首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
KAMALUDDIN  M.; GRACE  J. 《Annals of botany》1992,69(6):557-562
Acclimation of fully developed leaves of Bischofia javanicaBlume to shadelight was examined. Seedlings were grown undersimulated daylight (1000 µmol m–2 s–1), thentransferred to a simulated shadelight (40 µmol m–2s–1). When a high-light leaf was transferred to low light, large negativenet photosynthetic rates (Pm) were recorded. This decrease wasrapid, but within 7 d the rate increased and became equal tothe low-light control leaf. These changes in photosynthesisdid not follow the pattern of changes in stomatal conductance(gs). Transfer to the low light resulted in a dramatic decreasein leaf weight per unit area (Lw), and most of the decreasesin Lw occurred within 3 d of transfer when the Pm of the transferredleaf was well below that of the low-light control leaf. There was a significant decrease in chlorophyll a in the transferredleaf without an appreciable change in chlorophyll b resultingin a large decrease in the chlorophyll a to chlorophyll b ratio.Leaf chlorophylls per unit area were higher in the transferredleaf than the low-light control leaf. Maximum photosyntheticrate in the transferred leaf was decreased by 40% compared tothat for the high-control leaf, but was almost at the same extenthigher than the low-light control leaf The results are discussedin the context of carbon gain capacity of its seedlings underlight-limiting forest understorey habitats. Bischofia, chlorophylls, light, photosynthesis, shade acclimation, tree seedlings, tropical tree  相似文献   

2.
In three experiments measurements of photosynthesis were madeon single leaves of white clover (Trifolium repens L.) on threecultivars grown in a controlled environment. Plants which had grown under an irradiance of 30 J m–2s–1, or in shade within a simulated mixed sward, producedleaves with photosynthetic capacities some 30 per cent lowerthan did plants grown at 120 J m–2 s–1 without shade.There were no differences between treatments either in photosynthesismeasured at 30 J m–2 s–1, or in respiration ratesper unit leaf dry weight. Respiration per unit leaf area washigher in the plants grown at 120 J m–2 s–1, reflectingthe lower specific leaf area of these leaves. There were nodifferences between the three cultivars examined. Leaves which were removed from the shade of a simulated swardshortly after becoming half expanded achieved photosyntheticcapacities as high as those which were in full light throughouttheir development. It is suggested that it is this characteristicwhich enables clover plants growing in an increasingly densemixed sward to produce a succession of leaves of high photosyntheticcapacity, even though each lamina only reaches the top of thesward at a relatively late stage in its development. Trifolium repens L., white clover, photosynthesis, leaf expansion, shade, specific leaf area, stomatal conductance  相似文献   

3.
The activities of three Calvin cycle enzymes, RuBPc (E.C. 4.1.1.39 [EC] ),3PGA phosphokinase (E.C. 2.7.2.3 [EC] ) and NADP-G3P dehydrogenase(E.C. 1.2.1.13 [EC] ), and the cytoplasmic enzyme PEPc (E.C. 4.1.1.31 [EC] )together with soluble protein and chlorophyll were measuredin extracts from young tomato leaves during acclimation to achange in irradiance. Leaf area and fresh weight were also measuredto show changes due to growth during treatments. Soluble proteinhad doubled on a unit leaf area basis 7 d after transfer from100 µmol quanta m–2s–1 PAR (low light) to400 µmol quanta m–2s–1 PAR (high light). Duringthis period the protein/chlorophyll ratio rose from 4•6to 10, RuBPc activity almost doubled and PEPc almost trebled.Following the reverse transfer from high to low light, solubleprotein decreased by 30% after 7 d and the protein/chlorophyllratio fell from 12 to 5•6. There was no change in RuBPcactivity 3 d after transfer from high to low light while PEPcactivity decreased by over 30%. There was no decrease in theactivity of 3PGA phosphokinase or NADP-G3P dehydrogenase 1 dafter transfer to low light, but decreases were apparent after3 d. The extracted kinase and dehydrogenase when fully activatedwere able to phosphorylate and reduce 3PGA at more than 2•5-foldits calculated rate of synthesis in the leaf. The data are discussedin relation to changes in the CO2 exchange of the leaf. Key words: Photosynthetic acclimation, irradiance, tomato leaf, RuBP carboxylase  相似文献   

4.
When young tomato plants grown in high light (400 µmolquanta m–2s–1 PAR) were transferred to low light(100 µmol quanta m–2s–1 PAR), non-cyclic electrontransport capacity was decreased and the rate of dark re-oxidationof Q, the first quinone electron acceptor of photosystemII, was decreased within 1–2 d. In contrast, the amountof coupling factor CF1, assayed by its ATPase activity, decreasedmore gradually over several days. The total chlorophyll contentper unit leaf area remained relatively constant, although thechlorophyll a/chlorophyll b ratio declined. When young tomato plants grown in low light were transferredto high light, the ATPase activity of isolated thylakoids increasedmarkedly within 1 d of transfer. This increase occurred morerapidly than changes in chlorophyll content per leaf area. Inaddition, in vivo chlorophyll fluorescence induction curvesindicate that forward electron transfer from Q occurredmore readily. The functional implications of these changes arediscussed. Key words: Tomato, leaves, light intensity, thylakoid membrane  相似文献   

5.
Photosynthetic acclimation was examined by exposing third trifoliolateleaves of soybeans to air temperatures of 20 to 30°C andphotosynthetic photon flux densities (PPFD) of 150 to 950µmolphotons m–2 s–1 for the last 3 d before they reachedmaximum area. In some cases the environment of the third leafwas controlled separately from that of the rest of the plant.Photosynthesis, respiration and dry mass accumulation were determinedunder the treatment conditions, and photosynthetic capacity,and dry mass and protein content were determined at full expansion.Photosynthetic capacity, the light-saturated rate of net carbondioxide exchange at 25°C and 34 Pa external partial pressureof carbon dioxide, could be modified between 21 and 35 µmolCO2 m–2 s–1 by environmental changes after leaveshad become exporters of photosynthate. Protein per unit leafmass did not differ between treatments, and photosynthetic capacityincreased with leaf mass per unit area. Photosynthetic capacityof third leaves was affected by the PPFD incident on those leaves,but not by the PPFD on other leaves on the plant. Photosyntheticcapacity of third leaves was affected by the temperature ofthe rest of the plant, but not by the temperature of the thirdleaves. Photosynthetic capacity was linearly related to carbondioxide exchange rate in the growth regimes, but not to daytimePPFD. At high PPFD, and at 25 and 30°C, mass accumulationwas about 28% of the mass of photosynthate produced. At lowerPPFD, and at 20°C, larger percentages of the photosynthateproduced accumulated as dry mass. The results suggest that photosynthatesupply is an important factor controlling leaf structural growthand, consequently, photosynthetic acclimation to light and temperature. Key words: Glycine max (L.) Merr., photosynthesis, temperature acclimation, light acclimation, photosynthate partitioning  相似文献   

6.
Sensitivity to photoinhibition was assessed in sorghum infectedwith the angiosperm root parasite Striga her-monthica and inuninfected sorghum plants, at four times during the developmentof the host-parasite association. Photoinhibition was inducedby exposing either leaf discs or intact leaves to a photosyntheticphoton flux density of 2000 µmol m–2 s–1 for4 h. The inhibition of apparent quantum yield (a) and photosynthesisin high light (A1500) were assessed in leaf discs using an oxygenelectrode and the recovery of these from photoinhibition wasfollowed in intact leaves using an infra-red gas analyser. Fromsoon after attachment of the parasite, infected sorghum plantshad a lower A1500. During the period when Striga induced a loweringof A1500, a was more sensitive to photoinhibition in Striga-infectedplants. However, at the same time, the high-light-induced inhibitionof A1500 was similar in Striga-infected and uninfected plants.Recovery of both a and A1500 was incomplete after 6 h and thetime-course of recovery was similar in Striga-infected and uninfectedplants. The results indicate that Striga-infected plants weremore sensitive to photoinhibition and that photoinhibition wasprimarily due to damage to electron transport/photo-phosphorylationand not disablement of the recovery processes. Key words: Photoinhibition, quantum yield, recovery from photoinhibition, parasitic plants  相似文献   

7.
The ndhB and psaE mutants of the cyanobacteriumSynechocystis sp. PCC 6803 are partly deficient in PSI-drivencyclic electron transport. We compared photoinhibition in thesemutants to the wild type to test the hypothesis that PSI cyclicelectron transport protects against photoinhibition. Photoinhibitorytreatment greatly accelerated PSI cyclic electron transportin the wild type and also in both the mutants. The psaEmutant showed rates of PSI cyclic electron transport similarto the wild type under all conditions tested. The ndhBmutant showed much lower rates of PSI cyclic electron transportthan the wild type following brief dark adaptation but exceededwild type rates after exposure to photoinhibitory light. Thewild type and both mutants showed similar rates of photoinhibitiondamage and photoinhibition repair at PSII. Photoinhibition atPSI was much slower than at PSII and was also similar betweenthe wild type and both mutants, despite the known instabilityof PSI in the psaE mutant. We conclude that photoinhibitorylight induces sufficient PSI-driven cyclic electron transportin both the ndhB and psaE mutants to fulfill anyrole that cyclic electron transport plays in protection againstphotoinhibition. 4 Corresponding author: E-mail, sherbert@uwyo.edu; Fax, +1-307-766-2851;Phone, +1-307-766-4353.  相似文献   

8.
Bischofia javanica Blume, an exotic tree, dominates many forest areas of the Bonin Islands in the western Pacific of Japan. The aim of this study was to test the hypothesis that the success of B. javanica (a mid-successional plant species) is related to its high acclimation capacity to sudden light increase due to canopy gap formation. We compared its ecophysiological response to simulated canopy opening with those of native species of different successional status: Trema orientalis Blume, Schima mertensiana (Sieb, et Zucc.) Koidz, Elaeocarpus photiniaefolius Hook.Et Arn. and Ardisia sieboldii Miquel. In all species, transfer of leaves developed in shade (5.3% of full sun) to full sun resulted in a substantial initial reduction in the dark-adapted quantum yield of photosystem II (Fv/Fm). T. orientalis, a pioneer plant species, showed the least reduction (38%), whereas E. photiniaefolius and A. sieboldii, both late-successional plant species, demonstrated large reductions (about 80%). In all four native species, Fv/Fm in shade leaves gradually recovered following transfer, but B. javanica recovered more fully and rapidly than the other species. Unlike Fv/Fm, the chlorophyll content in all species did not recover following the initial decline. This indicates that the recovery of quantum yield (Fv/Fm) was independent of the reduction in chlorophyll. Among all the species, B. javanica showed the highest (1) increase in maximum photosynthetic rate of shade leaves after transfer, (2) production of newly formed sun leaves, and (3) increase in relative growth rate. Ecophysiological characters of B. javanica in simulated canopy openings indicated rapid photosynthetic acclimation in existing shade leaves by minimizing photoinhibition and a rapid deployment of new sun leaves with high photosynthetic capacity. Because its habitats on these Pacific Islands are prone to typhoon disturbance, the successful invasion of B. javanica may lie in the congruence of its acclimation potential and the frequent gap events.  相似文献   

9.
Trends in several photosynthetic parameters and their responseto changed growth light were followed for 15 d in leaves ofyoung birch saplings using a rapid-response gas exchange measuringequipment. These in vivo measurements were compared to biochemicalassays that were made from the same leaves after the gas exchangestudies. The measurements were made on leaves that were selectedprior to the study and were at that time of similar age. Forthe first 7 d the photosynthetic parameters were followed fromthe growth conditions of moderate light (200 µmol m–2s–1; referred to as controls later in the text). On day7 some of the saplings were transferred to grow either underhigh (450 µmol m–2 s–1; referred to as highlight plants) or low (75 µmol m–2 s–1; referredto as low light plants) light and the capability of the preselectedleaves for acclimation was followed for 6 d. For comparison,at the end of the experiment the measurements were made on bothcontrols and on young leaves that had developed under high andlow light. Generally the in vivo measured rate of CO2 uptake (gross photosynthesis)both at 310 ppm CO2 and 2000 ppm CO2 corresponded very wellto the biochemically determined CO2 fixation capacity in vitroafter rapid extraction (measured as the initial and total activityof Rubisco, respectively). However, if the flux of CO2 intothe chloroplasts was limited by the closure of the stomata,as was the case of the high light plants, then the in vitromeasured Rubisco activity was greater than the in vivo measuredCO2 uptake. Vmax, calculated from the mesophyll conductanceat 1% O2, exceeded the initial activity of Rubisco (assayedat saturating RuBP and CO2) constantly by 60%. The catalyticactivity of Rubisco in birch leaves was overall very low, evenwhen calculated from the total activity of Rubisco (Kcat 0.63–1.18 s–1), when compared to herbaceous C3 species. Signs of light acclimation were not observed in most of thephotosynthetic parameters and in chloroplast structure whenmature birch leaves were subjected to changes in growth lightfor 6 d. However, the change of the growth light either to highor low light caused day-to-day fluctuations in most of the measuredphotosynthetic parameters and in the case of the high lightplants signs of photoinhibition and photodestruction were alsoobserved (decrease in the amount of chlorophyll and increasein chlorophyll a/b ratio). As a result of these fluctuationsthese plants achieved a new and lower steady-state conditionbetween the light and dark reactions, as judged from the molarratio of RuBP to Rubisco binding site. Key words: Acclimation, photosynthesis, light, Rubisco, birch  相似文献   

10.
Gas exchange measurements were undertaken on 2-year-old plantsof Clusia rosea. The plants were shown to have the ability toswitch from C3-photosynthesis to CAM and vice versa regardlessof leaf age and, under some conditions, CO2 was taken up continuously,throughout the day and night. The light response was saturatedby 120 µmol m–2 s–1 typical of a shade plant. Gas exchange patterns in response to light, water and VPD wereexamined. All combinations of daytime and night-time CO2 uptakewere observed, with rates of CO2 uptake ranging from 2 to 11µmol m–2 s–1 depending upon water status andlight. Categorization of this plant asC3, CAM or an intermediateis impossible. Differing VPD affected the magnitude of changesfrom CAM to C3-photosynthesis (0 to 0.5 and 0 to 6.0 µmolm–2 s–1 CO2, respectively) when plants were watered.Under well-watered conditions, but not under water stress, highPPFD elicited changes from CAM to C3 gas exchange. This is unusualnot only for a shade plant but also for a plant with CAM. Itis of ecological importance for C. rosea, which may spend theearly years of its life as an epiphyte or in the forest understorey,to be able to maximize photosynthesis with minimal water loss. Key words: Clusia rosea, CAM, C3, stress  相似文献   

11.
The photochemical apparatus organization in the thylakoid membraneof the diatom Cylindrotheca fusiformis was investigated in cellsgrown under high and low irradiance. High light (HL, 200µE.m–2.s–1)grown cells displayed a relatively low fucoxanthin to chlorophyll(Chl) ratio, a low photosystem (PS) stoichiometry (PSII/PS I=1.3/1.0)and a smaller photosynthetic unit size in both PS I and PS II.Low light (LL, 30µE.m–2.s–1) grown cells displayeda 30% elevated fucoxanthin content, elevated PS II/PS I=3.9/1.0and larger photosynthetic unit size for PS II (a change of about100%) and for PS I (by about 30%). In agreement, SDS polyacrylamidegel electrophoresis of thylakoid membrane polypeptides showedgreater abundance of PS I, RuBP carboxylase and ATP synthasepolypeptides in HL cells. In contrast, LL grown cells exhibitedgreater abundance of light-harvesting complex polypeptides.Assuming an efficiency of red (670 nm) light utilization of1.0, the measured efficiency of blue (481 nm) light utilizationwas 0.64 (HL cells) and 0.72 (LL cells). The lower efficiencyof blue versus red light utilization is attributed to the quenchingof absorbed energy by non-fucoxanthin carotenoids. Differencesin the efficiency of blue light utilization between HL and LLgrown cells are attributed to the variable content of fucoxanthin.The results support the hypothesis of a variable Chl a-Chl c-fucoxanthinlight-harvesting antenna associated with PS II and PS I in Cylindrotheca. (Received February 10, 1988; Accepted April 6, 1988)  相似文献   

12.
KWESIGA  F.; GRACE  J. 《Annals of botany》1986,57(3):283-290
The West African species Khaya senegalensis and Terminalia ivorensiswere grown in a controlled environment, varying the photon fluxdensity in the range 18–610 µmol m–2 s–1and the red/far-red ratio over an appropriate range to simulatethe shade of a tree canopy versus unattenuated daylight. Theshade tolerant seedlings of Khaya were relatively insensitiveto the red/far-red ratio. The light demanding Terminalia wasconsiderably affected: when the ratio was low the specific leafarea was increased and the leaves produced were very much largerin area. Thus, the Leaf Area Ratio was enhanced and the plantsdisplayed an increase in Relative Growth Rate. Khaya, Terminalia, tropical trees, shade, red/far-red ratio  相似文献   

13.
Plants of Phaseolus vulgaris L. (cv. Stella) were grown in controlledconditions under three different irradiances of visible lightwith or without UV-B (280–320nm) radiation. The biologicallyeffective UV-B radiation (UV-BBE) was 6.17 kJ m–2 d–1,and simulated a c. 5% decrease in stratospheric ozone at 55.7?N,13.4?E. The photon flux densities of the photosyntheticallyactive radiation (PAR, 400–700 nm) were either 700 µmolm–2–1 (HL), 500, µmol m–2 s–1(ML) or 230 µmol m–2 s–1 PAR (LL). Under highlight (HL) conditions plus UV-B radiation, bean plants appearedmost resistant to the enhanced levels of UV-B radiation, andresponded only by increasing leaf thickness by c. 18%. A smallincrease in UV screening pigments was also observed. Both thelower irradiances (ML and LL) increased the sensitivity of theplants to UV-B radiation. Changes in leaf structure were alsoobserved. Photosystem II was inhibited under ML and LL togetherwith UV-B radiation, as determined by Chi fluorescence inductionand calculation of the fluorescence half-rise times. Leaf reflectivitymeasurements showed that the amount of PAR able to penetrateleaves of UV-B treated plants was reduced, and that a possiblecorrelation may exist between the reduced PAR levels, loss ofChi and lowered photosynthetic activity, especially for LL +UV-Bgrown plants, where surface reflection from leaves was highest.Changes in leaf chlorophyll content were mostly confined toplants grown under LL + UV-B, where a decrease of c. 20% wasfound. With regard to protective pigments (the carotenoids andUV screening pigments) plants subjected to different visiblelight conditions responded differently. Among the growth parametersmeasured, there was a substantial decrease in leaf area, particularlyunder LL + UV-B (c. 47% relative to controls), where leaf dryweight was also reduced by c. 25%. Key words: Chlorophyll fluorescence induction, bean, flavonoids, Phaseolus vulgaris, reflectance, UV-B radiation  相似文献   

14.
Cyanobacteria have two protochlorophyllide (Pchlide) reductasescatalyzing the conversion of Pchlide to chloro-phyllide, a keystep in the biosynthetic pathway of chlorophylls (Chls); a light-dependent(LPOR) and a light-independent (DPOR) reductase. We found anopen reading frame (ORF322) in a 2,131-bp EcoRI fragment fromthe genomic DNA of the cyanobacterium Plectonema boryanum. Becausethe deduced amino acid sequence showed a high similarity tothose of various plant LPORs and the LPOR activity was detectedin the soluble fraction of Esche-richia coli cells over-expressingthe ORF322 protein, ORF322 was defined as the por gene encodingLPOR in P. boryanum. A por-disrupted mutant, YFP12, was isolatedby targeted mutagenesiss to investigate the physiological importanceof LPOR. YFP12 grew as well as wild type under low light conditions(10-25 µE m–2 S–1). However, its growth wassignificantly retarded as a result of a significant decreasein its Chl content under higher light conditions (85-130 µEm–2 s–1). Furthermore, YFP12 stopped growing andsuffered from photobleaching under the highest light intensity(170 µE m–2 s–1). In contrast, a chlL-dis-rupted(DPOR-less) mutant YFC2 grew as well as wild type irrespectiveof light intensity. From these phenotypic characteristics, weconcluded that, although both LPOR and DPOR contribute to Chlsynthesis in the cells growing in the light, the extent of thecontribution by LPOR increases with increasing light intensity;without it, the cells are unable to grow under light intensitiesof more than 130 µ Em–2s-. (Received September 26, 1997; Accepted November 21, 1997)  相似文献   

15.
Acclimation of Lolium temulentum to enhanced carbon dioxide concentration   总被引:2,自引:0,他引:2  
Acclimation of single plants of Lolium temulentum to changing[CO2] was studied on plants grown in controlled environmentsat 20°C with an 8 h photoperiod. In the first experimentplants were grown at 135 µ;mol m–2 s–1 photosyntheticphoton flux density (PPFD) at 415µl l–1 or 550µll–1 [CO2] with some plants transferred from the lowerto the higher [CO2] at emergence of leaf 4. In the second experimentplants were grown at 135 and 500 µmol m–2 s–1PPFD at 345 and 575 µl l–1 [CO2]. High [CO2] during growth had little effect on stomatal density,total soluble proteins, chlorophyll a content, amount of Rubiscoor cytochrome f. However, increasing [CO2] during measurementincreased photosynthetic rates, particularly in high light.Plants grown in the higher [CO2] had greater leaf extension,leaf and plant growth rates in low but not in high light. Theresults are discussed in relation to the limitation of growthby sink capacity and the modifications in the plant which allowthe storage of extra assimilates at high [CO2]. Key words: Lolium, carbon dioxide, photosynthesis, growth, stomatal density  相似文献   

16.
Photoinhibition of Seed Germination in Mediterranean Maritime Plants   总被引:4,自引:1,他引:3  
Photoinhibition of seed germination was shown for Allium staticiforme,Brassica tournefortii, Cakile maritima and Otanthus maritimus,all plant species inhabiting sandy coasts of the MediterraneanSea. Germination of A. staticiforme was found to be typicallyMediterranean in regard to its temperature range (>0–20°C), while B. tournefortii germinated optimally at intermediatetemperatures (15–25 °C). Light sensitivity was morepronounced in the latter species and 50 % inhibition of seedgermination was obtained with photon flux densities of approximately0.1 and 0.015 mol m–2 d–1 in A. staticiforme andB. tournefortii, respectively. However, the slopes of the regressionlines of germination plotted against the logarithm of whitelight flux density are similar in both species. From monthlyexperiments performed under fluctuating conditions of temperatureand light, simulating the elimate of Athens throughout the year,optimal germination response peaked in ‘winter’conditions for A. staticiforme, while a bimodal pattern wasobserved for B. tournefortii (maxima at the warm ends of therainy season). In contrast to the other plants, a fifth speciestested, Crithmum maritimum, showed an absolute light requirement,probably related to the rocky habitats of the species; the optimumgermination period coincided with the rainy season. Pot experimentswith seeds of the five species buried at various depths confirmedthat maximum emergence is favoured by shallow depths (0.5–1cm). It is concluded that seed germination in maritime plantsof the Mediterranean rim is mediated by a photoinhibition mechanismwhich can be considered an adaptation strategy against surfaceseedling establishment at the harsh, sandy or shingle, sea coasthabitats. Allium staticiforme, Brassica tournefortii, Cakile maritima, sea rocket, Crithmum maritimum, rock samphire, Otanthus maritimus, ton-weed, seed germination, light, photoinhibition, phytochrome, seedling emergence  相似文献   

17.
18.
Agrostis capillaris L.5, Festuca vivipara L. and Poaalpina L.were grown in outdoor open-top chambers at either ambient (340 3µmol mol–1) or elevated (6804µmol mol–1)concentrations of atmospheric carbon dioxide (CO2) for periodsfrom 79–189 d. Photosynthetic capacity of source leaves of plants grown atboth ambient and elevated CO2 concentrations was measured atsaturating light and 5% CO2. Dark respiration of leaves wasmeasured using a liquid phase oxygen electrode with the buffersolution in equilibrium with air (21% O2, 0.034% CO2). Photo-syntheticcapacity of P. alpina was reduced by growth at 680 µmolmol–1 CO2 by 105 d, and that of F. vivipara was reducedat 65 d and 189 d after CO2 enrichment began, suggesting down-regulationor acclimation. Dark respiration of successive leaf blades ofall three species was unaltered by growth at 680 relative to340 µmol mol–1 CO2. In F. vivipara, leaf respirationrate was markedly lower at 189 d than at either 0 d or 65 d,irrespective of growth CO2 concentration. There was a significantlylower total non-structural carbohydrate (TNC) concentrationin the leaf blades and leaf sheaths of A. capillaris grown at680µmol mol–1 CO2. TNC of roots of A. capillariswas unaltered by CO2 treatment. TNC concentration was increasedin both leaves and sheaths of P. alpina and F. vivipara after105 d and 65 d growth, respectively. A 4-fold increase in thewater-soluble fraction (fructan) in P. alpina and in all carbohydratefractions in F. vivipara accounted for the increased TNC content. In F. vivipara the relationship between leaf photosyn-theticcapacity and leaf carbohydrate concentration was such that therewas a strong positive correlation between photosynthetic capacityand total leaf N concentration (expressed on a per unit structuraldry weight basis), and total nitrogen concentration of successivemature leaves reduced with time. Multiple regression of leafphotosynthetic capacity upon leaf nitrogen and carbohydrateconcentrations further confirmed that leaf photosynthetic capacitywas mainly determined by leaf N concentration. In P. alpina,leaf photosynthetic capacity was mainly determined by leaf CHOconcentration. Thus there is evidence for down-regulation ofphotosynthetic capacity in P. alpina resulting from increasedcarbohydrate accumulation in source leaves. Leaf dark respiration and total N concentration were positivelycorrelated in P. alpina and F. vivipara. Leaf dark respirationand soluble carbohydrate concentration of source leaves werepositively correlated in A. capillaris. Changes in source leafphotosynthetic capacity and carbohydrate concentration of plantsgrown at ambient or elevated CO2 are discussed in relation toplant growth, nutrient relations and availability of sinks forcarbon. Key words: Elevated CO2, Climate change, grasses, carbohydrate partitioning, photosynthesis, respiration  相似文献   

19.
Diurnal series of fluorescence and photosynthesis assays wereconducted in high altitude (3803 m), tropical (16°), LakeTiticaca (Peru/Bolivia). Near-surface diurnal thermoclines formedon typical days of high photon flux density (PFD, {small tilde}2000 µE m–2 s–1). In the depth range of diurnalstratification profiles of in vivo fluorescence, both without(Fa and with (Fb DCMU, exhibited a mean decrease of 64% frommorning to mid-day, but little change (mean increase of 1.5%)through the afternoon. Three times during the day surface, mid-depth(3–5 m) and deep (15–20 m) phytoplankton sampleswere incubated with H14CO3 under short (<2 h) exposuresto a range of in situ PFDs. Comparison of phytoplankton in differentsamples (ANOVA) showed identical photosynthetic response insunrise (isothermal) samples but a significant drop in surfaceand mid-depth photosynthesis at all PFDs during times of diurnalstratification. Similarly, both low-light () and light-saturated(P2 max photosynthetic parameters were lower in mid-day surfacesamples compared to deep samples. In addition, previously photoinhibitedsamples had a higher threshold intensity for photoinhibition,IT. These results, together with diurnal time series of fluorescencefrom in situ incubations, demonstrate that recovery from extendedepisodes of photoinhibition during diurnal stratification isslower than suggested by previous observations in vitro. Photosynthesisby near-surface phytoplankton is different in light increasingup to IT than light decreasing from IT. This effect can be modeledby reducing and Pmax as a function of the maximum photoinhibitingPFD in the diurnal light history. 1Present address: Division of Molecular Plant Biology, Universityof California, Berkeley, Berkeley, CA 94720, USA  相似文献   

20.
The respiratory losses and the pattern of carbon supply froma leaf of unicuim barley were examined during a complete diurnalperiod using a steady state 14C-labelling technique. After a delay of c. 1 h a portion of the 14C exported from acontinuously assimilating leaf was lost in respiration in thelight. This respiratory loss amounted to c. 20% of the total14C fixed. A further 28% of the total 14C fixed was respiredduring the dark period. In the light, carbon was fixed at a rate of c. 8·9 mgC dm–2 h–1 and exported from the leaf at c. 5·3mg C dm–2 h–1. Dark export averaged c. 31% of theday-time rate. Carbohydrate was stored in the leaf during the day and was almostcompletely remobilized during the dark. Sucrose, the major reservecarbohydrate, was exported first whilst the starch level remainedconstant. After some 9 h of darkness, sucrose declined to alow level and starch remobilization began.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号