首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Lens regeneration in adult newts occurs via transdifferentiation of the pigment epithelial cells (PECs) of the dorsal iris. The same source of cells from the ventral iris is not able to undergo this process. In an attempt to understand this restriction we have studied in the past expression patterns of miRNAs. Among several miRNAs we have found that mir-148 shows an up-regulation in the ventral iris, while members of the let-7 family showed down-regulation in dorsal iris during dedifferentiation.

Methodology/Principal Findings

We have performed gain- and loss-of–function experiments of mir-148 and let-7b in an attempt to delineate their function. We find that up-regulation of mir-148 caused significant decrease in the proliferation rates of ventral PECs only, while up-regulation of let-7b affected proliferation of both dorsal and ventral PECs. Neither miRNA was able to affect lens morphogenesis or induction. To further understand how this effect of miRNA up-regulation is mediated we examined global expression of miRNAs after up-regulation of mir148 and let-7b. Interestingly, we identified a novel level of mirRNA regulation, which might indicate that miRNAs are regulated as a network.

Conclusion/Significance

The major conclusion is that different miRNAs can control proliferation in the dorsal or ventral iris possibly by a different mechanism. Of interest is that down-regulation of the let-7 family members has also been documented in other systems undergoing reprogramming, such as in stem cells or oocytes. This might indicate that reprogramming during newt regeneration shares common molecular signatures with reprogramming in stem or germ cells. On the other hand that miRNAs can regulate the levels of other miRNAs is a novel level of regulation, which might provide new insights on their function.  相似文献   

2.
3.
4.
5.
6.
7.
Hair cell regeneration in the avian auditory epithelium   总被引:2,自引:0,他引:2  
Regeneration of sensory hair cells in the mature avian inner ear was first described just over 20 years ago. Since then, it has been shown that many other non-mammalian species either continually produce new hair cells or regenerate them in response to trauma. However, mammals exhibit limited hair cell regeneration, particularly in the auditory epithelium. In birds and other non-mammals, regenerated hair cells arise from adjacent non-sensory (supporting) cells. Hair cell regeneration was initially described as a proliferative response whereby supporting cells re-enter the mitotic cycle, forming daughter cells that differentiate into either hair cells or supporting cells and thereby restore cytoarchitecture and function in the sensory epithelium. However, further analyses of the avian auditory epithelium (and amphibian vestibular epithelium) revealed a second regenerative mechanism, direct transdifferentiation, during which supporting cells change their gene expression and convert into hair cells without dividing. In the chicken auditory epithelium, these two distinct mechanisms show unique spatial and temporal patterns, suggesting they are differentially regulated. Current efforts are aimed at identifying signals that maintain supporting cells in a quiescent state or direct them to undergo direct transdifferentiation or cell division. Here, we review current knowledge about supporting cell properties and discuss candidate signaling molecules for regulating supporting cell behavior, in quiescence and after damage. While significant advances have been made in understanding regeneration in non-mammals over the last 20 years, we have yet to determine why the mammalian auditory epithelium lacks the ability to regenerate hair cells spontaneously and whether it is even capable of significant regeneration under additional circumstances. The continued study of mechanisms controlling regeneration in the avian auditory epithelium may lead to strategies for inducing significant and functional regeneration in mammals.  相似文献   

8.
let-7 microRNA调控动物器官发育的研究进展   总被引:3,自引:0,他引:3  
微小RNA(microRNA,miRNA)是一类在进化上高度保守、长度约20~24 nt的小分子非编码RNA,能通过与靶基因3′非翻译区相结合从而抑制靶基因的翻译或降解靶基因。let-7 microRNA是发现较早的一类miRNA,最早在线虫中发现能调控细胞分裂的时序。此后大量证据表明,let-7参与动物多个器官发育的调控过程,并与人类疾病发生密切相关。该文综述了近年来let-7调控动物脑、神经及心肺系统等器官发育的研究成果,初步阐述了let-7调控动物器官发育可能的作用机制,以期为深入研究let-7的功能奠定基础。  相似文献   

9.
10.
The objectives of this study included: (1) identify the expression of miRNAs specific to bovine cumulus-oocyte complexes (COCs) during late oogenesis, (2) characterize the expression of candidate miRNAs as well as some miRNA processing genes, and (3) computationally identify and characterize the expression of target mRNAs for candidate miRNAs. Small RNAs in the 16-27 bp range were isolated from pooled COCs aspirated from 1- to 10-mm follicles of beef cattle ovaries and used to construct a cDNA library. A total 1798 putative miRNA sequences from the cDNA library of small RNA were compared to known miRNAs. Sixty-four miRNA clusters matched previously reported sequences in the miRBase database and 5 miRNA clusters had not been reported. TaqMan miRNA assays were used to confirm the expression of let-7b, let-7i, and miR-106a from independent collections of COCs. Real-time PCR assays were used to characterize expression of miRNA processing genes and target mRNAs (MYC and WEE1A) for the candidate miRNAs from independent collections of COCs. Expression data were analyzed using general linear model procedures for analysis of variance. The expression of let-7b and let-7i were not different between the cellular populations from various sized follicles. However, miR-106a expression was greater (P<0.01) in oocytes compared with COCs and granulosa cells. Furthermore, all the miRNA processing genes have greater expression (P<0.001) in oocytes compared with COCs and granulosa cells. The expression of potential target mRNAs for let-7 and let-7i (i.e., MYC), and miR-106a (i.e., WEE1A) were decreased (P<0.05) in oocytes compared with COCs and granulosa cells. These results demonstrate specific miRNAs within bovine COCs during late oogenesis and provide some evidence that miRNAs may play a role regulating maternal mRNAs in bovine oocytes.  相似文献   

11.
微小RNA与细胞凋亡的研究进展   总被引:1,自引:0,他引:1  
Guo L  Ding ZH 《生理科学进展》2007,38(4):331-335
微小RNA(miRNAs)是最近发现的由18~24个核苷酸组成的RNA,通过对目标mRNA的抑制而发挥重要的调节作用。目前所有已研究的多细胞真核生物表明它们是通过miRNAs来调节细胞基本的生理功能,这些功能包括细胞的增殖、分化和死亡。本文讨论了miRNAs在调节细胞增殖和凋亡方面的功能:其中,抗凋亡的miRNAs有miR-17家族、miR-21、bantam和miR-14;促凋亡的miRNAs有let-7、miR-15a和miR-16。  相似文献   

12.
Anuran amphibians can regenerate the retina through differentiation of stem cells in the ciliary marginal zone and through transdifferentiation of the retinal pigmented epithelium. By contrast, the regeneration of the lens has been demonstrated only in larvae of species belonging to the Xenopus genus, where the lens regenerates through transdifferentiation of the outer cornea. Retinal pigmented epithelium to neural retina and outer cornea to lens transdifferentiation processes are triggered and sustained by signaling molecules belonging to the family of the fibroblast growth factor. Both during retina and lens regeneration there is a re-activation of many of the genes which are activated during development of the eye, even though the spatial and temporal pattern of gene expression is not a simple repetition of that found in development.  相似文献   

13.
14.
A novel role of the hedgehog pathway in lens regeneration   总被引:4,自引:0,他引:4  
Lens regeneration in the adult newt is a classic example of replacing a lost organ by the process of transdifferentiation. After lens removal, the pigmented epithelial cells of the dorsal iris proliferate and dedifferentiate to form a lens vesicle, which subsequently differentiates to form a new lens. In searching for factors that control this remarkable process, we investigated the expression and role of hedgehog pathway members. These molecules are known to affect retina and pigment epithelium morphogenesis and have been recently shown to be involved in repair processes. Here we show that Shh, Ihh, ptc-1, and ptc-2 are expressed during lens regeneration. The expression of Shh and Ihh is quite unique since these genes have never been detected in lens. Interestingly, both Shh and Ihh are only expressed in the regenerating and developing lens, but not in the intact lens. Interfering with the hedgehog pathway results in considerable inhibition of the process of lens regeneration, including decreased cell proliferation as well as interference with lens fiber differentiation in the regenerating lens vesicle. Down-regulation of ptc-1 was also observed when inhibiting the pathway. These results provide the first evidence of a novel role for the hedgehog pathway in specific regulation of the regenerating lens.  相似文献   

15.
16.
17.
MiRNAs can regulate gene expression through versatile mechanisms that result in increased or decreased expression of the targeted mRNA and it could effect the expression of thousands of protein in a particular cell. An increasing body of evidence suggest that miRNAs action can be modulated by proteins that bind to the same 3'UTRs that are targeted by miRNAs, suggesting that other factors apart from miRNAs and their target sites determine miRNA-modulation of gene expression. We applied an affinity purification protocol using biotinylated let-7 miRNA inhibitor to isolate proteins that are involved in let-7 mediated gene regulation that resulted in an affinity purification of Polypyrimidine Tract Binding protein (PTB). Here we show that PTB interacts with miRNAs and human Argonaute 2 (hAgo2) through RNA as well as identified potential mammalian cellular targets that are co-regulated by PTB and hAgo2. In addition, using genetic approach, we have demonstrated that PTB genetically interacts with Caenorhabditis elegans let-7 indicating a conserved role for PTB in miRNA-mediated gene regulation.  相似文献   

18.
19.
MicroRNAs (miRNAs) are members of a family of non-coding RNAs of 8-24 nucleotide RNA molecules that regulate target mRNAs. The first miRNAs, lin-4 and let-7, were first discovered in the year 1993 by Ambros, Ruvkun, and co-workers while studying development in Caenorhabditis elegans. miRNAs can play vital functions form C. elegans to higher vertebrates by typical Watson-Crick base pairing to specific mRNAs to regulate the expression of a specific gene. It has been well established that multicellular eukaryotes utilize miRNAs to regulate many biological processes such as embryonic development, proliferation, differentiation, and cell death. Recent studies have shown that miRNAs may provide new insight in cancer research. A recent study demonstrated that more than 50% of miRNA genes are located in fragile sites and cancer-associated genomic regions, suggesting that miRNAs may play a more important role in the pathogenesis of human cancers. Exploiting the emerging knowledge of miRNAs for the development of new human therapeutic applications will be important. Recent studies suggest that miRNA expression profiling can be correlated with disease pathogenesis and prognosis, and may ultimately be useful in the management of human cancer. In this review, we focus on how miRNAs regulate tumorigenesis by acting as oncogenes and anti-oncogenes in higher eukaryotes.  相似文献   

20.
Arsenic trioxide (ATO) has been reported to exert its anti-cancer activities in human cancers. However, the molecular mechanism of ATO-triggered anti-tumor activity has not been fully elucidated. Recently, multiple studies demonstrated that ATO could regulate miRNAs in human cancers. Therefore, in this study, we investigated whether ATO regulated let-7a in breast cancer cells. We found that ATO upregulated let-7a level in breast cancer cells. We also found that up-regulation of let-7a inhibited cell growth and induced apoptosis and retarded cell migration and invasion. We also observed that up-regulation of let-7a enhanced cell growth inhibition and invasion suppression induced by ATO treatment. Our findings suggest that ATO suppressed cell growth, stimulated apoptosis, and retarded cell invasion partly via upregulation of let-7a in breast cancer cells. Our study provides a new anti-tumor mechanism of ATO treatment in breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号