首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The possibility that differences in stomatal conductance between upper and lower surfaces of amphistomatous leaves are adaptations to differences in CO2 exchange characteristics for the two surfaces was investigated. The ratio of upper to lower stomatal conductance was found to change little in response to light and humidity for well-watered sunflower (Helianthus annuus L.) plants. Stressing the plants (ψ = −17 bars) and rewatering 1 day before gas exchange measurements reduced upper conductance more severely than lower in both indoor- and outdoor-grown plants, and caused small changes in conductance ratio with light and humidity. A similar pattern was found using outdoor grown sunflower and cocklebur (Xanthium strumarium L.) plants. Calculated intercellular CO2 concentrations for upper and lower surfaces were always close to identical for a particular set of environmental conditions for both sunflower and cocklebur, indicating that no differences in CO2 exchange characteristics exist between the two surfaces. By artificially creating a CO2 gradient across the leaf, the resistance to CO2 diffusion through the mesophyll was estimated and found to be so low that despite possible nonhomogeneity of the mesophyll, differences in CO2 exchange characteristics for the two surfaces are unlikely. It is concluded that differences in conductance between upper and lower stomates are not adaptations to differences in CO2 exchange characteristics.  相似文献   

2.
Young bell pepper (Capsicum annuum L.) plants grown in nutrient solution were gradually acclimated to 50, 100, or 150 moles per cubic meter NaCl, and photosynthetic rates of individual attached leaves were measured on several occasions during the salinization period at external CO2 concentrations ranging from approximately 70 to 1900 micromoles per mole air. Net CO2 assimilation (A) was plotted against computed leaf internal CO2 concentration (Ci), and the initial slope of this A-Ci curve was used as a measure of photosynthetic ability. During the 10 to 14 days after salinization began, leaves from plants exposed to 50 moles per cubic meter NaCl showed little change in photosynthetic ability, whereas those treated to 100 or 150 moles per cubic meter NaCl had up to 85% inhibition, with increase in CO2 compensation point. Leaves appeared healthy, and leaf chlorophyll content showed only a 14% reduction at the highest salinity levels. Partial stomatal closure occurred with salinization, but reductions in photosynthesis were primarily nonstomatal in origin. Photosynthetic ability was inversely related to the concentration of either Na+ or Cl in the leaf laminas sampled at the end of the experimental period. However, the concentration of Cl expressed on a tissue water basis was greater, exceeding 300 moles per cubic meter, and Cl was more closely associated (R2 = 0.926) with the inhibition of photosynthetic ability. Leaf turgor was not reduced by salinization and leaf osmotic potential decreased to a slightly greater extent than the osmotic potential decreases of the nutrient solutions. Concentration of accumulated Na+ and Cl (on a tissue water basis) accounted quantitatively for maintenance of leaf osmotic balance, assuming that these ions were sequestered in the vacuoles.  相似文献   

3.
Summary The diurnal course of CO2 gas exchange, 14CO2 incorporation, malate and citrate content, and traspiration of Welwitschia mirabilis were measured in one of its natural habitats, the Welwitschia-Vlakte in the central Namib desert (Namibia), in order to decide which CO2 fixation pathway is used by this gymnosperm.The CO2 gas exchange of Welwitschia is that of a C3 plant under arid conditions. Younger leaf parts show a two-peaked pattern of photosynthetic CO2 uptake whereas in older parts the morning peak is followed by net CO2 release during the rest of the day. The maximum rates of net photosynthesis decrease from 3.4 mol m-2 s-1 in 1-year-old parts to 1 mol m-2 s-1 in 7-year-old parts. No net CO2 uptake was detected during the night. The diurnal CO2 balance indicates that the old leaf parts live at the expense of the younger ones. Irrigation of Welwitschia plants resulted in an increased CO2 uptake throughout the light period with maximum rate of 4.1 mol m-2 s-1. 14CO2 was only incorporated during the day.The water loss of Welwitschia by transpiration is considerable, reaching a peak value of 1.9 mmol m-2 s-1 around noon. Leaf conductance corresponds with the twopeaked pattern of CO2 uptake.Although there is no sign of a crassulacean acid metabolism in Welwitschia the leaf contains rather high amounts of malate (up to 200 mol g-1 dry matter) and citrate (up to 250 mol g-1 dry matter), which depend on leaf age but do not show any significant day-night oscillation.In spite of all this the 13C values are in the range of-17.77 to-19.64. Possible reasons for such a high 13C content in a C3 plant are discussed.Dedicated to Prof. H. Walter, the pioneer of ecophysiological studies in the Namib desert  相似文献   

4.
Stomatal Responses of Variegated Leaves to CO2 Enrichment   总被引:1,自引:0,他引:1  
The responses of stomatal density and stomatal index of fivespecies of ornamental plants with variegated leaves grown attwo mole fractions of atmospheric CO2 (350 and 700 µmolmol-1) were measured. The use of variegated leaves allowed anypotential effects of mesophyll photosynthetic capacity to beuncoupled from the responses of stomatal density to changesin atmospheric CO2 concentration. There was a decrease in stomataldensity and stomatal index with CO2 enrichment on both white(unpigmented) and green (pigmented) leaf areas. A similar responseof stomatal density and index was also observed on areas ofleaves with pigmentation other than green indicating that anydifferences in metabolic processes associated with colouredleaves are not influencing the responses of stomatal densityto CO2 concentrations. Therefore the carboxylation capacityof mesophyll tissue has no direct influence on stomatal densityand index responses as suggested previously (Friend and Woodward1990 Advances in Ecological Research 20: 59-124), instead theresponses were related to leaf structure. The stomatal characteristics(density and index) of homobaric variegated leaves showed agreater sensitivity to CO2 on green portions, whereas heterobaricleaves showed a greater sensitivity on white areas. These resultsprovide evidence that leaf structure may play an important rolein determining the magnitude of stomatal density and index responsesto CO2 concentrations.Copyright 1995, 1999 Academic Press Leaf structure, photosynthesis, stomatal conductance, CO2, stomatal density, stomatal index  相似文献   

5.
The postillumination transient of CO2 exchange and its relation to photorespiration has been examined in leaf discs from tobacco (Nicotiana tabacum) and maize (Zea mays). Studies of the transients observed by infrared gas analysis at 1, 21, and 43% O2 in an open system were extended using the nonsteady state model described previously (Peterson and Ferrandino 1984 Plant Physiol 76: 976-978). Cumulative CO2 exchange equivalents (i.e. nanomoles CO2) versus time were derived from the analyzer responses of individual transients. In tobacco (C3), subtraction of the time course of cumulative CO2 exchange under photorespiratory conditions (21 or 43% O2) from that obtained under nonphotorespiratory conditions (1% O2) revealed the presence of an O2-dependent and CO2-reversible component within the first 60 seconds following darkening. This component was absent in maize (C4) and at low external O2:CO2 ratios (i.e. <100) in tobacco. The size of the component in tobacco increased with net photosynthesis as irradiance was increased and was positively associated with inhibition of net photosynthesis by O2. This relatively simple and rapid method of analysis of the transient is introduced to eliminate some uncertainties associated with estimation of photorespiration based on the maximal rate of postillumination CO2 evolution. This method also provides a useful and complementary tool for detecting variation in photorespiration.  相似文献   

6.
Laisk A  Sumberg A 《Plant physiology》1994,106(2):689-695
Photorespiration was calculated from chlorophyll fluorescence and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) kinetics and compared with CO2 evolution rate in the light, measured by three gas-exchange methods in mature sunflower (Helianthus annuus L.) leaves. The gas-exchange methods were (a) postillumination CO2 burst at unchanged CO2 concentration, (b) postillumination CO2 burst with simultaneous transfer into CO2-free air, and (c) extrapolation of the CO2 uptake to zero CO2 concentration at Rubisco active sites. The steady-state CO2 compensation point was proportional to O2 concentration, revealing the Rubisco specificity coefficient (Ksp) of 86. Electron transport rate (ETR) was calculated from fluorescence, and photorespiration rate was calculated from ETR using CO2 and O2 concentrations, Ksp, and diffusion resistances. The values of the best-fit mesophyll diffusion resistance for CO2 ranged between 0.3 and 0.8 s cm-1. Comparison of the gas-exchange and fluorescence data showed that only ribulose-1,5-bisphosphate (RuBP) carboxylation and photorespiratory CO2 evolution were present at limiting CO2 concentrations. Carboxylation of a substrate other than RuBP, in addition to RuBP carboxylation, was detected at high CO2 concentrations. A simultaneous decarboxylation process not related to RuBP oxygenation was also detected at high CO2 concentrations in the light. We propose that these processes reflect carboxylation of phosphoenolpyruvate, formed from phosphoglyceric acid and the subsequent decarboxylation of malate.  相似文献   

7.
CO2 exchange, transpiration and leaf water potential of Welwitschia mirabilis were measured in three contrasting habitats of the Namib desert. From these measurements stomatal conductance, internal CO2concentration and WUE were calculated. In two of the three habitats photosynthetic CO2 uptake decreased and transpiration increased with increasing leaf age while in the third habitat CO2 uptake increased and transpiration decreased with leaf age. Except for the stomata of young leaf sections in this habitat, stomata closed with increasing δw leading to a pronounced midday depression of CO2 uptake. The high stomatal limitation of photosynthetic CO2 uptake of glasshouse-grown plants was verified in the natural habitat. Photosynthetic CO2 uptake saturated between 800 and 1300 μmol photons m?2 s?1depending on leaf age and habitat. CO2 uptake had a broad temperature optimum declining significantly beyond 32 °C. Predawn leaf water potential reflected water availability and atmospheric conditions in the three habitats and ranged from ? 2.5 to ? 6.2 MPa. There was a pronounced diurnal course of leaf water potential in all habitats. During the day a gradient in water potential developed along the leaf axis with the lowest potential at the leaf's tip. With respect to whole plant balances of CO2 exchange and transpiration, there were marked differences between Welwitschias in the three habitats. Despite a negative CO2 balance over a period of five months, leaves in the driest habitat grew constantly at the expense of carbon reserves in the plant. Only at the wettest site did carbon gain exceed carbon demand for growth. The WUE of whole plants was insignificant in all habitats. The results were as contrasting as the habitats and plants and did not allow generalisations about adaptational features of Welwitschia mirabilis.  相似文献   

8.
Unlike other leaves investigated, maize leaves were found tobe able to exhaust atmospheric CO2-content to zero concentration.This occurred at 20? C. with a light intensity of 100 f.c. andat 30? C. with a light intensity of 500 f.c. The influences of temperature, light intensity, and waterstrainon this property of maize leaves were investigated systematicallyand a permanent aftereffect of waterstrain on the leaves wasfound. Stomatal conductance measurements showed that maize stomataare sensitive to CO2-concentrations between zero and 100 p.p.m.,a circumstance not yet reported for other leaves.  相似文献   

9.
研究了0.35 W/m2的UV-B辐射、0.4%NACl及其复合胁迫下绿豆(Phaseolus radiatus L.)幼苗光合作用的气孔和非气孔限制.发现各胁迫处理下,幼苗净光合速率、气孔导度、光合能力、羧化效率和Rubisco含量均明显降低;细胞间隙CO2浓度在各胁迫处理前期低于对照,后期高于对照;气孔限制值除复合处理第5天外,其余均高于对照;复合处理下上述指标的变化程度均大于两胁迫因子单独处理.表明各胁迫下光合速率的降低既有气孔因素也有非气孔因素,但前期以气孔限制为主,后期以非气孔限制为主;Rubisco含量的降低是各胁迫下光合速率降低的非气孔因素.  相似文献   

10.
A new technique for estimating the cuticular component of epidermalgas exchange by a stomatous leaf side is proposed. It is basedon the process of elimination of stomatal diffusion by mass(viscous) flow of air applying an air pressure gradient acrossthe leaf. This technique was designed to enable a reliable estimationof the cuticular component irrespective of stomatal opening. A model solution of diffusive and mass flow counteraction interms of general substance fluxes is presented. Water vapourloss and CO2 uptake by a model leaf was simulated by varyingboth stomatal diffusion resistance and viscous flow of air throughthe stomatal pores in physiologically and experimentally relevantranges. Depending on stomatal opening, elimination of the stomatalcontribution to epidermal vapour and CO2 exchange by the viscousflow of air ranged from small to practically complete. It supportsthe relevance of the procedure for cuticular vapour loss estimationunder conditions of partially open stomata. Modification of the model CO2-uptake patterns due to expectedchanges in intercellular CO2 concentration, , was evaluated. Net CO2 flux under the diffusive-viscous flowscounteraction is sensitive to the changes mentioned above. Nevertheless,the changes in , evaluated by a simple model, were too small to cause significant departures from the CO2-uptakeelimination curves by constant . The relevance of the method for the determination of cuticular CO2-uptakeis discussed. Key words: Cuticular transpiration, cuticular CO2-uptake, methods, diffusive-viscous flows counteraction, model  相似文献   

11.
The complexity of natural ecological systems presents challenges for predicting the impact of global environmental changes on ecosystem structure and function. Grouping of plants into functional types, that is, groups of species sharing traits that govern their mechanisms of response to environmental perturbations, reduce the complexity of species diversity to a few key plant types for better understanding of ecosystem responses. Chambers were used to measure CO2 exchange in grass and moss growing together in a mountain peatland in southern Germany to assess variations in their response to environmental changes and how they influence ecosystem CO2 exchange. Parameter fits and comparison for net ecosystem exchange (NEE) in two ecosystem components were conducted using an empirical hyperbolic light response model. Annual green biomass production was 320 and 210 g dwt m 2, whereas mean maximum NEE was –10.0 and –5.0 μmol m 2 s 1 for grass and moss, respectively. Grass exhibited higher light use efficiency (α) and maximum gross primary production [(β+γ)2000]. Leaf area index explained 93% of light use and 83% of overall production by the grass. Peat temperature at 10-cm depth explained more than 80% of the fluctuations in ecosystem respiration (R eco). Compared to grass, moss NEE was more sensitive to ground water level (GWL) draw-down and hence could be more vulnerable to changes in precipitation that result in GWL decline and may be potentially replaced by grass and other vegetation that are less sensitive. Author’s Contribution  Werner Borken conceived the study. Ai Nishiwaki, Margerete Wartinger, G. Lischeid and Zaman Hussain conducted measurements. Jan Muhr helped with the methodologies and result discussion. Dennis O. Otieno designed and conducted measurements and wrote the paper.  相似文献   

12.
Net photosynthesis is stimulated in third seedling leaves of barley plants whose lower two leaves are heavily infected by Erysiphe graminis f.sp. hordei Marchal. Stimulation is greater in water-stressed than in well-watered plants. In stressed, but not in well-watered plants, stimulation is associated with the maintenance of high leaf water potential and high leaf conductance. A small part of the changes in net photosynthesis is attributable to changes in respiratory metabolism in the third leaf, and other possible causes are discussed.  相似文献   

13.
Jurik TW  Weber JA  Gates DM 《Plant physiology》1984,75(4):1022-1026
The short term effects of increased levels of CO2 on gas exchange of leaves of bigtooth aspen (Populus grandidentata Michx.) were studied at the University of Michigan Biological Station, Pellston, MI. Leaf gas exchange was measured in situ in the upper half of the canopy, 12 to 14 meters above ground. In 1900 microliters per liter CO2, maximum CO2 exchange rate (CER) in saturating light was increased by 151% relative to CER in 320 microliters per liter CO2. The temperature optimum for CER shifted from 25°C in 320 microliters per liter CO2 to 37°C in 1900 microliters per liter CO2. In saturating light, increasing CO2 level over the range 60 to 1900 microliters per liter increased CER, decreased stomatal conductance, and increased leaf water use efficiency. The initial slope of the CO2 response curve of CER was not significantly different at 20 and 30°C leaf temperatures, although the slope did decline significantly during leaf senescence. In 1900 microliters per liter CO2, CER increased with increasing light. The light saturation point and maximum CER were higher in 30°C than in 20°C, although there was little effect of temperature in low light. The experimental results are consistent with patterns seen in laboratory studies of other C3 species and define the parameters required by some models of aspen CER in the field.  相似文献   

14.
Aminoacetonitrile (AAN), a specific inhibitor of glycine oxidation in the photorespiratory glycolate pathway, did not inhibit photosynthetic CO2 fixation, but inhibited the apparent photosynthesis of rice leaves under high photosynthetic conditions. However, under such low photosynthetic conditions as low light intensity or senescent leaves, the apparent photosynthesis was not inhibited by AAN. The application of AAN to the leaves led to a greater accumulation of glycine under a high photosynthetic condition like strong light intensity.

From these results, it can be postulated that the inhibition of apparent photosynthesis by AAN was due to the accumulation of intermediate metabolites in the photorespiratory glycolate pathway which was induced by AAN treatment.  相似文献   

15.
The apparent cuticular component of transpiration of stomatabearing leaf epidermis was estimated by restricting stomataldiffusion by mass flow of air in the opposite direction. Thiswas achieved by applying an air pressure gradient across theamphistomatous leaf. Some assumptions of the previously suggestedmethod (antrcek and Slav?k, 1990) were experimentally verifiedusing maize leaves. The technique makes possible a quantitativeestimation of cuticular water loss including that of the externalperistomatal (i.e. vapour not passing through the pores) andthe respective conductance when the stomata are partially open. In addition to the fact that the cuticular portion of the totalleaf vapour loss (i.e. relative cuticular transpiration) dependson stomatal opening, even the absolute value of apparent cuticulartranspiration was (1) increased by lower vapour pressure deficitand (2) decreased with closing stomata. These changes, inducedby variations in a vapour pressure deficit of 2.45?0.35 kPa,ranged between 0.66?0.14µg cm –2 s–1. Theabsolute value of apparent cuticular transpiration changed onaverage by a factor of 2.3 due to stomata opening or closingwhich was induced by turning the light on or by exogenous ABAapplication. Possible interference by residual vapour diffusingthrough the stomatal pore was evaluated by the model application.An attempt was also made to assess the cuticular component ofCO2-uptake rate. Experimental results are discussed in contextwith the feedforward response of stomata to air humidity. Key words: Cuticular transpiration, cuticular CO2-uptake, feedforward response, maize  相似文献   

16.
(±) Abscisic acid (ABA) injected into petioles of attached transpiring leaves of Pharbitis nil Chois. cv violet reduced the photosynthetic capacity of the mesophyll of these leaves as well as the stomatal conductance to CO2 diffusion. Greater than 75% of the injected ABA was recovered as ABA, suggesting that ABA rather than some metabolite thereof was the active compound. The nonstomatal effect of ABA increased from 30% reduction in photosynthesis at 0.25 micromolar ABA in the leaf blade to 90% reduction at 18 micromolar. Despite the effect of ABA on the nonstomatal component of leaf net CO2 uptake, it was calculated that a substantial part of the reduction in leaf net CO2 uptake (50-80%) could be accounted for by the effect of ABA on stomatal conductance.  相似文献   

17.
A comparison was made of stomatal behaviour, and related phenomena,between leaves of garden pea (Pisum sativum cv. Feltham First)inoculated with powdery mildew fungus (Erysiphe pisi) and uninfectedleaves on healthy plants. Twenty four hours after inoculation,stomata opened more widely in the light in infected leaves thanin healthy leaves. Thereafter, stomatal opening was progressivelyreduced by infection and stomata failed to close completelyin the dark until, 7 d after inoculation, all movements ceasedand stomata remained partly open. Transpiration in the lightfollowed closely the pattem of stomatal opening and, after anearly increase compared with healthy controls, was progressivelyreduced by infection. Evidence is presented that transpirationfrom the fungus was less than the reduction in transpiraationfrom the leaf which was caused when development of the myceliumincreased the boundary layer resistance of the leaf. Seven daysafter inoculation, transpiration in the dark was greater frominfected leaves than from healthy leaves because of partly openstomata in the dark. Net photosynthesis in infected leaves was reduced within 24h of inoculation to a level below that found in healthy leavesand thereafter it declined progressively. The initial reductionwas due to a transient increase in photorespiration, for whenthe glycolate pathway was inhibited by a 2% O2 concentrationthere was no difference between the (gross) photosynthetic ratesof healthy and infected leaves. Changes in photorespirationrate were confirmed from the interpretation of the CO2 burston darkening. Reduced stomatal opening was a contributory causeof the reduction in net photosynthesis in the later stages ofinfection. Since the rate of gross photosynthesis, but not therate of photorespiration, of infected plants fell below thatof healthy plants, and infected plants had a higher rate ofrelease of CO2 in the dark than healthy plants from the thirdday after inoculation onwards, infected plants consume an increasinglygreater proportion of their photosynthate in respiratory processesthan do healthy plants. The CO2 compensation point of infectedplants increased at every time of sampling after inoculation.  相似文献   

18.
The activation kinetics of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) following an increase in photon flux density (PFD) were studied by analyzing CO2 assimilation time courses in spinach leaves (Spinacia oleracea). When leaves were exposed to 45 minutes of darkness before illumination at 690 micromoles per square meter per second, Rubisco activation followed apparent first-order kinetics with a relaxation time of about 3.8 minutes. But when leaves were illuminated for 45 minutes at 160 micromoles per square meter per second prior to illumination at 690 micromoles per square meter per second the relaxation time for Rubisco activation was only 2.1 minutes. The kinetics of this change in relaxation times were investigated by exposing dark-adapted leaves to 160 micromoles per square meter per second for different periods before increasing the PFD to 690 micromoles per square meter per second. It was found that the apparent relaxation time for Rubisco activation changed from 3.8 to 2.1 minutes slowly, requiring at least 8 minutes for completion. This result indicates that at least two sequential, slow processes are involved in light-mediated activation of Rubisco in spinach leaves and that the relaxation times characterizing these two processes are about 4 and 2 minutes, respectively. The kinetics of the first process in the reverse direction and the dependence of the relaxation time for the second process on the magnitude of the increase in PFD were also determined. Evidence that the first slow process is activation of the enzyme Rubisco activase and that the second slow process is the catalytic activation of Rubisco by activase is discussed.  相似文献   

19.
Laisk A  Kiirats O  Oja V 《Plant physiology》1984,76(3):723-729
Assimilatory power was measured in ten C3 species by means of a rapid-response gas exchange device as the total amount of CO2 fixed in N2-CO2 atmosphere after switching the light off. Different steady-state levels of the assimilatory power were obtained by varying light intensity and O2 and CO2 concentrations during the preexposition periods in the leaf chamber.

Within the limits of the linear part of the CO2 curve of photosynthesis in N2, the assimilatory power is constant, being sufficient for the assimilation of about 20 nanomoles CO2 per square centimeter leaf. The pool starts to decrease with the onset of the CO2 saturation of photosynthesis. Increase in O2 concentration from 0 to 100% at 350 microliters CO2 per liter produces a considerable decrease in the assimilatory power.

The mesophyll conductance (M) was found to be proportional to the assimilatory power (A): M = mA. The most frequently occurring values of the proportionality constant (m) (called the specific efficiency of carboxylation) were concentrated between 0.03 and 0.04 centimeter per second per nanomole A per square centimeter but the measured extreme values were 0.01 and 0.06 centimeter per second per nanomole A per square centimeter. The specific rate of carboxylation (the rate per unit A) showed a hyperbolic dependence on CO2 conentration with the most frequent values of Km (CO2) ranging from 25 to 35 micromolar in the liquid phase of mesophyll cells (extremes 23 and 100 micromolar).

It is concluded that the CO2 and light-saturated rate of photosynthesis is limited by the reactions of the formation of the assimilatory power and not by ribulose-1,5-bisphosphate carboxylase. O2 is a competitive consumer of the assimilatory power, and the inhibitory effect of O2 on photosynthesis is caused mainly by a decrease in the pool of the assimilatory power at high O2 concentrations. In intact leaves, the kinetic properties of ribulose-1,5-bisphosphate carboxylase seem to be variable.

  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号