red+. Our results suggest that P2-λ interference is due to the action of old at an early step of the initiation of λ replication.  相似文献   

17.
The bacteriophage λ genes exo and bet, whose products (λ exonuclease and β protein, respectively; Red phenotype) mediate homologous recombination of λ phages, have been cloned under lacPOlacIq control on multi-copy plasmids. Induction of recA3 cells harboring these plasmids with isopropylthiogalactoside (IPTG) resulted in λ exonuclease levels (assayed in vitro) that were proportional to the time of induction (for at least 4 h); recombination of λ Red? phages in vivo was similarly inducible. Only one out of 25 betΔ plasmids (constructed by a variety of in vitro techniques) expressed λ exonuclease, a result consistent with the polarity of several known phage bet mutations. A general method for transferring phage exo and bet mutations to plasmids was devised and plasmids bearing polar (bet3) and nonpolar (bet113) mutations were constructed. Mutant derivatives of the plasmid showed the same complementation pattern as analogous phage red mutants. When λbet3 phages (Exo?Bet?) infected IPTG-induced recA3 bacteria containing exo+bet+ plasmids, recombination frequencies were no more than twice those typical for infection of plasmid-free recA3 cells with exo+bet+ phages, even in the case of IPTG induction sufficient to elevate the production of λ exonuclease about 100-fold. Even when plasmid induction was delayed till as late as 50 min after infection, recombination was significant. Preliminary experiments suggest that these plasmids encode a polypeptide with Gam activity that corresponds to the 98-amino acid “shorter” open reading frame assigned to gam by Sanger et al.  相似文献   

18.
DNA damage response pathways rely extensively on nuclease activity to process DNA intermediates. Exonuclease 1 (EXO1) is a pleiotropic evolutionary conserved DNA exonuclease involved in various DNA repair pathways, replication, antibody diversification, and meiosis. But, whether EXO1 facilitates these DNA metabolic processes through its enzymatic or scaffolding functions remains unclear. Here, we dissect the contribution of EXO1 enzymatic versus scaffolding activity by comparing Exo1DA/DA mice expressing a proven nuclease-dead mutant form of EXO1 to entirely EXO1-deficient Exo1/ and EXO1 wild type Exo1+/+ mice. We show that Exo1DA/DA and Exo1/– mice are compromised in canonical DNA repair processing, suggesting that the EXO1 enzymatic role is important for error-free DNA mismatch and double-strand break repair pathways. However, in non-canonical repair pathways, EXO1 appears to have a more nuanced function. Next-generation sequencing of heavy chain V region in B cells showed the mutation spectra of Exo1DA/DA mice to be intermediate between Exo1+/+ and Exo1/– mice, suggesting that both catalytic and scaffolding roles of EXO1 are important for somatic hypermutation. Similarly, while overall class switch recombination in Exo1DA/DA and Exo1/– mice was comparably defective, switch junction analysis suggests that EXO1 might fulfill an additional scaffolding function downstream of class switching. In contrast to Exo1/ mice that are infertile, meiosis progressed normally in Exo1DA/DA and Exo1+/+ cohorts, indicating that a structural but not the nuclease function of EXO1 is critical for meiosis. However, both Exo1DA/DA and Exo1/ mice displayed similar mortality and cancer predisposition profiles. Taken together, these data demonstrate that EXO1 has both scaffolding and enzymatic functions in distinct DNA repair processes and suggest a more composite and intricate role for EXO1 in DNA metabolic processes and disease.  相似文献   

19.
The antineoplastic drug daunorubicin and 15 other anthracyclines were tested for their ability to induce prophage λ in Escherichia coli K12. Prophage λ induction by daunorubicin was obtained in excision-repair deficient uvr bacteria at doses about 3-fold lower than in excision-repair proficient uvr+ cells; this suggests that some of the lesions produced in DNA by daunorubicin are subject to excision repair and may be adducts. Daunorubicin seems to be converted to active species capable of causing prophage inducing lesions in DNA by bacterial enzymes. The antineoplastic and prophage inducing potencies of the anthracyclines were compared in a blind test. These two parameters were correlated for two thirds of the compounds. Such a correlation supports the idea that the antineoplastic activity of the anthracyclines is a consequence of their capacity to damage DNA.  相似文献   

20.
Covalent circular λ DNA molecules produced in Escherichia coli (λ) host cells by infection with labeled λ bacteriophages are cut following superinfection with λ phages damaged by exposure to psoralen and 360 nm light. This cutting of undamaged covalent circular molecules is referred to as “cutting in trans”, and could be a step in damage-induced recombination (Ross &; Howard-Flanders, 1977). Similar experiments performed with the temperate phage 186, which is not homologous with phage λ, showed cutting in trans and damage-induced recombination to occur in homoimmune crosses with phage 186 also. Double lysogens carrying both λ and 186 prophages were used in a test for specificity in cutting in trans and in damage-induced recombination. The double lysogens were infected with 3H-labeled 186 and 32P-labeled λ phages. When these doubly infected lysogens containing covalent circular phage DNA molecules of both types were superinfected with psoralen-damaged 186 phages and incubated, the covalent circular 186 DNA was cut, while λ DNA remained intact. Similarly, superinfection with damaged λ phages caused λ, but not 186, DNA to be cut. Evidently, cutting in trans was specific to the covalent circular DNA homologous to the DNA of the damaged phages. Homoimmune phage-prophage genetic crosses were performed in the double lysogenic host infected with genetically marked λ and 186 phages. Damage-induced recombination was observed in this system only between the damaged phage DNA and the homologous prophage, none being detected between other homolog pairs present in the same cell. This result makes it unlikely that the damaged phage DNA induces a general state of enhanced strand cutting and genetic recombination affecting all homolog pairs present in the host cell. The simplest interpretation of the specificity in cutting and in recombination is as follows. When they have been incised, the damaged phage DNA molecules are able to pair directly with their undamaged covalent circular homologs. The latter molecules are cut in a recA + -dependent reaction by a recombination endonuclease that cuts the intact member of the paired homologs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号