首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stromata of Hypoxylon fragiforme were studied during the vegetation period by hplc profiling, revealing changes in the composition during stromatal development. Cytochalasin H and two new cytochalasins named fragiformins A–B were identified as major constituents of the young, maturing stromata, whereas mature, ascogenous material yielded large amounts of mitorubrin-type azaphilones. The above compounds, further cytochalasins from Xylariaceae and other fungi, and additional azaphilones of the mitorubrin type were assayed for their nematicidal effects against Caenorhabditis elegans and their antimicrobial activities against Bacillus subtilis, Yarrowia lipolytica, and various filamentous fungi. The results confirmed data in the literature on broad-spectrum non-selective activities of azaphilones and cytochalasins in biological systems. Most interestingly, laboratory cultures of the above Hypoxylon spp. mainly produced dihydroisocoumarin derivatives and were found devoid of mitorubrins and cytochalasins. These rather drastic changes in the secondary metabolism of H. fragiforme and the above biological activities are discussed in relation to the possible biological functions of secondary metabolites (extrolites) in the Hypoxyloideae.  相似文献   

2.
Monascus purpureus IB1 produces about 50-fold higher levels of azaphilone pigments than M. purpureus NRRL1596. Differently pigmented mutants were obtained from M. purpureus IB1 by nitrosoguanidine treatment. A highly pigmented strain, M. purpureus HP14, was found to lack the formation of the classical yellow and orange azaphilones and was found to produce only about 10% of the red azaphilone pigments. The intense color was associated with novel pigments as shown by high-performance liquid chromatography (HPLC). The addition of hexanoic acid to M. purpureus IB1 resulted in higher volumetric and specific red pigment productivity, but in a complete absence of the classical orange azaphilones, while the classical yellow and red azaphilone pigments were severely reduced; new peaks corresponding to less hydrophobic pigments were found in hexanoic-supplemented cultures by HPLC. Purification of pigments from hexanoic-supplemented cultures showed the presence of five new pigments as indicated by the absorption spectra and HPLC analysis. Two of them, R3 and Y3, were characterized by nuclear magnetic resonance as 9-hexanoyl-3-(2-hydroxypropyl)-6a-methyl-9,9a-dihydro-6H-furo[2,3-h]isochromene-6,8(6aH)-dione and 4-[2,4-dihydroxy-6-(3-hydroxybutanethioyloxy)-3-methylphenyl]-3,4-dihydroxy-3,6-dimethylheptanoic acid. These pigments were also found to be present in cultures of the high-producing mutant M. purpureus HP14. These new pigments are less hydrophobic than the classical azaphilones and may have better properties as natural colorants in the food industry.  相似文献   

3.
A new azaphilone, chaephilone E, eight azaphilone derivatives, and three chaetoglobosins were isolated from endophytic fungi Chaetomium globosum. The structures of the compounds were elucidated by 1D and 2D NMR as well as HR‐ESI‐MS data, and the absolute configuration of chaephilone E was established on the basis of electronic circular dichroism and NOESY spectrum. The activity of chaephilone E was evaluated via the cytotoxic assay (human hepatoma cell lines HepG‐2) and brine shrimp (Artemia salina) bioassay.  相似文献   

4.
Summary Comparison of the amino acid composition of cell-proteins using 17 amino acids has been used to investigate the biological evolution of organisms such as bacteria, blue-green alga, green alga, fungi, slime mold, protozoa and vertebrates. The degree of difference in the amino acid ratios between any two groups reflects the degree of divergency in biological evolution. The amino acid composition of the Gram-negative bacteria (Escherichia coli,Klebsiella,Proteus, andVibrio alginolyticus) was identical. However, the amino acid composition ofStaphylococcus aureus andBacillus subtilis, which are Gram-positive bacteria, differed from each other and from the Gram-negative bacteria. The amino acid composition of the blue-green alga (Cyanobacterium,Chroococidiopsis) was quite similar to that ofE. coli. A marked difference in the amino acid composition was observed betweenE. coli and green alga (Chlorella), and significant differences were observed betweenE. coli and other organisms, such as fungi, protozoa (Tetrahymena), slime mold (Dictyostelium discoideum) and vertebrates. In conclusion, the change in cellular amino acid composition reflects the divergence which has occurred during biological evolution, whereas a basic pattern of amino acid composition is maintained in spite of a long period of evolutional divergence among the various organisms. Thus, it is proposed that the primitive life forms established at the end of prebiotic evolution had a similar amino acid composition.  相似文献   

5.
Microorganisms produce low-molar-mass secondary metabolites exhibiting different biological activities, which are used.e.g., in medicine as antimicrobial and antifungal agents, alkaloids and toxins. Some of these substances have highly diverse biological activities and unusual structures. They are produced by streptomycetes, fungi, and bacilli, but interesting products have also been obtained from microorganisms growing in extreme conditions. Several thousands of microbial products have so far been discovered and many other, which can be potentially useful, and/or prospective for human use, can still be in the offing.  相似文献   

6.
Two new brominated azaphilones, 5-bromoisorotiorin (1) and penicilazaphilones H (2), along with a known azaphilone, 5-bromosclerotiorin (3) were isolated from the marine-derived fungus Penicillium sclerotiorum E23Y–1A cultivated on the solid rice medium with 3.3%NaBr. The structures of three compounds were elucidated based on 1D and 2D NMR spectra as well as HRESIMS data. Their absolute configurations were determined by ECD spectra analysis. Compounds 1-3 showed moderate antibacterial activities against Staphylococcus aureus ATCC 25923 with diameter of the inhibition zones of 8.08 ± 0.01, 7.50 ± 0.05 and 8.17 ± 0.05 mm, respectively, as well as compound 3 exhibited weak inhibitory activity against AChE.  相似文献   

7.
Jahn  Anne  Petersen  Maike 《Phytochemistry Reviews》2022,21(4):1247-1271

During the last decades, the research on the biological activities of extracts from Cimicifuga/Actaea species and Petasites japonicus as well as their active ingredients has been intensified. Besides terpenoids as dominant natural product group, hydroxycinnamic acid esters such as fukinolic acid and several cimicifugic acids have been isolated from Actaea and Petasites species and their chemical structures have been elucidated. Investigations on the biological properties of these hydroxycinnamic acid esters are currently undertaken and some compounds might be promising therapeutic tools. In this review, we have gathered information on the genera Actaea and Petasites, the occurrence of cimicifugic and fukinolic acids and some aspects of their biosynthesis. Furthermore, we have summarized the medicinal aspects of fukinolic acid and cimicifugic acids. In connection with the biological activities of these compounds, structural features of the hydroxycinnamic acid derivatives move into the focus. The position of the hydroxyl group at the aromatic rings and the introduction of an electron-donating moiety may be important for anti-inflammatory, antiviral, cytotoxic and vasoactive effects of these compounds.

  相似文献   

8.
Most of biological oxygen reduction is catalyzed by the heme‐copper oxygen reductases. These enzymes are redox‐driven proton pumps that take part in generating the proton gradient in both prokaryotes and mitochondria that drives synthesis of ATP. The enzymes have been divided into three evolutionarily‐related groups: the A‐, B‐, and C‐families. Recent comparative studies suggest that all oxygen reductases perform the same chemistry for oxygen reduction and comprise the same essential elements of the proton pumping mechanism, such as the proton loading and kinetic gating sites, which, however, appear to be different in different families. All species of the A‐family, however, demonstrate remarkable similarity of the central processing unit of the enzyme, as revealed by their recent crystal structures. Here we demonstrate that cytochrome c oxidases (CcO) of such diverse organisms as a mammal (bovine heart mitochondrial CcO), photosynthetic bacteria (Rhodobacter sphaeroides CcO), and soil bacteria (Paracoccus denitrificans CcO) are not only structurally similar, but almost identical in microscopic electrostatics and thermodynamics properties of their key amino‐acids. By using pKa calculations of some of the key residues of the catalytic site, D‐ and K‐ proton input, and putative proton output channels of these three different enzymes, we demonstrate that the microscopic properties of key residues are almost identical, which strongly suggests the same mechanism in these species. The quantitative precision with which the microscopic physical properties of these enzymes have remained constant despite different evolutionary routes undertaken is striking. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Summary. Large amounts of amino acids are produced by nitrogen-fixing bacteria such as Azotobacter, Azospirillum, Rhizobium, Mesorhizobium and Sinorhizobium when growing in culture media amended with different carbon and nitrogen sources. This kind of bacteria live in close association with plant roots enhanced plant growth mainly as a result of their ability to fix nitrogen, improving shoot and root development suppression of pathogenic bacteria and fungi, and increase of available P concentration. Also, it has been strongly evidenced that production of biologically substances such as amino acids by these rhizobacteria are involved in many of the processes that explain plant-grown promotion. This paper reviews literature concerning amino acids production by nitrogen-fixing bacteria. The role of amino acids in microbial interactions in the rhizosphere and establishment of plant bacterial association is also discussed.  相似文献   

10.
α,β-Dehydroamino acids are naturally occurring non-coded amino acids, found primarily in peptides. The review focuses on the type of α,β-dehydroamino acids, the structure of dehydropeptides, the source of their origin and bioactivity. Dehydropeptides are isolated primarily from bacteria and less often from fungi, marine invertebrates or even higher plants. They reveal mainly antibiotic, antifungal, antitumour, and phytotoxic activity. More than 60 different structures were classified, which often cover broad families of peptides. 37 different structural units containing the α,β-dehydroamino acid residues were shown including various side chains, Z and E isomers, and main modifications: methylation of peptide bond as well as the introduction of ester group and heterocycle ring. The collected data show the relation between the structure and bioactivity. This allows the activity of compounds, which were not studied in this field, but which belong to a larger peptide family to be predicted. A few examples show that the type of the geometrical isomer of the α,β-dehydroamino acid residue can be important or even crucial for biological activity.  相似文献   

11.
丝状真菌作为一类重要的微生物,被广泛应用于发酵食品、工业酶和次生代谢物等工业生产中。真菌鞘糖脂主要由鞘氨醇、脂肪酸链和特殊的极性基团组成,根据极性基团的不同,分为中性鞘糖脂和酸性鞘糖脂两大类。鞘糖脂不仅参与真菌生长、细胞分化、增殖、细胞凋亡、逆境胁迫等重要生理活动,中性鞘糖脂还可作为功能性医药用品、化妆品和保健食品的重要活性组分。本文论述了真菌鞘糖脂的主要种类、结构、生物合成途径和及其参与丝状真菌生长、分化和响应逆境胁迫的生物学功能;探讨了真菌中性鞘糖脂作为抗菌肽的靶点和酸性鞘糖脂在开发抗真菌药物中的应用;同时还综述了中性鞘糖脂作为化妆品的保湿成分或保健食品的功能成分,在改善皮肤屏障功能和预防特应性皮炎中的重要作用的相关研究进展,尤其是来源于曲霉的中性鞘糖脂,可显著增强皮肤屏障功能,并可作为益生元预防肠道损伤;另外还探讨了曲霉尤其是米曲霉作为开发中性鞘糖脂生物资源的优势。  相似文献   

12.
Summary Ornithine carbamoyl transferase and leucine aminotransferase of Neurospora crassa represent two of many amino acid synthetic enzymes which are regulated through cross-pathway (or general) amino acid control. In the wild-type strain both enzymes display derepressed activities if the growth medium is supplemented with high (mM range) concentrations of l-amino acids derived from branched pathways, i.e. the aspartate, pyruvate, glycerophosphate and aromatic families of amino acids. A cpc-1 mutant strain, impaired in cross-pathway regulation i.e. lacking the ability to derepress, shows delayed growth under such conditions. In the presence of glycine, homoserine and isoleucine various cpc-1 isolates do not grow at all. Derepression of the wild-type enzymes and the retarded growth of the mutant strain can be reversed if certain amino acids are present in the medium in addition to the inhibitory amino acids.  相似文献   

13.
The single-copy actin gene of Giardia lamblia lacks introns; it has an average of 58% amino acid identity with the actin of other species; and 49 of its amino acids can be aligned with the amino acids of a consensus sequence of heat shock protein 70. Analysis of the potential RNA secondary structure in the transcribed region of the G. lamblia actin gene and of the single-copy actin gene of nine other species did not reveal any conserved structures. The G. lamblia actin sequence was used to root the phylogenetic trees based on 65 actin protein sequences from 43 species. This tree is congruent with small-subunit rRNA trees in that it shows that oomycetes are not related to higher fungi; that kinetoplatid protozoans, green plants, fungi and animals are monophyletic groups; and that the animal and fungal lineages share a more recent common ancestor than either does with the plant lineage. In contrast to smalls-ubunit rRNA trees, this tree shows that slime molds diverged after the plant lineage. The slower rate of evolution of actin genes of slime molds relative to those of plants, fungi, and animals species might be responsible for this incongruent branching. Correspondence to: G. Drouin  相似文献   

14.
Cytochrome P450 monooxygenases (P450s) are heme-thiolate proteins distributed across the biological kingdoms. P450s are catalytically versatile and play key roles in organisms primary and secondary metabolism. Identification of P450s across the biological kingdoms depends largely on the identification of two P450 signature motifs, EXXR and CXG, in the protein sequence. Once a putative protein has been identified as P450, it will be assigned to a family and subfamily based on the criteria that P450s within a family share more than 40% homology and members of subfamilies share more than 55% homology. However, to date, no evidence has been presented that can distinguish members of a P450 family. Here, for the first time we report the identification of EXXR- and CXG-motifs-based amino acid patterns that are characteristic of the P450 family. Analysis of P450 signature motifs in the under-explored fungal P450s from four different phyla, ascomycota, basidiomycota, zygomycota and chytridiomycota, indicated that the EXXR motif is highly variable and the CXG motif is somewhat variable. The amino acids threonine and leucine are preferred as second and third amino acids in the EXXR motif and proline and glycine are preferred as second and third amino acids in the CXG motif in fungal P450s. Analysis of 67 P450 families from biological kingdoms such as plants, animals, bacteria and fungi showed conservation of a set of amino acid patterns characteristic of a particular P450 family in EXXR and CXG motifs. This suggests that during the divergence of P450 families from a common ancestor these amino acids patterns evolve and are retained in each P450 family as a signature of that family. The role of amino acid patterns characteristic of a P450 family in the structural and/or functional aspects of members of the P450 family is a topic for future research.  相似文献   

15.
Filamentous fungi are known as producers of a large array of diverse secondary metabolites (SMs) that aid in securing their environmental niche. Here, we demonstrated that the SMs have an additional role in fungal defence against other fungi: Trichoderma guizhouense, a mycoparasite, is able to antagonize Fusarium oxysporum f. sp. cubense race 4 (Foc4) by forming aerial hyphae that kill the host with hydrogen peroxide. At the same time, a gene cluster comprising two polyketide synthases is strongly expressed. Using functional genetics, we characterized this cluster and identified its products as azaphilones (termed as trigazaphilones). The trigazaphilones were found lacking of antifungal toxicity but exhibited high radical scavenging activities. The antioxidant property of trigazaphilones was in vivo functional under various tested conditions of oxidative stress. Thus, we conclude that the biosynthesis of trigazaphilones serves as a complementary antioxidant mechanism and defends T. guizhouense against the hydrogen peroxide that it produces to combat other fungi like Foc4.  相似文献   

16.
微生物源脂肽具有抑制真菌和细菌的生长、抗病毒和抗肿瘤等多种生物活性,在农业生物防治、临床医疗、环境治理等多种领域具有巨大的应用潜力。然而,低产量一直是影响其推广应用的瓶颈。深入了解脂肽合成的关键因素和调控策略对于提高其产量和纯度至关重要。本文概括了3大家族脂肽surfactin、fengycin和iturin的结构、功能及应用前景,介绍了NRPS和NRPS-PKS两种合成系统的结构域和功能,阐释了脂肽生物合成过程中侧链脂肪酸的合成、脂肪酸的活化及与氨基酸的连接、肽链的延伸和环化三个阶段的模块组装和酶催化活动,以及三大家族脂肽合成操纵子开放阅读框的组成;总结了导入或缺失关键基因、定点突变、模块替换、强启动子替换、修饰前体路径等多种遗传操作对脂肽产量的影响,以及群体感应肽信息素、sigma因子等全局调控因子对脂肽合成基因表达的调节。指出利用多组学联用深入探讨脂肽合成的全局分子调控机制和加强结构域蛋白互作和分子动力学研究是提高脂肽产量和纯度以及创造新脂肽的理论基础,提出了利用基因组装和编辑等合成生物学方法及代谢工程技术提高脂肽产量和挖掘新型脂肽靶向性的可能途径,为推进脂肽的生产和应用进程提供科学参考。  相似文献   

17.
A number of soil isolates belonging to the genus Trichoderma were found to produce isonitrins A, B, C and D and isonitrinic acids E and F, a new class of antibiotics characterized by the presence of isonitrile groups. Taxonomy of the producing organisms, fermentation, isolation and physicochemical and biological properties of isonitrins and isonitrinic acids are reported. Isonitrin A showed the highest in vitro antimicrobial activities against gram-positive and negative bacteria and fungi.  相似文献   

18.
The skin secretions of Bombina species contain peptides and small proteins with interesting biological properties. These include bombesin, thyrotropin releasing hormone, BSTI and Bv8. In this review, the biosynthesis and antimicrobial activity of two groups of peptides, bombinins and bombinins H, are described. To date, these have only been found in Bombina skin. They are derived from common precursors containing one or two bombinin copies at the amino and a single bombinin H at the carboxyl end. Bombinins are active against Gram-positive and Gram-negative bacteria and fungi but virtually inactive in haemolysis assays. Conversely, bombinins H have lower bactericidal activities but lyse erythrocytes. In the skin secretions, bombinins H are present in two sizes with either 20 or 17 amino acids. Moreover, they occur as epimers with either an l- or a d-amino acid at position 2. An enzyme catalyzing this inversion of chirality of an amino acid in peptide linkage has been isolated from Bombina skin secretions. In different tests, also with different stages of the life cycle of Leishmania parasites, the d-forms were found to be more active. Biophysical studies have yielded some insight into the different behaviours of the epimers in model membranes.  相似文献   

19.
The effects of some selected arbuscular mycorrhizal (AM) fungi, Gigaspora margarita and Glomus mossae on the growth and the role of soluble amino acids of two contrasting cocoa cultivars (ICS84 tolerant and SNK10 sensitive) against black pod disease caused by Phytophthora megakarya were investigated. Root colonization by AM fungi is between 50 and 70% 18 weeks after planting. Tested AM fungi significantly increased all the plant growth parameters (height, number of leaves, shoot and root matter) and P uptake as compared to non‐inoculated plants in pot experiments. AM fungi inoculated cocoa reduced the disease severity. Compared to the control, the soluble amino acid levels increased with inoculation of the AM fungi strains in the necrotic stems of disease on inoculated cocoa plants. Significant relationships between amino acids and disease severity observed for two cocoa cultivars imply that the induction of specific amino acids synthesized by leaves, such as arginine, cysteine and glutamic acid, may represent potential candidate molecules for adaptation of such cultivars to P. megakarya disease. Inoculating seedlings with AMF in nurseries could enhance the development of cocoa plants protected against P. megakarya.  相似文献   

20.
Pectate lyase (EC 4.2.2.2) is an enzyme involved in the maceration and soft rotting of plant tissue via degradation of cell wall in organisms. Plants as well as bacteria and fungi are capable of producing pectate lyases. Here we report the cloning of a novel full-length cDNA of pectate lyase gene, designated BPL1, from Brassica napus by rapid amplification of cDNA ends. BPL1 cDNA is 1787 bp containing a 1503 bp ORF encoding a 500 amino acid protein precursor. The protein precursor has a potential signal peptide with 22 amino acids. Alignment of sequences shows that there are some extremely conserved amino acids among pectate lyase-like proteins from different plant species, and novel C-terminal domains are found in Arabidopsis and Brassica. Phylogenetic analysis of 50 pectate lyase-like proteins from various species demonstrates the obvious distinction among pectate lyase-like proteins from plants, bacteria and fungi, which are subsequently clustered into three groups. The cloning of BPL1 enables us to explore its diverse roles in higher plants and potential application in crop improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号