首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Erik  Madsen 《Physiologia plantarum》1968,21(1):168-175
The carbohydrate content (starch, glucose and sucrose) in tomato plants grown in air Containing 0.04, 0.10, 0.15, 0.22, 0.32, or 0.50 vol. per cent CO2 was studied at 2 hours’ intervals over a period of 24 hours. The highest starch content was found at 0.22 vol. per cent CO2, while the highest content of soluble sugars were reached at a concentration of 0.10 vol. per cent CO2. A few observations of the morphogenic effects of carbon dioxide were also made.  相似文献   

2.
Barley roots contain a CO2 sensitive respiratory fraction which is inhibited in 50 per cent CO2 and is partially restored upon subsequent exposure to air. The residual O2 consumption occurring at CO2 concentrations between 50 per cent and 95 per cent amounts to about 40 per cent of the O2 uptake in air and can support K+ uptake for a limited time at a rate equal to or higher than occurs in air. Above 95 per cent CO2 both O2 and K+ uptakes decrease rapidly. 2,4-dinitrophenol (DNP), in the range of 10?6 to 10?5M, stimulates O2 uptake by the roots in air. The stimulation is absent when roots are treated with DNP in 80 per cent CO2, presumably because of the reduced demand for inorganic phosphate and phosphate acceptor at the lower respiratory level in high CO2. In either air or CO2, K+ uptake is strongly inhibited by DNP. A comparison of the respiratory and K+ uptake data indicates that O2 consumption is a necessary requirement for the uptake process in high CO2. Protoplasmic streaming in the root cells is rapidly stopped by high CO2 although K+ uptake and O2 consumption continue. The cation uptake mechanism in high CO2 appears to be limited to the stationary cytoplasm. It is also possible that a similar mechanism may be involved in cation uptake in air.  相似文献   

3.
Supplementing pollen suspension cultures with CO2 (3–5per cent) caused a marked increase in germination and tube growthin vitro in Brassica campestris L. cv. toria. A weakening ofself-incompatibility by increased CO2 levels from 3–5per cent was observed. The percentage of pollen tubes whichpenetrated the cuticle layer of stigmatic papilla cells in self-pollinatedpistils was high when CO2 level was 5 per cent. Phosphoenolpyruvate (PEP) carboxylase activity was greater in the pollengerminated in 4 per cent CO2 as compared to air (0.03 per cent).A possible role of CO2 for self-recognition and control of pollentube growth is proposed, proposed. Brassica campestris L., carbon dioxide, self-incompatibility, phosphoenol pyruvate carboxylase  相似文献   

4.
Atkins CA 《Plant physiology》1978,62(4):486-490
The effects of CO2 concentration and illumination on net gas exchange and the pathway of 14CO2 fixation in detached seeds from developing fruits of Lupinus albus (L.) have been studied.

Increasing the CO2 concentration in the surrounding atmosphere (from 0.03 to 3.0% [v/v] in air) decreased CO2 efflux by detached seeds either exposed to the light flux equivalent to that transmitted by the pod wall (500 to 600 micro-Einsteins per square meter per second) in full sunlight or held in darkness. Above 1% CO2 detached seeds made a net gain of CO2 in the light (up to 0.4 milligrams of CO2 fixed per gram fresh weight per hour) but 14CO2 injected into the gas space of intact fruits (containing around 1.5% CO2 naturally) was fixed mainly by the pod and little by the seeds.

Throughout development seeds contained ribulose-1,5-bisphosphate carboxylase activity (EC 4.1.1.39), especially in the embryo (up to 99 micromoles of CO2 fixed per gram fresh weight per hour) and phosphoenolpyruvate carboxylase (EC 4.1.1.31) in both testa (up to 280 micromoles of CO2 fixed per gram fresh weight per hour) and embryo (up to 355 micromoles of CO2 fixed per gram fresh weight per hour).

In kinetic experiments the most significant early formed product of 14CO2 fixation in both light and dark was malate but in the light phosphoglyceric acid and sugar phosphates were also rapidly labeled. 14CO2 fixation in the light was linked to the synthesis of sugars and amino acids but in the dark labeled sugars were not formed.

  相似文献   

5.
In vitro experiments showed that concentrations of CO2 above 6 per cent inhibited succinate oxidation; 30–10 per cent of succinate oxidation may be blocked in the presence of 12 per cent CO2. Storage of rhizome cores in CO2 increased the levels of all the main acids except malic. The amino acids, aspartate, glutamate and alanine, also increased in amounts under these conditions. Cores fix CO2 probably via the reaction phosphoenolpyruvate to oxaloacetate. Raised CO2 levels increased the rate of diminution of carbohydrate, but carbon itself was conserved due to a reduction in CO2 output.  相似文献   

6.
Intact air-grown (photosynthetic photon flux density, 400 microeinsteins per square meter per second) clover plants (Trifolium subterraneum L.) were transfered to high CO2 (4000 microliters CO2 per liter; photosynthetic photon flux density, 400 microeinsteins per square meter per second) or to high light (340 microliters CO2 per liter; photosynthetic photon flux density, 800 microeinsteins per square meter per second) to similarly stimulate photosynthetic net CO2 uptake. The daily increment of net CO2 uptake declined transiently in high CO2, but not in high light, below the values in air/standard light. After about 3 days in high CO2, the daily increment of net CO2 uptake increased but did not reach the high light values. Nightly CO2 release increased immediately in high light, whereas there was a 3-day lag phase in high CO2. During this time, starch accumulated to a high level, and leaf deterioration was observed only in high CO2. After 12 days, starch was two- to threefold higher in high CO2 than in high light, whereas sucrose was similar. Leaf carbohydrates were determined during the first and fourth day in high CO2. Starch increased rapidly throughout the day. Early in the day, sucrose was low and similar in high CO2 and ambient air (same light). Later, sucrose increased considerably in high CO2. The findings that (a) much more photosynthetic carbon was partitioned into the leaf starch pool in high CO2 than in high light, although net CO2 uptake was similar, and that (b) rapid starch formation occurred in high CO2 even when leaf sucrose was only slightly elevated suggest that low sink capacity was not the main constraint in high CO2. It is proposed that carbon partitioning between starch (chloroplast) and sucrose (cytosol) was perturbed by high CO2 because of the lack of photorespiration. Total phosphate pools were determined in leaves. Concentrations based on fresh weight of orthophosphate, soluble esterified phosphate, and total phosphate markedly declined during 13 days of exposure of the plants to high CO2 but changed little in high light/ambient air. During this time, the ratio of orthophosphate to soluble esterified phosphate decreased considerably in high CO2 and increased slightly in high light/ambient air. It appears that phosphate uptake and growth were similarly stimulated by high light, whereas the coordination was weak in high CO2.  相似文献   

7.
Both Chlorella pyrenoidosa and Chlorella vulgaris grow equally well at 20°C aerated with ordinary air or mixtures of air with 5 or 12 per cent CO2 (5 klux continuous light). Whereas C. vulgaris relatively rapidly adapts to a higher CO2 tension, adaptation takes about 24 hours for C. pyrenoidosa. In Chlorella vulgaris pH in the range 3.6–7.6 has no apparent influence on the rate of photosynthesis in experiments having a duration of two hours. This is true both for algae grown aerated by ordinary air and for algae grown with a mixture of 5 per cent CO2 in air. The adaptation time must be short. In Chlorella pyrenoidosa the same is found for algae in ordinary air, whereas an influence of pH is seen in some experiments where the aeration was by 5 per cent CO2 in air. As is to be expected, the rate of photosynthesis in C. pyrenoidosa during the first two hours is very much influenced by the concentration of free CO2. The highest rate is found at the CO2 concentration at which the algae had been growing previously. The influence on the rate of photosynthesis in C. vulgaris is very much less, although in principle the same. The investigation of the corresponding influence on the rate of respiration is complicated by considerable variation from one series to another. In C. vulgaris this is particularly of importance. In C. pyrenoidosa, the highest rate of respiration is generally found at the CO2-concentration at which the alga had been growing before the experiment. It seems probable that variations between similar series is due to the fact that the algae were grown in continuous light but with dilution with fresh culture medium when the optical density had reached a certain magnitude. Algae grown in this way are neither synchronized nor non-synchronized.Our thanks are due to the Danish State Research Foundation for financial support.  相似文献   

8.
Mutant strains of the facultative autotrophic bacterium Alcaligenes eutrophus blocked in glycollate utilization were isolated and characterized. One of the strains, AE161, which lacked glycollate oxidoreductase activity, excreted up to 1.2mol glycollate/mg cell protein per hour during autotrophic growth. This mutant strain was used to study the efficiency of CO2 fixation in terms of how much of the fixed carbon was excreted as glycollate under different conditions. Glycollate excretion was not detected during heterotrophic growth. Only 1% of the total CO2 fixed was excreted as glycollate in an atmosphere of 4% CO2 plus 20% O2. The rate of glycollate excretion showed a large increase and CO2 fixation decreased as the CO2 concentration was lowered. Almost half (40–50%) of the total CO2 fixed was excreted as glycollate in an atmosphere of 0.07% CO2 plus 20% O2.Abbreviations HPMS 2-pyridyl-hydroxymethane sulphonic acid - RuBP ribulose 1,5-bisphosphate To whom offprint requests are to be sent  相似文献   

9.
Dry matter accumulation, nitrogen content and N2 fixation rates of soybean (Glycine max [L.] Merr. cv. Wye) plants grown in chambers in which the aerial portion was exposed to a pO2 of 5, 10, 21, or 30% and a pCO2 of 300 μl CO2/l or a pO2 of 21% and a pCO2 of 1200 μl CO2/l during the complete growth cycle were measured. Total N2[C2H2] fixed was increased by CO2/O2 ratios greater than those in air and was decreased by ratios smaller than those in air; the effects on N2 fixation of decreased pO2 or elevated pCO2 were quantitatively similar during the period of vegetative growth. Decreased pO2 produced a smaller increase then elevated pCO2 during the reproductive period, presumably because of the decreased sink activity of the arrested reproductive growth under subambient pO2. At a pO2 of 5% and a pCO2 of 300 μl CO2/l total N2 fixed was increased 125% and per cent nitrogen content in the vegetative parts was increased relative to air while that in the seed was decreased. Dry matter production was increased and reproductive growth was arrested as previously reported for plants receiving only fertilizer nitrogen. At a pO2 of 30% and a pCO2 of 300 μl CO2/l total N2 fixed was decreased 50% and per cent nitrogen content in the vegetative part was increased relative to air while that in the reproductive structures was unaffected. Dry matter production was similarly decreased in both vegetative and reproductive structures. These effects of altered pO2 in the aerial part on N2 fixation are consistent with the hypothesis that the amount of photosynthate available to the nodule may be the most significant primary factor limiting N2 fixation while sink activity of the reproductive structures may be a secondary factor.  相似文献   

10.
The Effect of Oxygen Concentration on Photosynthesis in Higher Plants   总被引:2,自引:0,他引:2  
The influence of oxygen concentration in the range 0–21% on photosynthesis in intact leaves of a number of higher plants has been investigated. Photosynthetic Co2 fixation of higher plants is markedly inhibited by oxygen in concentrations down to less than 2%. The inhibition increases with oxygen concentration and is about 30% in an atmosphere of 21% O2 and 0.03% Co.2. Undoubtedly, therefore, oxygen in normal air exerts a strong inhibitory effect on photosynthetic Co2 fixation of land plants under natural conditions. The inhibitory effect of oxygen is rapidly produced and fully reversible. The degree of inhibition is independent of light intensity. The quantum yield for Co2 fixation, i.e. the slope of the linear part of the curve for Co2 uptake versus absorbed quanta, is inhibited to the same degree as the light saturated rate at all oxygen concentrations studied. Diverse species of higher plants, varying greatly in photosynthetic response to light intensity and Co2 concentration, and with light saturated roles of Co2 fixation differing by a factor of more than 10 times, show a remarkable similarity in their response to oxygen concentration. By contrast, when studied under the same conditions as the higher plants, the green algae Chlorella and Ulva did not show-any measurable inhibition of photosynthetic Co2 fixation. Similarity, the increase in fluorescence intensity with increasing oxygen concentrations found in higher plants also was not seen in Chlorella. The present results, together with previous data on the photosynthetic response of algae to oxygen concentration, indicate that the photosynthetic apparatus of higher plants differs considerably from that of algae in its sensitivity to oxygen. The inhibitory effect of oxygen on photosynthetic Co2 fixation in higher plants is somewhat higher at wavelengths which excite preferentially photosystem I. Also, the Emerson enhancement of Co2 fixation measured when a far red beam of low intensity is imposed on a background of red light is greater under low oxygen concontrution than under air. Measurements of reversible light-induced absorbance changes reveal that the change at 591 nm, probably caused by pla.stocyanin, is affected by oxygen concentration only if photosystem II is excited. the reducing effect on plastocyanin, caused by excitation of this system, decreases with increasing oxygen concentration. From these results it is suggested that a possible site of the inhibition by oxygen is in the electron carrier chain between the two photosystems. Oxygen might act as an electron acceptor at this site, causing reducing power to react back with molecular oxygen. However, this hypothesis does not account for equal inhibitions of the quantum yield and the light saturated rate of photosynthetic CO2 uptake. Through the photosynthetic process plants take up carbon dioxide and evolve oxygen. The present high concentration of molecular oxygen in the atmosphere is generally considered to have arisen from the activity of photo-synthetic organisms. The effect of oxygen concentration would seem, therefore, to he a problem of great interest, not only in the field of the biophysics and biochemistry of photosynthesis, but in ecology and other branches of biology as well. It was discovered by Warburg (1920) that high concentrations of oxygen inhibit the rate of photosynthetic oxygen evolution in the unicellular alga Chlorella. Since then, it has been confirmed by various authors that oxygen cconcentrations in the range 21–100 per cent have a marked inhibitory effect on photosynthesis, particularly at saturating light intensities. There is some evidence that under conditions when carbon dioxide concentration limits photosynthesis, the inhibition may become obvious even in 21 per cent oxygen. The inhibition has not been considered to operate at low light intensities. A review on the subject has been given by Turner and Brittain (1962). Various hypotheses have been put forward to explain the inhibitory effect of oxygen, commonly referred to as the Warhurg effect. Some authors favor the idea of enzyme inhibition; Turner et al. (1958) that one or more enzymes of the carbon reduction cycle are inactivated by oxygen: lirianlals (1962) that enzymes of the oxygen-evolving complex are inhihited. Other hypotheses concern back-reactions in which molecular oxygen is taken up, thus reversing the photosynthetic process. These reactions include photo-oxidation, photorespiration, and the Mehler reaction (Tamiya et al., 1957). At present, there is no generally accepted hypothesis explaining the effect. The often conflicting results on which these hypotheses were based have been obtained mostly on algae. The first observation of an inhibitory effect on photosynthesis in a higher plant was made hy McAlister and Myers (1940) in wheat leaves. They found that the photosyntlietic CO2 uptake was markedly lower in air than in an atmosphere of about 0.5 per cent oxygen. At the CO2 concentration used (0.03%) the inhibition was present both at high and moderate light intensities. No data were obtained at low light intensities. Although the study of the effect of oxygen concentration on photosynthesis in higher plants would seem to be of great interest, particularily since the natural environment of most land plants is an atmosphere with an oxygen content of 21 per cent, it has attracted very little attention. To the author's knowledge no thorough investigation on the subject has been published. The present investigalion is directed toward elucidatirng the photosynthetic response of higher plants to oxygen concentrations up to that of normal air. Data are presented showing that the photosynthetic CO2 fixation in intact leaves of higher plants, regardless of light intensity, is strongly inhibited by oxygen in normal air, and that the pholosynthetic response to oxygen differs considerably from that of green algae. The present investigalion is directed toward elucidatirng the photosynthetic response of higher plants to oxygen concentrations up to that of normal air. Data are presented showing that the photosynthetic CO2 fixation in intact leaves of higher plants, regardless of light intensity, is strongly inhibited by oxygen in normal air, and that the pholosynthetic response to oxygen differs considerably from that of green algae.  相似文献   

11.
The time in the cell cycle when CO2 provision was required for cell development and division was determined in synchronous cultures of Chlamydomonas segnis Ettl bubbled with air (0.03% CO2) or air enriched with 5% CO2 under continuous light at 25°C and pH 7. Provision of CO2 (% in air v/v) during the G1-phase was found to be essential for the completion of the cell cycle. There was no demand for CO2 supply throughout the S-phase and mitosis. Using cultures adapted to CO2 concentrations ranging from 0.03 to 5% in air, the apparent CO2 concentration (Km) required for the cells to develop during the G-1-phase and to attain one half the maximal rates of photo-synthetic O2 evolution was calculated as 0.05%. This value increased to 0.1 and 0.5% during the S-phase. For total protein and carbohydrate accumulation, which would reflect inorganic carbon (CO2+ HCO3?) assimilation, the Km (% CO2) were ca. 0.1 and 0.14 throughout the cell cycle, respectively. The CO2 concentration at which the cells exhibited the shortest generation time (6.7 h) was 0.1%. These results showed that during development, cells photosynthesizing (evolving O2) at maximal rates but accumulating protein and carbohydrate at one half the maximal rates or less would complete their vegetative life cycle in the shortest time.  相似文献   

12.
Wolfram R. Ullrich 《Planta》1971,102(1):37-54
Summary The effect of CO2 on the 32P-labelling of polyphosphates and acid-soluble organic phosphates is studied in synchronously grown cultures of the green alga Ankistrodesmus braunii, using trichloroacetic acid treatment and acid hydrolysis for the fractionation of the phosphorus compounds.Three per cent CO2 in nitrogen causes an inhibition of the labelling of polyphosphates but a marked increase of 32P in organic phosphates, whereas oxygen (CO2-free air) produces the reverse effect. Polyphosphates and ATP are the fractions most stimulated by O2, while stable organic phosphates show the strongest inhibition. Labelling of nucleic acids is relatively indifferent to both oxygen and CO2. Three per cent CO2 in air causes the same distribution of 32P-labelling as 3 per cent CO2 in N2. 32P-labelling is strongly dependent on the pH of the medium. In the absence of CO2, polyphosphate labelling is highest in the acidic range, whereas organic phosphates and ATP show optimum labelling and the highest percentage of the total 32P in the alkaline pH range. The effect of CO2 is strongest between pH 5 and 6, that of oxygen between pH 8 and 9. Apparently the pH of the medium exerts a considerable influence upon the phosphate metabolism inside the cells.Increasing concentration of CO2 lead to the same change of 32P-labelling in nitrogen as in air and to saturation at about 1 per cent CO2 under the conditions used. The curves are in good agreement with those of O2-evolution at increasing concentrations of CO2, but they show completely different rates.Young cells respond to CO2 and O2 differently from cells in the photosynthetically most active stage. In young cells both gasses are less effective.The effect of CO2 is explained by a strong increase in noncyclic photophosphorylation which can proceed only slowly in N2. ATP-consumption connected with high rates of CO2-fixation may be the reason for the low rates of 32P-labelling in the polyphosphate fraction when CO2 is present. The influence of external pH on 32P-labelling is partly due to the pH-dependence of phosphate uptake, but the different response of several fractions to the pH of the medium suggests that the pH of the cytoplasm and possibly even the pH of the interior of the chloroplasts is affected by the external pH. The effect of O2 in the absence of CO2 or at low CO2-concentrations is explained by the well-known inhibition of photosynthesis by oxygen. Increasing concentrations of CO2 reverse this inhibition and correspondingly change the distribution of 32P between the phosphate fractions. The change in sensitivity to CO2 and O2 with the cell age is consistent with the change in the rates of maximum photosynthetic CO2-fixation.

Herrn Prof. Dr. W. Schumacher zum 70. Geburtstag gewidmet.  相似文献   

13.
The objective of this study was to estimate the CO2 absorptivity provided by an in situ carbon supply system using a photosynthetic culture of the cyanobacterium Spirulina platensis in an open raceway pond. The effects of initial total carbon concentrations (ranging from 0 to 0.1 mol/L), suspension depths (ranging from 5 to 20 cm) and pH values (ranging from 8.9 to 11.0) on the CO2 absorptivity were studied. The results indicated that CO2 absorptivity was positively correlated with pH value, negatively correlated with total carbon concentration, and only negligibly affected by the suspension depth. The optimum total carbon concentration range and pH range were 0.03 ∼ 0.09 mol/L and 9.7 ∼ 10.0, respectively. An average CO2 absorptivity of 86.16% and average CO2 utilization efficiency of 79.18% were achieved using this in situ carbon-supply system in large-scale cultivation of Spirulina platensis, with an initial total carbon concentration of 0.06 mol/L and pH value of 9.8. Our results demonstrated that this system could obtain a favorable CO2 utilization efficiency in outdoor, large-scale cultivation of Spirulina platensis in open raceway ponds.  相似文献   

14.
Stable carbon (C) isotopes, in particular employed in labeling experiments, are an ideal tool to broaden our understanding of C dynamics in trees and forest ecosystems. Here, we present a free-air exposure system, named isoFACE, designed for long-term stable C isotope labeling in the canopy of 25 m tall forest trees. Labeling of canopy air was achieved by continuous release of CO2 with a δ13C of −46.9‰. To this end, micro-porous tubes were suspended at c. 1 m distance vertically through the canopy, minimizing CO2 gradients from the exterior to the interior and allowing for C labeling exposure during periods of low wind speed. Target for CO2 concentration ([CO2]) increase was ambient +100 μmol mol−1. Canopy [CO2] stayed within 10% of the target during more than 57% of the time and resulted in a drop of δ13C in canopy air by 7.8‰. After 19 labeling days about 50% of C in phloem sugars and stem CO2 efflux were turned over and 20–30% in coarse root CO2 efflux and soil CO2. The isoFACE system successfully altered δ13C of canopy air for studying turn-over of C pools in forest trees and soils, highlighting their slow turn-over rates.  相似文献   

15.
The extent of the response of plant growth to atmospheric CO2 enrichment depends on the availability of resources other than CO2. An important growth-limiting resource under field conditions is nitrogen (N). N may, therefore, influence the CO2 response of plants. The effect of elevated CO2 (60 Pa) partial pressure (pCO2) on the N nutrition of field-grown Lolium perenne swards, cultivated alone or in association with Trifolium repens, was investigated using free air carbon dioxide enrichment (FACE) technology over 3 years. The established grassland ecosystems were treated with two N fertilization levels and were defoliated at two frequencies. Under elevated pCO2, the above-ground plant material of the L. perenne monoculture showed a consistent and significant decline in N concentration which, in general, led to a lower total annual N yield. Despite the decline in the critical N concentration (minimum N concentration required for non-N-limited biomass production) under elevated pCO2, the index of N nutrition (ratio of actual N concentration and critical N concentration) was lower under elevated pCO2 than under ambient pCO2 in frequently defoliated L. perenne monocultures. Thus, we suggest that reduced N yield under elevated pCO2 was evoked indirectly by a reduction of plant-available N. For L. perenne grown in association with T. repens and exposed to elevated pCO2, there was an increase in the contribution of symbiotically fixed N to the total N yield of the grass. This can be explained by an increased apparent transfer of N from the associated N2-fixing legume species to the non-fixing grass. The total annual N yield of the mixed grass/legume swards increased under elevated pCO2. All the additional N yielded was due to symbiotically fixed N. Through the presence of an N2-fixing plant species more symbiotically fixed N was introduced into the system and consequently helped to overcome N limitation under elevated pCO2. Received: 11 November 1996 / Accepted: 20 May 1997  相似文献   

16.
The circadian rhythm of CO2 assimilation in detached leaves of Bryophyllum fedtschenkoi at 15° C in normal air and continuous illumination is inhibited both by exposure to darkness, and to an atmosphere enriched with 5% CO2. During such exposures substantial fixation of CO2 takes place, and the malate concentration in the cell sap increases from about 20 mM to a constant value of 40–50 mM after 16 h. On transferring the darkened leaves to light, and those exposed to 5% CO2 to normal air, a circadian rhythm of CO2 assimilation begins again. The phase of this rhythm is determined by the time the transfer is made since the first peak occurs about 24 h afterwards. This finding indicates that the circadian oscillator is driven to, and held at, an identical, fixed phase point in its cycle after 16 h exposure to darkness or to 5% CO2, and it is from this phase point that oscillation begins after the inhibiting condition is removed. This fixed phase point is characterised by the leaves having acquired a high malate content. The rhythm therefore begins with a period of malate decarboxylation which lasts for about 8 h, during which time the malate content of the leaf cells must be reduced to a value that allows phosphoenolpyruvate carboxylase to become active. Inhibition of the rhythm in darkness, and on exposure to 5% CO2 in continuous illumination, appears to be due to the presence of a high concentration of CO2 within the leaf inhibiting malic enzyme which leads to the accumulation of high concentrations of malate in the leaf cells. The malate then allosterically inhibits phosphoenolpyruvate carboxylase upon which the rhythm depends. The results give support to the view that malate synthesis and breakdown form an integral part of the circadian oscillator in this tissue.Abbreviations B. Bryophyllum - PEPCase phosphoenolpyruvate carboxylase  相似文献   

17.
Wheat plants were grown in a controlled environment with daytemperatures of 18 ?C and with 500 µ Einsteins m–28–1 of photosynthetically active radiation for 16 h. Beforeanthesis and 2 to 3 weeks after, rates of net photosynthesiswere measured for leaves in 2 or 21% O2 containing 350 vpm CO2at 13, 18, 23, and 28 ?C and with 500 µEinsteins m–2s–1 of photosynthetically active radiation. Also, underthe same conditions of light intensity and temperature, therates of efflux of CO2 into CO2-free air were measured and,for mature flag leaves 3 to 4 weeks after anthesis, gross andnet photosynthesis from air containing 320 vpm 14CO2 of specificactivity 39?7 nCi µmol–1. When the O2 concentration was decreased from 21 to 2% (v/v)the rate of net photosynthesis increased by 32 per cent at thelowest temperature and 54 per cent at the highest temperature.Efflux of CO2 into CO2-free air ranged from 38 per cent of netphotosynthesis at 13 ?C to 86 per cent at 28 ?C. Gross photosynthesis,measured by the 14C assimilated during 40 s, was greater thannet photosynthesis by some 10 per cent at 13 ?C and 17 per centat 28 ?C. These data indicate that photorespiration was relativelygreater at higher temperatures.  相似文献   

18.
KOUCHI  H.; YONEYAMA  T. 《Annals of botany》1984,53(6):875-882
A long-term, steady-state 13CO2 assimilation system at a constantCO2 concentration with a constant 13C abundance was designedand applied to quantitative investigations on the allocationof photoassimilated carbon in nodulated soya bean (Glycine maxL.) plants. The CO2 concentration in the assimilation chamberand its 13C abundance were maintained constant with relativevariances of less than ±0.5 per cent during an 8-h assimilationperiod. At the termination of 8-h 13CO2 assimilation by plantsat early flowering stage, the currently assimilated carbon relativeto total tissue carbon (measured by the degree of isotopic saturation)were for young leaves (including flower buds), 13.9 per cent;mature leaves, 15.7 per cent; stems+petioles, 5.9 per cent;roots, 5.4 per cent and nodules, 6.9 per cent, 48 h after theend of the 13CO2 assimilation period, they were 12.3, 7.5, 7.4,6.8 and 6.1 per cent, respectively. The treatment with a highconcentration of nitrate in the nutrient media significantlydecreased the allocation of 13C into nodules. Experiments on13CO2 assimilation by plants at the pod-filling stage were alsoconducted. Labelling by 13C was weaker than at the early floweringstage, but an intense accumulation of 13C into reproductiveorgans was observed. Glycine max L., nodulated soya bean plants, 13CO2 assimilation, carbon dynamics  相似文献   

19.
Snyder FW 《Plant physiology》1974,53(3):514-515
Amount and products of photosynthesis during 10 minutes were measured at different 14CO2 concentrations in air. With tobacco (Nicotiana tabacum L. cv. Maryland Mammoth) leaves the percentage of 14C in glycine plus serine was highest (42%) at 0.005% CO2, and decreased with increasing CO2 concentration to 7% of the total at 1% CO2 in air. However, above 0.03% CO2 the total amount of 14C incorporated into the glycine and serine pool was about constant. At 0.005% or 0.03% CO2 the percentage and amount of 14C in sucrose was small but increased greatly at higher CO2 levels as sucrose accumulated as an end product. Relatively similar data were obtained with sugar beet (Beta vulgaris L. cv. US H20) leaves. The results suggest that photorespiration at high CO2 concentration is not inhibited but that CO2 loss from it becomes less significant.  相似文献   

20.
The requirement of carbon dioxide for growth of Bacteroides amylophilus is quantitatively similar to that of certain other rumen bacteria. Carbon dioxide could be replaced by bicarbonate, but not by formate or certain amino acids. Label from 14CO2 was incorporated into the succinate produced during maltose fermentation by B. amylophilus, and during glucose fermentation by B. ruminicola, and during cellobiose fermentation by B. succinogenes. All of the incorporated label could be associated with the carboxyl function of the molecule. The depression in radioactivity per micromole of carbon in the succinate formed from the fermentation of uniformly labeled 14C-maltose by B. amylophilus was greater than would be expected if all of the succinate formed was produced via a direct CO2 fixation pathway(s) involving phosphoenolpyruvate or pyruvate; the radioactivity per micromole of carbon suggests that as much as 60% of the total succinate results from a pathway(s) involving direct CO2 fixation. Maltose fermentation by B. amylophilus was dependent upon CO2 concentration, but CO2 concentration could not be shown to influence either the fermentation end-product ratios or the proportion of total succinate formed attributable to CO2 fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号