首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Sorafenib increases survival rate of patients with advanced hepatocellular carcinoma (HCC). The mechanism underlying this effect is not completely understood. In this work we have analyzed the effects of sorafenib on autocrine proliferation and survival of different human HCC cell lines. Our results indicate that sorafenib in vitro counteracts autocrine growth of different tumor cells (Hep3B, HepG2, PLC-PRF-5, SK-Hep1). Arrest in S/G2/M cell cycle phases were observed coincident with cyclin D1 down-regulation. However, sorafenib's main anti-tumor activity seems to occur through cell death induction which correlated with caspase activation, increase in the percentage of hypodiploid cells, activation of BAX and BAK and cytochrome c release from mitochondria to cytosol. In addition, we observed a rise in mRNA and protein levels of the pro-apoptotic "BH3-domain only" PUMA and BIM, as well as decreased protein levels of the anti-apoptotic MCL1 and survivin. PUMA targeting knock-down, by using specific siRNAs, inhibited sorafenib-induced apoptotic features. Moreover, we obtained evidence suggesting that sorafenib also sensitizes HCC cells to the apoptotic activity of transforming growth factor-β (TGF-β) through the intrinsic pathway and to tumor necrosis factor-α (TNF) through the extrinsic pathway. Interestingly, sensitization to sorafenib-induced apoptosis is characteristic of liver tumor cells, since untransformed hepatocytes did not respond to sorafenib inducing apoptosis, either alone or in combination with TGF-β or TNF. Indeed, sorafenib effectiveness in delaying HCC late progression might be partly related to a selectively sensitization of HCC cells to apoptosis by disrupting autocrine signals that protect them from adverse conditions and pro-apoptotic physiological cytokines.  相似文献   

4.
5.
CD147 molecule is reported to be correlated with the malignancy of some cancers; however, it remains unclear whether it is involved in the progression of hepatocellular carcinoma (HCC). Here, we investigated the function of HAb18G/CD147, a member of CD147 family, and its antibodies, HAb18 and LICARTIN, in HCC invasion and metastasis. We observed that HAb18G/CD147 gene silence in HCC cells significantly decreased the secretion of matrix metalloproteinase (MMP) and the invasive potential of HCC cells (P < 0.001). MMP silence in HCC cells also significantly suppressed the invasion of the cells when cocultured with fibroblasts; however, its inhibitory effect was significantly weaker than that of both HAb18G/CD147 silence in HCC cells and that of MMP silence in fibroblasts (P < 0.001). Blocking theHAb18G/CD147 molecule on HCC cells with HAb18 monoclonal antibody resulted in a similar suppressive effect on MMP secretion and cell invasion, but with no significant effects on the cell growth. (131)I-labeled HAb18 F(ab')(2) (LICARTIN), however, significantly inhibited the in vitro growth of HCC cells (P < 0.001). In an orthotopic model of HCC in nude mice, HAb18 and LICARTIN treatment effectively reduced the tumor growth and metastasis as well as the expression of three major factors in the HCC microenviroment (MMPs, vascular endothelial growth factor, and fibroblast surface protein) in the paracancer tissues. Overall, these results suggest that HAb18G/CD147 plays an important role in HCC invasion and metastasis mainly via modulating fibroblasts, as well as HCC cells themselves to disrupt the HCC microenviroment. LICARTIN can be used as a drug targeting to HAb18G/CD147 in antimetastasis and recurrence therapy of HCC.  相似文献   

6.
7.
The human glycoprotein, stanniocalcin 2 (STC2) plays multiple roles in several tumor types, however, its function and clinical significance in hepatocellular carcinoma (HCC) remain unclear. In this study, we detected STC2 expression by quantitative real-time PCR and found STC2 was upregulated in HCC tissues, correlated with tumor size and multiplicity of HCC. Ectopic expression of STC2 markedly promoted HCC cell proliferation and colony formation, while silencing of endogenous STC2 resulted in a reduced cell growth by cell cycle delay in G0/G1 phase. Western blot analysis demonstrated that STC2 could regulate the expression of cyclin D1 and activate extracellular signal-regulated kinase 1/2 (ERK1/2) in a dominant-positive manner. Transwell chamber assay also indicated altered patterns of STC2 expression had an important effect on cell migration. Our findings suggest that STC2 functions as a potential oncoprotein in the development and progression of HCC as well as a promising molecular target for HCC therapy. [BMB Reports 2012; 45(11): 629-634]  相似文献   

8.
9.
RNA activation (RNAa) is a mechanism of gene activation triggered by promoter-targeted small double-stranded RNA (dsRNA), also known as small activating RNA (saRNA). p21(WAF1/CIP1) (p21) is a putative tumor suppressor gene due to its role as a key negative regulator of the cell cycle and cell proliferation. It is frequently downregulated in cancer including hepatocellular carcinoma (HCC), but is rarely mutated or deleted, making it an ideal target for RNAa-based overexpression to restore its tumor suppressor function. In the present study, we investigated the antigrowth effects of p21 RNAa in HCC cells. Transfection of a p21 saRNA (dsP21-322) into HepG2 and Hep3B cells significantly induced the expression of p21 at both the mRNA and protein levels, and inhibited cell proliferation and survival. Further analysis of dsP21-322 transfected cells revealed that dsP21-322 arrested the cell cycle at the G(0)/G(1) phase in HepG2 cells but at G(2)/M phase in Hep3B cells which lack functional p53 and Rb genes, and induced both early and late stage apoptosis by activating caspase 3 in both cell lines. These results demonstrated that RNAa of p21 has in vitro antigrowth effects on HCC cells via impeding cell cycle progression and inducing apoptotic cell death. This study suggests that targeted activation of p21 by RNAa may be explored as a novel therapy for the treatment of HCC.  相似文献   

10.
Oncogenic c-Myc is a master regulator of G1/S transition. Long non-coding RNAs (lncRNAs) emerge as new regulators of various cell activities. Here, we found that lncRNA SnoRNA Host Gene 17 (SNHG17) was elevated at the early G1-phase of cell cycle. Both gain- and loss-of function studies disclosed that SNHG17 increased c-Myc protein level, accelerated G1/S transition and cell proliferation, and consequently promoted tumor cell growth in vitro and in vivo. Mechanistically, the 1-150-nt of SNHG17 physically interacted with the 1035-1369-aa of leucine rich pentatricopeptide repeat containing (LRPPRC) protein, and disrupting this interaction abrogated the promoting role of SNHG17 in c-Myc expression, G1/S transition, and cell proliferation. The effect of SNHG17 in stimulating cell proliferation was attenuated by silencing c-Myc or LRPPRC. Furthermore, silencing SNHG17 or LRPPRC increased the level of ubiquitylated c-Myc and reduced the stability of c-Myc protein. Analysis of human hepatocellular carcinoma (HCC) tissues revealed that SNHG17, LRPPRC, and c-Myc were significantly upregulated in HCC, and they showed a positive correlation with each other. High level of SNHG17 or LRPPRC was associated with worse survival of HCC patients. These data suggest that SNHG17 may inhibit c-Myc ubiquitination and thus enhance c-Myc level and facilitate proliferation by interacting with LRPPRC. Our findings identify a novel SNHG17-LRPPRC-c-Myc regulatory axis and elucidate its roles in G1/S transition and tumor growth, which may provide potential targets for cancer therapy.Subject terms: Oncogenes, Cell growth, Long non-coding RNAs  相似文献   

11.
The pro-inflammatory and pro-fibrotic liver microenvironment facilitates hepatocarcinogenesis. However, the effects and mechanisms by which the hepatic fibroinflammatory microenvironment modulates intrahepatic hepatocellular carcinoma (HCC) progression and its response to systematic therapy remain largely unexplored. We established a syngeneic orthotopic HCC mouse model with a series of persistent liver injury induced by CCl4 gavage, which mimic the dynamic effect of hepatic pathology microenvironment on intrahepatic HCC growth and metastasis. Non-invasive bioluminescence imaging was applied to follow tumour progression over time. The effect of the liver microenvironment modulated by hepatic injury on sorafenib resistance was investigated in vivo and in vitro. We found that the persistent liver injury facilitated HCC growth and metastasis, which was positively correlated with the degree of liver inflammation rather than the extent of liver fibrosis. The inflammatory cytokines in liver tissue were clearly increased after liver injury. The two indicated cytokines, tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6), both promoted intrahepatic HCC progression via STAT3 activation. In addition, the hepatic inflammatory microenvironment contributed to sorafenib resistance through the anti-apoptotic protein mediated by STAT3, and STAT3 inhibitor S3I-201 significantly improved sorafenib efficacy impaired by liver inflammation. Clinically, the increased inflammation of liver tissues was accompanied with the up-regulated STAT3 activation in HCC. Above all, we concluded that the hepatic inflammatory microenvironment promotes intrahepatic HCC growth, metastasis and sorafenib resistance through activation of STAT3.  相似文献   

12.
Tsuei DJ  Lee PH  Peng HY  Lu HL  Lu SL  Su DS  Jeng YM  Hsu HC  Hsu SH  Wu JF  Ni YH  Chang MH 《PloS one》2011,6(11):e26948
Male gender is a risk factor for the development of hepatocellular carcinoma (HCC) but the mechanisms are not fully understood. The RNA binding motif gene on the Y chromosome (RBMY), encoding a male germ cell-specific RNA splicing regulator during spermatogenesis, is aberrantly activated in human male liver cancers. This study investigated the in vitro oncogenic effect and the possible mechanism of RBMY in human hepatoma cell line HepG2 and its in vivo effect with regards to the livers of human and transgenic mice. RBMY expression in HepG2 cells was knocked down by RNA interference and the cancer cell phenotype was characterized by soft-agar colony formation and sensitivity to hydrogen-peroxide-induced apoptosis. The results revealed that RBMY knockdown reduced the transformation and anti-apoptotic efficiency of HepG2 cells. The expression of RBMY, androgen receptor (AR) and its inhibitory variant AR45, AR-targeted genes insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 3 (IGFBP-3) was analyzed by quantitative RT-PCR. Up-regulation of AR45 variant and reduction of IGF-1 and IGFBP-3 expression was only detected in RBMY knockdown cells. Moreover, RBMY positive human male HCC expressed lower level of AR45 as compared to RBMY negative HCC tissues. The oncogenic properties of RBMY were further assessed in a transgenic mouse model. Liver-specific RBMY transgenic mice developed hepatic pre-cancerous lesions, adenoma, and HCC. RBMY also accelerated chemical carcinogen-induced hepatocarcinogenesis in transgenic mice. Collectively, these findings suggest that Y chromosome-specific RBMY is likely involved in the regulation of androgen receptor activity and contributes to male predominance of HCC.  相似文献   

13.
Increasing evidence suggests that the renin-angiotensin system (RAS) plays an important role in tumorigenesis. The interaction between Angiotensin II (AngII) and angiotensin type 1 receptor (AT1R) may have a pivotal role in hepatocellular carcinoma (HCC) and therefore, AT1R blocker and angiotensin I-converting enzyme (ACE) inhibitors may have therapeutic potential in the treatment of hepatic cancer. Although the involvement of AT1R has been well explored, the role of the angiotensin II Type 2 receptor (AT2R) in HCC progression remains poorly understood. Thus, the aim of this study was to explore the effects of AT2R overexpression on HCC cells in vitro and in mouse models of human HCC. An AT2R recombinant adenoviral vector (Ad-G-AT2R-EGFP) was transduced into HCC cell lines and orthotopic tumor grafts. The results indicate that the high dose of Ad-G-AT2R-EGFP–induced overexpression of AT2R in transduced HCC cell lines produced apoptosis. AT2R overexpression in SMMC7721 cells inhibited cell proliferation with a significant reduction of S-phase cells and an enrichment of G1-phase cells through changing expression of CDK4 and cyclinD1. The data also indicate that overexpression of AT2R led to apoptosis via cell death signaling pathway that is dependent on activation of p38 MAPK, pJNK, caspase-8 and caspase-3 and inactivation of pp42/44 MAPK (Erk1/2). Finally, we demonstrated that moderately increasing AT2R expression could increase the growth of HCC tumors and the proliferation of HCC cells in vivo. Our findings suggest that AT2R overexpression regulates proliferation of hepatocellular carcinoma cells in vitro and in vivo, and the precise mechanisms of this phenomenon are yet to be fully determined.  相似文献   

14.
G2 and S phase-expressed-1 (GTSE1) was recently reported to upregulate in several types of human cancer, based on negatively regulate p53 expression. However, its expression and functional roles in hepatocellular carcinoma (HCC) remain unknown. In this study, GTSE1 was observed to be highly expressed in HCC specimens and cell lines both at messenger RNA (mRNA) and protein levels. Furthermore, high GTSE1 expression was positively associated with tumor size, venous invasion, advanced tumor stage, and short overall survival. Moreover, we generated stable GTSE1 knockdown HCC cell lines to explore the effects of GTSE1 silencing on the growth and invasion of HCC in vitro. In determining the pathway through which GTSE1 regulated cell proliferation and invasion, GTSE1 silencing was found to inhibit AKT phosphorylation and downregulated cell cycle-related protein. In addition, GTSE1 downregulation decreased the growth of xenografts. In conclusion, these results indicated for the first time that overexpression of GTSE1 was involved in the progress of HCC, enhancing proliferation and promoting cell invasion in HCC cells.  相似文献   

15.
Sun Y  Lin R  Dai J  Jin D  Wang SQ 《Oligonucleotides》2006,16(4):365-374
Survivin, an inhibitor of apoptosis protein, deserves attention as a selective target for cancer therapy because it is overexpressed in many cancers, including human hepatocellular carcinoma (HCC). Here, we report a novel antisense oligonucleotide (ASO) against survivin for its effectiveness against tumor growth both in vitro and in vivo, and providing evidence in treatment for HCC. Initially, transfection of liver tumor cells HepG2 with ASO resulted in significant cells growth inhibition and reduction expression of survivin mRNA and protein, in a dose-dependent manner. Using caspase-3 protease activation assays, we observed that ASO has induced significantly greater apoptosis rate compared to control oligonucleotides. Furthermore, we used an orthotopic transplant model of HCC in nude mice to investigate the effect of ASO on tumor growth in vivo, and ASO reagents were delivered by intravenous injection. Interestingly, this systemic treatment also resulted in significant inhibition in tumor growth. Tumor growth in mice treated with ASO (50 and 75 mg/kg per day) was significantly inhibited (45.31% and 60.94%, respectively) compared with saline-injected group (p < 0.01), in a dose-dependent manner, and the effect of ASO on tumor growth was associated with downregulation of survivin in tumor xenografts. Moreover, the level of serum alpha-fetoprotein in ASO-treated groups was also decreased in a dose-dependent manner. Taken together, these data suggest that the usefulness of survivin ASO could potentially be a promising gene therapy approach to treatment of HCC.  相似文献   

16.
17.
Members of the Spred gene family are negative regulators of the Ras/Raf-1/ERK pathway, which has been associated with several features of the tumor malignancy. However, the effect of Spred genes on hepatocellular carcinoma (HCC) remains uninvestigated. In the present work, we analyzed the in vitro and in vivo effects of Spred2 expression on the hepatic carcinoma cell line, SMMC-7721. In addition to attenuated ERK activation, which inhibited the proliferation and migration of unstimulated and HGF-stimulated SMMC-7721 cells. Adenovirus-mediated Spred2 overexpression induced the activation of caspase-3 and apoptosis, as well as reduced the expression level of Mcl-1. Most importantly, the knockdown of Spred2 markedly enhanced tumor growth in vivo. In conclusion, these results suggest that Spred2 could qualify as a potential therapeutic target in HCC.  相似文献   

18.
19.
In our in-depth analysis carried out by the Illumina Solexa massive parallel signature sequencing, microRNA-99a (miR-99a) was found to be the sixth abundant microRNA in the miRNome of normal human liver but was markedly down-regulated in hepatocellular carcinoma (HCC). Compelling evidence has suggested the important roles of microRNAs in HCC development. However, the biological function of miR-99a deregulation in HCC remains unknown. In this study, we found that miR-99a was remarkably decreased in HCC tissues and cell lines. Importantly, lower miR-99a expression in HCC tissues significantly correlated with shorter survival of HCC patients, and miR-99a was identified to be an independent predictor for the prognosis of HCC patients. Furthermore, restoration of miR-99a dramatically suppressed HCC cell growth in vitro by inducing the G(1) phase cell cycle arrest. Intratumoral injection of cholesterol-conjugated miR-99a mimics significantly inhibited tumor growth and reduced the α-fetoprotein level in HCC-bearing nude mice. Insulin-like growth factor 1 receptor (IGF-1R) and mammalian target of rapamycin (mTOR) were further characterized as the direct targets of miR-99a. Furthermore, protein levels of IGF-1R and mTOR were found to be inversely correlated with miR-99a expression in HCC tissues. miR-99a mimics inhibited IGF-1R and mTOR pathways and subsequently suppressed expression of cell cycle-related proteins, including cyclin D1 in HCC cells. Conclusively, miR-99a expression was frequently down-regulated in HCC tissues and correlates with the prognosis of HCC patients, thus proposing miR-99a as a prospective prognosis predictor of HCC. miR-99a suppresses HCC growth by inducing cell cycle arrest, suggesting miR-99a as potential tumor suppressor for HCC therapeutics.  相似文献   

20.
G protein coupled receptor kinase 2 (GRK2) plays a central role in the regulation of a variety of important signaling pathways. Alternation of GRK2 protein level and activity casts profound effects on cell physiological functions and causes diseases such as heart failure, rheumatoid arthritis, and obesity. We have previously reported that overexpression of GRK2 has an inhibitory role in cancer cell growth. To further examine the role of GRK2 in cancer, in this study, we investigated the effects of reduced protein level of GRK2 on insulin‐like growth factor 1 receptor (IGF‐1R) signaling pathway in human hepatocellular carcinoma (HCC) HepG2 cells. We created a GRK2 knockdown cell line using a lentiviral vector mediated expression of GRK2 specific short hairpin RNA (shRNA). Under IGF‐1 stimulation, HepG2 cells with reduced level of GRK2 showed elevated total IGF‐1R protein expression as well as tyrosine phosphorylation of receptor. In addition, HepG2 cells with reduced level of GRK2 also demonstrated increased tyrosine phosphorylation of IRS1 at the residue 612 and increased phosphorylation of Akt, indicating a stronger activation of IGF‐1R signaling pathway. However, HepG2 cells with reduced level of GRK2 did not display any growth advantage in culture as compared with the scramble control cells. We further detected that reduced level of GRK2 induced a small cell cycle arrest at G2/M phase by enhancing the expression of cyclin A, B1, and E. Our results indicate that GRK2 has contrasting roles on HepG2 cell growth by negatively regulating the IGF‐1R signaling pathway and cyclins' expression. J. Cell. Physiol. 228: 1897–1901, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号