首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Individual effects of hypoxic hypoxia and hypercapnia on the cerebral circulation are well described, but data on their combined effects are conflicting. We measured the effect of hypoxic hypoxia on cerebral blood flow (CBF) and cerebral O2 consumption during normocapnia (arterial PCO2 = 33 +/- 2 Torr) and during hypercapnia (60 +/- 2 Torr) in seven pentobarbital-anesthetized lambs. Analysis of variance showed that neither the magnitude of the hypoxic CBF response nor cerebral O2 consumption was significantly related to the level of arterial PCO2. To determine whether hypoxic cerebral vasodilation during hypercapnia was restricted by reflex sympathetic stimulation we studied an additional six hypercapnic anesthetized lambs before and after bilateral removal of the superior cervical ganglion. Sympathectomy had no effect on base-line CBF during hypercapnia or on the CBF response to hypoxic hypoxia. We conclude that the effects of hypoxic hypoxia on CBF and cerebral O2 consumption are not significantly altered by moderate hypercapnia in the anesthetized lamb. Furthermore, we found no evidence that hypercapnia results in a reflex increase in sympathetic tone that interferes with the ability of cerebral vessels to dilate during hypoxic hypoxia.  相似文献   

2.
A technique for fetal blood-sampling in the second trimester of pregnancy (between 16 and 22 weeks'' gestation) combining fetoscopy with real-time ultrasound was used in 48 attempts at fetal blood-sampling. Specimens containing fetal red cells with or without amniotic fluid or maternal blood, and adequate for diagnosing haemoglobinopathies, were obtained in 45 of the 48 fetoscopies. Sampling was successful in all 18 patients with a posterior placenta, and in 27 of the 30 with an anterior placenta. In 22 of the last 27 consecutive fetoscopies pure fetal blood was taken; the placenta was anterior in 16 and posterior in six. Out of 17 cases sampled between 18 and 22 weeks'' gestation pure fetal blood was obtained in 16. The volume of the samples varied from 50 to 500 microliter. The ability to obtain pure fetal blood consistently even when the placenta is anterior will increase knowledge of fetal physiology and the scope of prenatal diagnosis.  相似文献   

3.
The purpose of this study was to devise a means to use laser-Doppler flowmetry to measure cerebral perfusion before birth. The method has not been used previously, largely because of intrauterine movement artifacts. To minimize movement artifacts, a probe holder was molded from epoxy putty to the contour of the fetal skull. A curved 18-gauge needle was embedded in the holder. At surgery, the holder, probe, and skull were fixed together with tissue glue. Residual signals were recorded after fetal death and after maternal death 1 h later. These averaged <5% of baseline flow signals, indicating minimal movement artifact. To test the usefulness of the method, cerebral flow responses were measured during moderate fetal hypoxia induced by giving the ewes approximately 10% oxygen in nitrogen to breathe. As fetal arterial PO(2) decreased from 21.1 +/- 0.5 to 10.7 +/- 0.4 Torr during a 30-min period, cerebral perfusion increased progressively to 56 +/- 8% above baseline. Perfusion then returned to baseline levels during a 30-min recovery period. These responses are quantitatively similar to those spot observations that have been recorded earlier using labeled microspheres. We conclude that cerebral perfusion can be successfully measured by using laser-Doppler flowmetry with the unanesthetized, chronically prepared fetal sheep as an experimental model. With this method, relative changes of perfusion from a small volume of the ovine fetal brain can be measured on a continuous basis, and movement artifacts can be reduced to 5% of measured flow values.  相似文献   

4.
5.
At birth, pulmonary vasodilation occurs during rhythmic distension of the lungs and oxygenation. Inhibition of prostaglandin synthesis prevents pulmonary vasodilation during rhythmic distension of the lungs but not during oxygenation. Because endothelium-derived relaxing factor (EDRF) modulates pulmonary vascular tone at birth, at rest, and during hypoxia in older animals, we hypothesized that EDRF may modulate pulmonary vascular tone during oxygenation in fetal lambs. We studied the responses to N omega-nitro-L-arginine, a competitive inhibitor of EDRF synthesis, in nine near-term fetal lambs and to drug vehicle in six of these lambs and the subsequent responses to in utero ventilation with 95% O2 in these fetal lambs. In all fetal lambs, prostaglandin synthesis was prevented by meclofenamate. N omega-nitro-L-arginine increased pulmonary and systemic arterial pressures by 28% (P < 0.05) and 31% (P < 0.05), respectively, and decreased pulmonary blood flow by 83% (P < 0.05). In the controls, ventilation with 95% O2 increased pulmonary blood flow by 1,050% (P = 0.05) without changing pressures, thereby decreasing pulmonary vascular resistance by 88% (P = 0.05). During N omega-nitro-L-arginine infusion, ventilation with 95% O2 increased pulmonary blood flow by 162% (P = 0.05) and decreased pulmonary vascular resistance by 74% (P = 0.05). This suggests that EDRF may play an important role in modulating resting pulmonary vascular tone in fetal lambs and in the vasodilatory response to ventilation with O2 in utero.  相似文献   

6.
7.
Nocturnal hypoxia is a major pathological factor associated with cardiorespiratory disease. During wakefulness, a decrease in arterial O2 tension results in a decrease in cerebral vascular tone and a consequent increase in cerebral blood flow; however, the cerebral vascular response to hypoxia during sleep is unknown. In the present study, we determined the cerebral vascular reactivity to isocapnic hypoxia during wakefulness and during stage 3/4 non-rapid eye movement (NREM) sleep. In 13 healthy individuals, left middle cerebral artery velocity (MCAV) was measured with the use of transcranial Doppler ultrasound as an index of cerebral blood flow. During wakefulness, in response to isocapnic hypoxia (arterial O2 saturation -10%), the mean (+/-SE) MCAV increased by 12.9 +/- 2.2% (P < 0.001); during NREM sleep, isocapnic hypoxia was associated with a -7.4 +/- 1.6% reduction in MCAV (P <0.001). Mean arterial blood pressure was unaffected by isocapnic hypoxia (P >0.05); R-R interval decreased similarly in response to isocapnic hypoxia during wakefulness (-21.9 +/- 10.4%; P <0.001) and sleep (-20.5 +/- 8.5%; P <0.001). The failure of the cerebral vasculature to react to hypoxia during sleep suggests a major state-dependent vulnerability associated with the control of the cerebral circulation and may contribute to the pathophysiologies of stroke and sleep apnea.  相似文献   

8.
Local cerebral blood flow in four near term fetal sheep was evaluated continuously before and after natural alternations in fetal behavioral state. Measurements were made in fetuses several days following an aseptic surgery to place electrodes for behavioral state recordings as well as heated and reference thermojunctions in cortical and subcortical tissue. These thermojunctions were used to qualitatively assess local cerebral blood flow. The time of transition between rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS) was based on visual inspection of strip chart recordings of electrocortical, electroocular, and neck electromyographic activity and application of published criteria for their assessment. To confirm that transition had occurred, the amplitude of the spectrum of the electrocorticogram in one-third octave bands centered around 1 Hz and 20 Hz was measured before and after the transition point. Mean cerebral blood flow rose significantly by 24 s (P less than 0.05) after the transition from NREMS to REMS and fell by 12 s after the transition from REMS to NREMS (P less than 0.05).  相似文献   

9.
The influence of endogenous and exogenous atrial natriuretic factor (ANF) on pulmonary hemodynamics was investigated in anesthetized pigs during both normoxia and hypoxia. Continuous hypoxic ventilation with 11% O2 was associated with a uniform but transient increase of plasma immunoreactive (ir) ANF that peaked at 15 min. Plasma irANF was inversely related to pulmonary arterial pressure (Ppa; r = -0.66, P less than 0.01) and pulmonary vascular resistance (PVR; r = -0.56, P less than 0.05) at 30 min of hypoxia in 14 animals; no such relationship was found during normoxia. ANF infusion after 60 min of hypoxia in seven pigs reduced the 156 +/- 20% increase in PVR to 124 +/- 18% (P less than 0.01) at 0.01 microgram.kg-1.min-1 and to 101 +/- 15% (P less than 0.001) at 0.05 microgram.kg-1.min-1. Cardiac output (CO) and systemic arterial pressure (Psa) remained unchanged, whereas mean Ppa decreased from 25.5 +/- 1.5 to 20.5 +/- 15 mmHg (P less than 0.001) and plasma irANF increased two- to nine-fold. ANF infused at 0.1 microgram.kg-1.min-1 (resulting in a 50-fold plasma irANF increase) decreased Psa (-14%) and reduced CO (-10%); systemic vascular resistance (SVR) was not changed, nor was a further decrease in PVR induced. No change in PVR or SVR occurred in normoxic animals at any ANF infusion rate. These results suggest that ANF may act as an endogenous pulmonary vasodilator that could modulate the pulmonary pressor response to hypoxia.  相似文献   

10.
Fetuses of 12 near-term sheep were prepared for microsphere determination of cerebral blood flow. Experiments were performed 5 days postsurgery. The regional blood flows were measured in successive high (HV), low (LV) and high voltage electrocorticographic states. Comparisons were made between the observations made in the LV and averaged flanking HV cycles. Total cerebral blood flow was 95 +/- 8, 119 +/- 11 and 100 +/- 9 ml/min/100 g in HV, LV and HV, respectively. Low voltage electrocortical activity increased average cerebral blood flow by 22% (P less than 0.01). Significant changes were seen in all regions except the occipital cortex. The maximum change was observed in the thalamus in which the flows were 152 +/- 23, 243 +/- 35 and 138 +/- 20 ml/min/per 100 g tissue, respectively. The increase was 68% (P less than 0.001). The percent changes seen in the cerebrum are as follows: Frontal grey + 18%, frontal white + 22%, parietal white + 22%, temporal + 18%. A + 17% change was seen in the cord (P less than 0.03). It is concluded that in low voltage electrocortical activity all of the brain, except the occipital region, shows an increase in cerebral blood flow. This is probably secondary to a variance in cerebral activity. This preparation may be useful in localizing function in the fetal brain.  相似文献   

11.
Changes in electroencephalogams (EEG) and cerebral blood flow were examined in carp immobilized with a muscle relaxant during 60 min hypoxia (water Po 2 of approximately 20 mmHg) and subsequent 30 min normoxia. The amplitude of EEG waves recorded from the telencephalon decreased gradually but slightly with the progression of hypoxia, whereas the telencephalic blood flow increased mainly due to an increased blood velocity. These findings suggested that cerebral activity during hypoxia was compensated to some degree by increased cerebral blood flow. However, carp showed large variations in the patterns of EEG responses and cerebral blood flow.  相似文献   

12.

Background  

Alcoholism presents widespread social and human health problems. Alcohol sensitivity, the development of tolerance to alcohol and susceptibility to addiction vary in the population. Genetic factors that predispose to alcoholism remain largely unknown due to extensive genetic and environmental variation in human populations. Drosophila, however, allows studies on genetically identical individuals in controlled environments. Although addiction to alcohol has not been demonstrated in Drosophila, flies show responses to alcohol exposure that resemble human intoxication, including hyperactivity, loss of postural control, sedation, and exposure-dependent development of tolerance.  相似文献   

13.
I Kissen  H R Weiss 《Life sciences》1991,48(14):1351-1363
The purpose of this study was to evaluate the effects of vascular and central alpha-adrenoceptor blockade on cerebral blood flow (CBF) and utilization of brain arteriolar and capillary reserve in conscious rats during normoxia and hypoxia (8% O2 in N2). Animals were divided into three groups and administered either saline, N-methyl chlorpromazine (does not cross the blood-brain barrier), or phenoxybenzamine (crosses the blood-brain barrier) in equipotent doses. Neither agent affected regional CBF and the utilization of brain microvascular reserve during normoxia. CBF increased from 70.9 +/- 2.9 (SEM) ml/min/100 g in the control normoxic group to 123.8 +/- 4.2 ml/min/100 g in control hypoxic animals. In control, hypoxic flow to pons and medulla of the brain was higher than to cortex, hypothalamus or thalamus. The percent of arterioles/mm2 perfused increased from 49.6 +/- 2.0% during control normoxia to 65.6 +/- 3.0% during control hypoxia. The percentage of capillaries/mm2 perfused changed similarly. Hypoxic CBF was increased similarly after administration of N-methyl chlorpromazine or phenoxybenzamine. Administration of N-methyl chlorpromazine or phenoxybenzamine eliminated regional differences in hypoxic CBF and the utilization of arterioles, and did not affect capillary response. There was no difference between the effect of N-methyl chlorpromazine and phenoxybenzamine on cerebral microvascular and blood flow responses to hypoxia. It was concluded that peripheral alpha-adrenoceptors affect the distribution of regional microvascular and blood flow responses to hypoxia, and central alpha-adrenoceptors probably do not participate in this effect.  相似文献   

14.
This study investigated the role of adenosine in the regulation of neonatal cerebral blood flow (CBF) during moderate (arterial PO2 = 47 +/- 9 Torr) and severe (arterial PO2 = 25 +/- 4 Torr) hypoxia. Twenty-eight anesthetized and ventilated newborn piglets were assigned to four groups: 8 were injected intravenously with the vehicle (controls, group 1); 13 received an intravenous injection of 8-phenyltheophylline (8-PT), a potent adenosine receptor blocker, either 4 mg/kg (group 2, n = 6, mean cerebrospinal fluid (CSF) levels less than 1 mg/l) or 8 mg/kg (group 3, n = 7, mean CSF levels less than 3.5 mg/l); and 7 received an intracerebroventricular injection of 10 micrograms 8-PT (group 4). During normoxia, CBF was not altered by vehicle or 8-PT injections. In group 1, 10 min of moderate and severe hypoxia increased total CBF by 112 +/- 36 and 176 +/- 28% (SE), respectively. Compared with controls, the cerebral hyperemia during moderate hypoxia was not altered in group 2, attenuated in group 3 (to 53 +/- 13%, P = NS), and completely blocked in group 4 (P less than 0.01). CBF increase secondary to severe hypoxia was attenuated only in group 4 (74 +/- 29%, P less than 0.05). CSF concentrations of adenosine and adenosine metabolites measured by high-performance liquid chromatography increased during hypoxia. Arterial O2 content was inversely correlated (P less than 0.005) to maximal CSF levels of adenosine (r = 0.73), inosine (r = 0.87), and hypoxanthine (r = 0.80).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
These experiments tested the hypothesis that elevating muscle blood flow before exercise would wash out vasoactive substances produced by muscle contraction and reduce the magnitude of exercise hyperemia and/or delay the response. In chronically instrumented dogs (n = 7), hindlimb blood flow was measured with chronically implanted flow probes during mild treadmill exercise. In an anesthetized preparation (n = 8), arterial and venous blood flows of a single hindlimb were obtained during 1-s tetanic contractions evoked by electrical stimulation of the cut sciatic nerve. Elevation of blood flow by intra-arterial infusion of adenosine attenuated the increase in flow during exercise and tetanic contraction by 48 and 47%, respectively. No delay was observed in the latency to peak flow. The attenuated hyperemic response to exercise or contraction is best explained by washout of vasoactive substance(s) produced by contracting muscle, but the residual response suggests that a metabolic mediator may not be the sole explanation for exercise hyperemia.  相似文献   

16.
We tested whether hyperbaric O2 (HBO) has an adverse effect on the hypoxic ventilatory drive. Four groups of rats were exposed for 550 min to O2 at 1.67, 1.90, and 2.15 ATA and to air at 1.90 ATA, respectively. Ventilatory parameters (frequency, tidal volume, and minute ventilation) were measured using whole-body plethysmography, before the hyperbaric exposure, immediately after the exposure, and up to 20 days after the exposure. Resting ventilation was not affected after exposure at 1.90 ATA to air or at 1.67 ATA to O2. HBO at 1.90 and 2.15 ATA caused a reduction of frequency and an elevation of tidal volume at different inspired gases: air, 5% CO2 balance O2, 80% O2, and 4.5% O2. However, minute ventilation on the day after the hyperoxic exposure was not different from the control at either air, 5% CO2, or 80% O2 but was markedly attenuated on the first three breaths at 4.5% O2. The hypoxic ventilation decreased to 48 +/- 13 (SD) and 32 + 11% after 1.90 and 2.15 ATA, respectively. The ventilatory parameters recovered in the days after HBO. We conclude that HBO reversibly depresses the hypoxic ventilatory drive, most probably by a direct effect on the carotid O2 chemoreceptors.  相似文献   

17.
Summary Dopamine, norepinephrine and epinephrine were measured by radioenzymatic assay in blood plasma samples drawn from the umbilical arteries of 30 anaesthetised Landrace pig fetuses. Just prior to term, the concentrations of dopamine (0.46±0.14 ng·ml–1) and norepinephrine (1.74±0.60 ng·mg–1) were lower than earlier in gestation, whereas epinephrine concentrations at term (0.80±0.31 ng·ml–1) were similar to those at mid-gestation, intervening stages of gestation having higher levels of plasma epinephrine. Fetal hypoxia was induced by clamping the umbilical cord for 2 min and the catecholamines determined in arterial blood samples immediately thereafter, then again 3 min after removal of the clamp. Inconsistent effects of cord clamping on catecholamine levels were seen at 55 days, but thereafter, in all but one instance, the hormone levels were increased. Fetuses near term tended to respond less than fetuses at 75 and 96 days gestation (term=114±1 day). Catecholamines were also present in the circulation of fetuses decapitated at 42 days gestation and studied at 109±1 days. The average concentrations of dopamine (1.12±0.27 ng·ml–1) and norepinephrine (8.23±3.04 ng·ml–1) were greater than in intact fetuses, the plasma epinephrine levels being comparable to, or slightly higher than, those in intact fetuses. The results demonstrate that catecholamines are present in the circulation of the intact and decapitated pig fetus and that the actual concentrations and the type of response to umbilical cord clamping are dependent on gestation age.  相似文献   

18.
The purpose of this echocardiography study was to measure peak coronary blood flow velocity (CBV(peak)) and left ventricular function (via tissue Doppler imaging) during separate and combined bouts of cold air inhalation (-14 ± 3°C) and isometric handgrip (30% maximum voluntary contraction). Thirteen young adults and thirteen older adults volunteered to participate in this study and underwent echocardiographic examination in the left lateral position. Cold air inhalation was 5 min in duration, and isometric handgrip (grip protocol) was 2 min in duration; a combined stimulus (cold + grip protocol) and a cold pressor test (hand in 1°C water) were also performed. Heart rate, blood pressure, O(2) saturation, and inspired air temperature were monitored on a beat-by-beat basis. The rate-pressure product (RPP) was used as an index of myocardial O(2) demand, and CBV(peak) was used as an index of myocardial O(2) supply. The RPP response to the grip protocol was significantly blunted in older subjects (Δ1,964 ± 396 beats·min(-1)·mmHg) compared with young subjects (Δ3,898 ± 452 beats·min(-1)·mmHg), and the change in CBV(peak) was also blunted (Δ6.3 ± 1.2 vs. 11.2 ± 2.0 cm/s). Paired t-tests showed that older subjects had a greater change in the RPP during the cold + grip protocol [Δ2,697 ± 391 beats·min(-1)·mmHg compared with the grip protocol alone (Δ2,115 ± 375 beats·min(-1)·mmHg)]. An accentuated RPP response to the cold + grip protocol (compared with the grip protocol alone) without a concomitant increase in CBV(peak) may suggest a dissociation between the O(2) supply and demand in the coronary circulation. In conclusion, older adults have blunted coronary blood flow responses to isometric exercise.  相似文献   

19.
We examined the relationship between changes in cardiorespiratory and cerebrovascular function in 14 healthy volunteers with and without hypoxia [arterial O(2) saturation (Sa(O(2))) approximately 80%] at rest and during 60-70% maximal oxygen uptake steady-state cycling exercise. During all procedures, ventilation, end-tidal gases, heart rate (HR), arterial blood pressure (BP; Finometer) cardiac output (Modelflow), muscle and cerebral oxygenation (near-infrared spectroscopy), and middle cerebral artery blood flow velocity (MCAV; transcranial Doppler ultrasound) were measured continuously. The effect of hypoxia on dynamic cerebral autoregulation was assessed with transfer function gain and phase shift in mean BP and MCAV. At rest, hypoxia resulted in increases in ventilation, progressive hypocapnia, and general sympathoexcitation (i.e., elevated HR and cardiac output); these responses were more marked during hypoxic exercise (P < 0.05 vs. rest) and were also reflected in elevation of the slopes of the linear regressions of ventilation, HR, and cardiac output with Sa(O(2)) (P < 0.05 vs. rest). MCAV was maintained during hypoxic exercise, despite marked hypocapnia (44.1 +/- 2.9 to 36.3 +/- 4.2 Torr; P < 0.05). Conversely, hypoxia both at rest and during exercise decreased cerebral oxygenation compared with muscle. The low-frequency phase between MCAV and mean BP was lowered during hypoxic exercise, indicating impairment in cerebral autoregulation. These data indicate that increases in cerebral neurogenic activity and/or sympathoexcitation during hypoxic exercise can potentially outbalance the hypocapnia-induced lowering of MCAV. Despite maintaining MCAV, such hypoxic exercise can potentially compromise cerebral autoregulation and oxygenation.  相似文献   

20.
We examined the sensitivity of the ferret to emetic stimuli and the effect of radiation exposure near the time of emesis on local cerebral blood flow. Ferrets vomited following the administration of either apomorphine (approx 45% of the ferrets tested) or peptide YY (approx 36% of those tested). Exposure to radiation was a very potent emetic stimulus, but vomiting could be prevented by restraint of the hindquarters of the ferret. Local cerebral blood flow was measured using a quantitative autoradiographic technique and with the exception of several regions in the telencephalon and cerebellum, local cerebral blood flow in the ferret was similar to that in the rat. In animals with whole-body exposure to moderate levels of radiation (4 Gy of 137Cs), mean arterial blood pressure was similar to that in the control group. However, 15-25 min following irradiation there was a general reduction of local cerebral blood flow ranging from 7 to 33% of that in control animals. These cerebral blood flow changes likely correspond to a reduced activation of the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号