首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 712 毫秒
1.
On the basis of enzymatic probing and phylogenetic comparison, we have previously proposed that mammalian mitochondrial tRNA(sSer) (anticodon UGA) possess a slightly altered cloverleaf structure in which only one nucleotide exists between the acceptor stem and D stem (usually two nucleotides) and the anticodon stem consists of six base pairs (usually five base pairs) [Yokogawa et al. (1991) Nucleic Acids Res. 19, 6101-6105]. To ascertain whether such tRNA(sSer) can be folded into a normal L-shaped tertiary structure, the higher-order structure of bovine mitochondrial tRNA(SerUGA) was examined by chemical probing using dimethylsulfate and diethylpyrocarbonate, and on the basis of the results a tertiary structure model was obtained by computer modeling. It was found that a one-base-pair elongation in the anticodon stem was compensated for by multiple-base deletions in the D and extra loop regions of the tRNA(SerUGA), which resulted in preservation of an L-shaped tertiary structure similar to that of conventional tRNAs. By summarizing the findings, the general structural requirements of mitochondrial tRNAs necessary for their functioning in the mitochondrial translation system are considered.  相似文献   

2.
We report the identification and characterization of eight yeast mitochondrial tRNA mutants, located in mitochondrial tRNA(Gln), tRNA(Arg2), tRNA(Ile), tRNA(His), and tRNA(Cys), the respiratory phenotypes of which exhibit various degrees of deficiency. The mutations consist in single-base substitutions, insertions, or deletions, and are distributed all over the tRNA sequence and structure. To identify the features responsible for the defective phenotypes, we analyzed the effect of the different mutations on the electrophoretic mobility and efficiency of acylation of the mutated tRNAs in comparison with the respective wild-type molecules. Five of the studied mutations determine both conformational changes and defective acylation, while two have neither or limited effect. However, variations in structure and acylation are not necessarily correlated; the remaining mutation affects the tRNA conformation, but not its acylation properties. Analysis of tRNA structures and of mitochondrial and cytoplasmic yeast tRNA sequences allowed us to propose explanations for the observed defects, which can be ascribed to either the loss of identity nucleotides or, more often, of specific secondary and/or tertiary interactions that are largely conserved in native mitochondrial and cytoplasmic tRNAs.  相似文献   

3.
4.
Bovine mitochondrial tRNA(Ser) (UCN) has been thought to have two U-U mismatches at the top of the acceptor stem, as inferred from its gene sequence. However, this unusual structure has not been confirmed at the RNA level. In the course of investigating the structure and function of mitochondrial tRNAs, we have isolated the bovine liver mitochondrial tRNA(Ser) (UCN) and determined its complete sequence including the modified nucleotides. Analysis of the 5'-terminal nucleotide and enzymatic determination of the whole sequence of tRNA(Ser) (UCN) revealed that the tRNA started from the third nucleotide of the putative tRNA(Ser) (UCN) gene, which had formerly been supposed. Enzymatic probing of tRNA(Ser) (UCN) suggests that the tRNA possesses an unusual cloverleaf structure with the following characteristics. (1) There exists only one nucleotide between the acceptor stem with 7 base pairs and the D stem with 4 base pairs. (2) The anticodon stem seems to consist of 6 base pairs. Since the same type of cloverleaf structure as above could be constructed only for mitochondrial tRNA(Ser) (UCN) genes of mammals such as human, rat and mouse, but not for those of non-mammals such as chicken and frog, this unusual secondary structure seems to be conserved only in mammalian mitochondria.  相似文献   

5.
6.
A method was developed for large scale isolation of AGY-specific serine tRNA (tRNASerAGY) from bovine heart mitochondria. By this method, 5 A260 units of tRNASerAGY were recovered from 6.3 kg of bovine hearts. The nucleotide sequence was identical to that reported previously. tRNASerAGY showed abnormal melting profiles, as was predicted from its unique primary sequence. Its secondary and/or tertiary structure was analyzed by nuclease digestion method. It was suggested that three extra base pairs could occur in the anticodon stem region, with one adenosine residue protruding. The T loop was quite sensitive to nuclease S1, suggesting that the T loop doesn't interact with other regions. This finding is consistent with the model proposed by Sundaralingam (1980). tRNASerAGY was aminoacylated in vitro with only mitochondrial enzyme but not with the enzymes from E. coli and yeast. The aminoacylation rate of tRNASerAGY with mitochondrial enzyme was much faster than that of cytosolic tRNASerUCN, perhaps reflecting differences due to the presence and absence of the D arm of the tRNAs.  相似文献   

7.
Bovine mitochondrial (mt) phenylalanine tRNA (tRNA(Phe)), which lacks the 'conserved' GG and T psi YCG sequences, was efficiently purified by the selective hybridization method using a solid phase DNA probe. The entire nucleotide sequence of the tRNA, including modified nucleotides, was determined and its higher-order structure was investigated using RNaseT2 and chemical reagents as structural probes. The D and T loop regions as well as the anticodon loop region were accessible to RNaseT2, and the N-3 positions of cytidines present in the D and T loops were easily modified under the native conditions in the presence of 10mM Mg2+. On the other hand, the nucleotides present in the extra loop were protected from the chemical modification under the native conditions. From the results of these probing analyses and a comparison of the sequences of mitochondrial tRNA(Phe) genes from various organisms, it was inferred that bovine mt tRNA(Phe) lacks the D loop/T loop tertiary interactions, but does have the canonical extra loop/D stem interactions, which seem to be the main factor for bovine mt tRNA(Phe) to preserve its L-shaped higher-order structure.  相似文献   

8.
Ascaris suum mitochondrial tRNA Met lacking the entire T stem was prepared by enzymatic ligation of two chemically synthesized RNA fragments. The synthetic tRNA could be charged with methionine by A.suum mitochondrial extract, although the charging activity was considerably low compared with that of the native tRNA, probably due to lack of modification. Enzymatic probing of the synthetic tRNA showed a very similar digestion pattern to that of the native tRNA Met, which has already been concluded to take an L-shape-like structure [Watanabe et al. (1994) J. Biol. Chem., 269, 22902-22906]. These results suggest that the synthetic tRNA possesses almost the same conformation as the native one, irrespective of the presence or absence of modified residues. The method of preparing the bizarre tRNA used here will provide a useful tool for elucidating the tertiary structure of such tRNAs, because they can be obtained without too much difficulty in the amounts necessary for physicochemical studies such as NMR spectroscopy.  相似文献   

9.
Prediction of three-dimensional structure of Escherichia coli ribosomal RNA   总被引:4,自引:0,他引:4  
A model for the tertiary structure of 23S, 16S and 5S ribosomal RNA molecules interacting with three tRNA molecules is presented using the secondary structure models common to E. coli, Z. mays chloroplast, and mammalian mitochondria. This ribosomal RNA model is represented by phosphorus atoms which are separated by 5.9 A in the standard A-form double helix conformation. The accumulated proximity data summarized in Table 1 were used to deduce the most reasonable assembly of helices separated from each other by at least 6.2 A. Straight-line approximation for single strands was adopted to describe the maximum allowed distance between helices. The model of a ribosome binding three tRNA molecules by Nierhaus (1984), the stereochemical model of codon-anticodon interaction by Sundaralingam et al. (1975) and the ribosomal transpeptidation model, forming an alpha-helical nascent polypeptide, by Lim & Spirin (1986), were incorporated in this model. The distribution of chemically modified nucleotides, cross-linked sites, invariant and missing regions in mammalian mitochondrial rRNAs are indicated on the model.  相似文献   

10.
A number of mitochondrial (mt) tRNAs have strong structural deviations from the classical tRNA cloverleaf secondary structure and from the conventional L-shaped tertiary structure. As a consequence, there is a general trend to consider all mitochondrial tRNAs as "bizarre" tRNAs. Here, a large sequence comparison of the 22 tRNA genes within 31 fully sequenced mammalian mt genomes has been performed to define the structural characteristics of this specific group of tRNAs. Vertical alignments define the degree of conservation/variability of primary sequences and secondary structures and search for potential tertiary interactions within each of the 22 families. Further horizontal alignments ascertain that, with the exception of serine-specific tRNAs, mammalian mt tRNAs do fold into cloverleaf structures with mostly classical features. However, deviations exist and concern large variations in size of the D- and T-loops. The predominant absence of the conserved nucleotides G18G19 and T54T55C56, respectively in these loops, suggests that classical tertiary interactions between both domains do not take place. Classification of the tRNA sequences according to their genomic origin (G-rich or G-poor DNA strand) highlight specific features such as richness/poorness in mismatches or G-T pairs in stems and extremely low G-content or C-content in the D- and T-loops. The resulting 22 "typical" mammalian mitochondrial sequences built up a phylogenetic basis for experimental structural and functional investigations. Moreover, they are expected to help in the evaluation of the possible impacts of those point mutations detected in human mitochondrial tRNA genes and correlated with pathologies.  相似文献   

11.
In the predicted secondary structures of 20 of the 22 tRNAs encoded in mitochondrial DNA (mtDNA) molecules of the nematodes, Caenorhabditis elegans and Ascaris suum, the T psi C arm and variable loop are replaced with a loop of 6 to 12 nucleotides: the TV-replacement loop. From considerations of patterns of nucleotide correlations in the central regions of these tRNAs, it seems highly likely that tertiary interactions occur within five sets of binary and ternary combinations of nucleotides that correspond in location to nucleotides known to be involved in tertiary interactions in yeast tRNA(Phe) and other standard tRNAs. These observations are consistent with the nematode TV-replacement loop-containing mt-tRNAs being folded into a similar L-shaped functional form to that demonstrated for standard tRNAs, and for the bovine DHU (dihydrouridine) arm replacement-loop-containing mt-tRNA(Ser(AGY)). However, the apparent occurrence in nematode mt-tRNAs of tertiary bonds common to standard tRNAs contrasts with the situation in bovine mt-tRNA(Ser(AGY)) where the functional form is dependent on an almost unique set of tertiary interactions. Because three of the proposed conserved tertiary interactions in the nematode mt-tRNAs involve nucleotides that occur in the variable loop in standard tRNAs, it seems more likely that in nematode mt-tRNAs it is the T psi C arm rather than the variable loop that has undergone the greatest proportional decrease in nucleotide number.  相似文献   

12.
Hydroxyl radical, generated by reduction of hydrogen peroxide by Fe(II)-EDTA, was used to investigate the contact sites of yeast tRNA(Tyr) with its cognate tyrosyl-tRNA synthetase (TyrRS). Exposure of free tRNA(Tyr) to this reagent gave cleavage patterns consistent with the tertiary structure of yeast tRNA(Phe) established by X-ray crystallography. When the probing reaction was performed under the conditions which stabilized complex formation between tRNA(Tyr) and TyrRS, aminoacyl-stem region of the tRNA was protected from cleavage. This result supports our earlier finding that the information for binding to TyrRS would reside mainly in the aminoacyl-stem of tRNA(Tyr).  相似文献   

13.
We have identified a spontaneous mitochondrial mutation, mfs-1 (mitochondrial frameshift suppressor-1), which suppresses a + 1 frameshift mutation localized in the yeast mitochondrial oxi1 gene. The suppressor strain exhibits a single base change (C to U) at position 42 of the mitochondrial serine-tRNA (UCN). To our knowledge, this is the first reported case showing that a mutation in the anticodon stem of a tRNA can cause frameshift suppression. The expression and aminoacylation of the mutant tRNASer(UCN) are not significantly affected. However, the base change at position 42 has two effects: first, residue U27 of the mutant tRNA is not modified to pseudouridine as observed in wild-type tRNASer(UCN). Second, the base change and/or the lack of modification of U27 leads to an alteration in the secondary/tertiary structure of the mutant tRNA. It is possible that there are such structural changes in the anticodon loop that enable the tRNA to read a four base codon, UCCA, thus restoring the wild-type reading frame.  相似文献   

14.
15.
Initiation of protein synthesis in mitochondria and chloroplasts is widely believed to require a formylated initiator methionyl-tRNA (fMet-tRNAfMet) in a process involving initiation factor 2 (IF2). However, yeast strains disrupted at the FMT1 locus, encoding mitochondrial methionyl-tRNA formyltransferase, lack detectable fMet-tRNAfMet but exhibit normal mitochondrial function as evidenced by normal growth on non-fermentable carbon sources. Here we show that mitochondrial translation products in Saccharomyces cerevisiae were synthesized in the absence of formylated initiator tRNA. ifm1 mutants, lacking the mitochondrial initiation factor 2 (mIF2), are unable to respire, indicative of defective mitochondrial protein synthesis, but their respiratory defect could be complemented by plasmid-borne copies of either the yeast IFM1 gene or a cDNA encoding bovine mIF2. Moreover, the bovine mIF2 sustained normal respiration in ifm1 fmt1 double mutants. Bovine mIF2 supported the same pattern of mitochondrial translation products as yeast mIF2, and the pattern did not change in cells lacking formylated Met-tRNAfMet. Mutant yeast lacking any mIF2 retained the ability to synthesize low levels of a subset of mitochondrially encoded proteins. The ifm1 null mutant was used to analyze the domain structure of yeast mIF2. Contrary to a previous report, the C terminus of yeast mIF2 is required for its function in vivo, whereas the N-terminal domain could be deleted. Our results indicate that formylation of initiator methionyl-tRNA is not required for mitochondrial protein synthesis. The ability of bovine mIF2 to support mitochondrial translation in the yeast fmt1 mutant suggests that this phenomenon may extend to mammalian mitochondria as well.  相似文献   

16.
Shelton VM  Sosnick TR  Pan T 《Biochemistry》2001,40(12):3629-3638
The isothermal equilibrium folding of the unmodified yeast tRNA(Phe) is studied as a function of Na(+), Mg(2+), and urea concentration with hydroxyl radical protection, circular dichroism, and diethyl pyrocarbonate (DEPC) modification. These assays indicate that this tRNA folds in Na(+) alone. Similar to folding in Mg(2+), folding in Na(+) can be described by two transitions, unfolded-to-intermediate-to-native. The I-to-N transition has a Na(+) midpoint of approximately 0.5 M and a Hill constant of approximately 4. Unexpectedly, the urea m-value, the dependence of free energy on urea concentration, for the I-to-N transition is significantly smaller in Na(+) than in Mg(2+), 0.4 versus 1.7 kcal mol(-1) M(-1), indicating that more structure is formed in the Mg(2+)-induced transition. DEPC modification indicates that the I state in Na(+)-induced folding contains all four helices of tRNA and the I-to-N transition primarily corresponds to the formation of the tertiary structure. In contrast, the intermediate in Mg(2+)-induced folding contains only three helices, and the I-to-N transition corresponds to the formation of the acceptor stem plus tertiary structure. The cation dependence of the intermediates arises from the differences in the stability of the acceptor stem and the tertiary structure. The acceptor stem is stable at a lower Na(+) concentration than required for the tertiary structure formation. The relative stability is reversed in Mg(2+) so that the acceptor stem and the tertiary structure form simultaneously in the I-to-N transition. These results demonstrate that formation of the RNA secondary structure can be independent or coupled to the formation of the tertiary structure depending on their relative stability in monovalent and divalent ions.  相似文献   

17.
18.
19.
Mamit-tRNA (http://mamit-tRNA.u-strasbg.fr), a database for mammalian mitochondrial genomes, has been developed for deciphering structural features of mammalian mitochondrial tRNAs and as a helpful tool in the frame of human diseases linked to point mutations in mitochondrial tRNA genes. To accommodate the rapid growing availability of fully sequenced mammalian mitochondrial genomes, Mamit-tRNA has implemented a relational database, and all annotated tRNA genes have been curated and aligned manually. System administrative tools have been integrated to improve efficiency and to allow real-time update (from GenBank Database at NCBI) of available mammalian mitochondrial genomes. More than 3000 tRNA gene sequences from 150 organisms are classified into 22 families according to the amino acid specificity as defined by the anticodon triplets and organized according to phylogeny. Each sequence is displayed linearly with color codes indicating secondary structural domains and can be converted into a printable two-dimensional (2D) cloverleaf structure. Consensus and typical 2D structures can be extracted for any combination of primary sequences within a given tRNA specificity on the basis of phylogenetic relationships or on the basis of structural peculiarities. Mamit-tRNA further displays static individual 2D structures of human mitochondrial tRNA genes with location of polymorphisms and pathology-related point mutations. The site offers also a table allowing for an easy conversion of human mitochondrial genome nucleotide numbering into conventional tRNA numbering. The database is expected to facilitate exploration of structure/function relationships of mitochondrial tRNAs and to assist clinicians in the frame of pathology-related mutation assignments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号