首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Ribosomal proteins from chloroplasts of Nicotiana tabacum L. (cv. Petit Havana) and of SRl, a mutant derived from it, with uniparentally inherited streptomycin resistance, were characterised by two-dimensional gel electrophoresis. From the 67 proteins identified, one has an altered electrophoretic mobility when isolated from the mutant. Streptomycin resistance of the SRl mutant therefore seems to be the consequence of a mutation in the chloroplast DNA coding for a chloroplast ribosomal protein.  相似文献   

2.
3.
Genome-wide linkage disequilibrium analysis in bread wheat and durum wheat.   总被引:3,自引:0,他引:3  
Bread wheat and durum wheat were examined for linkage disequilibrium (LD) using microsatellite markers distributed across the genome. The allele database consisted of 189 bread wheat accessions genotyped at 370 loci and 93 durum wheat accessions genotyped at 245 loci. A significance level of p < 0.001 was set for all comparisons. The bread and durum wheat collections showed that 47.9% and 14.0% of all locus pairs were in LD, respectively. LD was more prevalent between loci on the same chromosome compared with loci on independent chromosomes and was highest between adjacent loci. Only a small fraction (bread wheat, 0.9%; durum wheat, 3.2%) of the locus pairs in LD showed R2 values > 0.2. The LD between adjacent locus pairs extended (R2 > 0.2) approximately 2-3 cM, on average, but some regions of the bread and durum wheat genomes showed high levels of LD (R2 = 0.7 and 1.0, respectively) extending 41.2 and 25.5 cM, respectively. The wheat collections were clustered by similarity into subpopulations using unlinked microsatellite data and the software Structure. Analysis within subpopulations showed 14- to 16-fold fewer locus pairs in LD, higher R2 values for those pairs in LD, and LD extending further along the chromosome. The data suggest that LD mapping of wheat can be performed with simple sequence repeats to a resolution of <5 cM.  相似文献   

4.
Bread wheat (Triticum aestivum, genome BBAADD) is a young hexaploid species formed only 8,500–9,000 years ago through hybridization between a domesticated free-threshing tetraploid progenitor, genome BBAA, and Aegilops tauschii, the diploid donor of the D subgenome. Very soon after its formation, it spread globally from its cradle in the fertile crescent into new habitats and climates, to become a staple food of humanity. This extraordinary global expansion was probably enabled by allopolyploidy that accelerated genetic novelty through the acquisition of new traits, new intergenomic interactions, and buffering of mutations, and by the attractiveness of bread wheat’s large, tasty, and nutritious grain with high baking quality. New genome sequences suggest that the elusive donor of the B subgenome is a distinct (unknown or extinct) species rather than a mosaic genome. We discuss the origin of the diploid and tetraploid progenitors of bread wheat and the conflicting genetic and archaeological evidence on where it was formed and which species was its free-threshing tetraploid progenitor. Wheat experienced many environmental changes throughout its evolution, therefore, while it might adapt to current climatic changes, efforts are needed to better use and conserve the vast gene pool of wheat biodiversity on which our food security depends.

We describe the evolution of bread wheat in nature and under human selection with an emphasis on the donors of its subgenomes, evolution under polyploidy, and the “where when and how” of its domestication.  相似文献   

5.
Lewis PD  Parry JM 《Mutation research》2002,518(2):163-180
The last decade has witnessed a remarkable increase in the number of mutations identified both in human disease-related genes and mutation reporter genes including those in mammalian cells and transgenic animals. This has led to the curation of a number of computerised databases, which make mutation data freely available for analysis. A primary interest of both the clinical researcher and the genetic toxicologist is determination of location and types of mutation within a gene of interest. Collections of mutation data observed for a disease-related gene or, for a gene exposed to a particular chemical, permits discovery of regions of sequence along the gene prone to mutagenesis and may provide clues to the origin of a mutation. The principal tool for visualising the distribution pattern of mutant data along a gene is the mutation spectrum: the distribution and frequency of mutations along a nucleotide sequence. In genetic toxicology, the current wealth of mutation data available allows us to construct many mutation spectra of interest to investigate the mutagenic mechanisms and mutational sites for one or a group of mutagens. Using the multivariate statistical methods principal components analysis (PCA) and cluster analysis (CA) we have tested the ability of these methods to establish the underlying patterns within and between 60 UV-induced, mitomycin C-induced and spontaneous mutations in the supF gene. The spectra were derived from human, monkey and mouse cells including both repair efficient and repair deficient cell lines. We demonstrate and support the successful application of multivariate statistical methods for exploring large sets of mutation spectra to reveal underlying patterns, groupings and similarities. The methods clearly demonstrate how different patterns of spontaneous and UV-induced supF mutation spectra can result from variation in plasmid, culture medium, species origin of cell line and whether mutations arose in vivo or in vitro.  相似文献   

6.
To elucidate some of the molecular mechanisms involved in genome differentiation and evolution of cultivated wheats, we compared orthologous genes encoding starch branching enzyme IIa (SBEIIa). Bread wheat is an allohexaploid species comprising the three genomes A, B and D, each of which contributes a copy of the SBEIIa gene, involved in starch biosynthesis and known to control important quality traits related to technological and nutritional value of wheat-based food products. Alignment of the nucleotide sequences of these three genes revealed variation, both at the level of single nucleotides and indels. Multiple transposon elements were identified in the intragenic regions, some of which appear to have inserted before the divergence of the wheat diploid genomes. The B genome homoeologue was the most divergent of the three genes. Two MITE transposon insertions were detected within the intronic sequence of SBEIIa-B and two other transposons within SBEIIa-D. The presence/absence of these transposons in a panel of diploid and polyploid Triticum and Aegilops species provided some insights into the phylogeny of wheat.  相似文献   

7.
The carpel, or female reproductive organ enclosing the ovules, is one of the major evolutionary innovations of the flowering plants. The control of carpel development has been intensively studied in the model eudicot species Arabidopsis thaliana. This review traces the evolutionary history of genes involved in carpel development by surveying orthologous genes in taxa whose lineages separated from that of A. thaliana at different levels of the phylogenetic tree of the seed plants. Some aspects of the control of female reproductive development are conserved between the flowering plants and their sister group, the gymnosperms, indicating the presence of these in the common ancestor of the extant seeds plants, some 300 million years ago. Gene duplications that took place in the pre-angiosperm lineage, before the evolution of the first flowering plants, provided novel gene clades of potential importance for the origin of the carpel. Subsequent to the appearance of the first flowering plants, further gene duplications have led to sub-functionalization events, in which pre-existing reproductive functions were shared between paralogous gene clades. In some cases, fluidity in gene function is evident, leading to similar functions in carpel development being controlled by non-orthologous genes in different taxa. In other cases, gene duplication events have created sequences that evolved novel functions by the process of neo-functionalization, thereby generating biodiversity in carpel and fruit structures.  相似文献   

8.
The composition and quantity of high-molecular-weight glutenin subunits plays an important role in determining the bread-making quality of wheat. Molecular-genetic analysis of allelic composition of high-molecular-weight glutenin genes in 102 bread wheat cultivars and lines from different geographical regions was conducted. Three alleles at the Glu-A1 locus, nine alleles at the Glu-B1 locus, and two alleles at the Glu-D1 locus were identified. Among the investigated cultivars and lines, 21 were characterized by intracultivar polymorphism. High allelic variation of high-molecular-weight glutenin subunit genes was shown for the collection: 21 and 9 combinations were defined in monomorphic and polymorphic cultivars and lines, respectively. However, the major part of the collection (66.7%) contained four allelic combinations: Glu-A1b Glu-B1c Glu-D1d, Glu-A1b Glu-B1c Glu-D1-2a, Glu-A1a Glu-B1c Glu-D1d, and Glu-A1b Glu-B1c Glu-D1d/Glu-D1-2a. Fourteen cultivars of bread wheat were selected, and they were characterized by a favorable allelic composition of Glu-1 loci.  相似文献   

9.
Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat   总被引:12,自引:0,他引:12  
Opportunities exist for replacing reduced height (Rht) genes Rht-B1b and Rht-D1b with alternative dwarfing genes for bread wheat improvement. In this study, the chromosomal locations of several height-reducing genes were determined by screening populations of recombinant inbred lines or doubled haploid lines varying for plant height with microsatellite markers. Linked markers were found for Rht5 (on chromosome 3BS), Rht12 (5AL) and Rht13 (7BS), which accounted for most of the phenotypic variance in height in the respective populations. Large height differences between genotypes (up to 43 cm) indicated linkage to major height-reducing genes. Rht4 was associated with molecular markers on chromosome 2BL, accounting for up to 30% of the variance in height. Confirming previous studies, Rht8 was linked to markers on chromosome 2DS, whereas a population varying for Rht9 revealed a region with a small but significant height effect on chromosome 5AL. The height-reducing effect of these dwarfing genes was repeatable across a range of environments. The molecular markers developed in this study will be useful for marker-assisted selection of alternative height-reducing genes, and to better understand the effects of different Rht genes on wheat growth and agronomic performance.  相似文献   

10.
Summary Stability analysis on 7 parent varieties and all their possible crosses (excluding reciprocals) in generations F1 to F5 are reported. The regression coefficient (b) of the parents ranged from 0.66 (Sonalika) to 1.34 (Kalyansona). On the average the b value was lower in F3 (.87) and F2 (.88) followed by F1 (1.04), F4 (1.06) and F5 (1.16). Phenotypic stability appeared to be associated with genetic constitution of the parents as well as level of heterozygosity and heterogeneity of the populations. Distinct differences were observed in general combining ability values for regression coefficients among the parents, indicating transmissibility of this trait. However, no such trend was observed for deviation mean squares. The data on yield and stability parameters showed that high mean yield is not necessarily associated with average regression, indicating the possibility of combining high mean yield with high stability.  相似文献   

11.
 Two mapping populations were used for the analysis of the water-extractable arabinoxylans. One originated from a cross between the hexaploid cultivars ‘Courtot’ and ‘Chinese Spring’ and the other from a cross between an amphiploid (Synthetic) and cv ‘Opata’. Arabinose (Ara), and xylose (Xyl) contents were quantified for the 91 and 76 lines obtained from the two crosses, respectively. Relative viscosity (ηrel) of the wheat flour aqueous extract was evaluated by capillary viscometry. Both crosses gave similar correlation coefficients between sugar contents and relative viscosity. There were strong positive relationships between arabinose, xylose and arabinoxylan contents. The relative viscosity was strongly and positively related to the arabinoxylan content and strongly and negatively related to the Ara/Xyl ratio (arabinose content to xylose content). For one of the two crosses two measurements of relative viscosity were generated from 2 years of consecutive harvesting. As a strong correlation was observed between these two measurements, an important genotypic effect can be deduced for the relative viscosity of water-extractable arabinoxylans. QTL (quantitative trait locus) research did not reveal any chromosomal segments that were strongly implicated in variations in sugar content. However, a QTL was found for relative viscosity values and the Ara/Xyl ratio on the long arm of the 1B chromosome for the two crosses considered. This QTL explained 32–37% of the variations in relative viscosity and 35–42% of the variations in the Ara/Xyl ratio. Genes located at this QTL controlled relative viscosity through modifying the Ara/Xyl ratio. Variations in the Ara/Xyl ratio were supposedly related to differences in the molecular structure of water-extractable arabinoxylans. Minor QTLs were also obtained for relative viscosity and Ara/Xyl ratio, but the chromosomes concerned were different for the two populations evaluated. Received: 5 January 1998 / Accepted: 15 May 1998  相似文献   

12.
13.
For the first time, the authors assessed and mapped the chromosome QTLs (Quantitative Trait Loci) for the manifestation of morpho-physiological and agronomic indices of plant water status and related quantitative traits, such as plant height, weight, and dry matter content in spring bread wheat (Triticum aestivum L.). Following the study of ten agronomic traits, 13 QTLs were mapped on linkage groups 1A, 1B, 2B, 2D, 4A, 5A, 5B, 5D, 6A, and 6D. Some of the identified QTLs concurrently determined several traits. The physiological components of water status were shown to correlate with quantitative traits in wheat plants, such as plant height, weight, and dry matter content, and the correlation coefficients were calculated for all traits under study. Water retention capacity after 3 h correlated with water retention capacity after 24 h (r xy = 0.47). The correlations were also established between water retention capacity after 3 h and plant height at booting stage (r xy = 0.29) and between water retention capacity after 3 h and plant dry weight (r xy = 0.33). Statistical calculations supported generally observed negative correlation (up to ?1) between leaf water and dry matter contents, as well as between the root indices of variance in the mapping population of wheat lines. The results obtained in the present study will promote future efforts to fine-map the genes residing within the identified QTLs, to eventually clone these genes in order to establish the physiological mechanisms for maintaining water homeostasis in higher plant cells and to accomplish the practical implementation of marker-assisted assessment of water status in wheat plants studied on the basis of morpho-physiological and economical indices.  相似文献   

14.
Superoxide dismutase (SOD) acts as first line of defense against oxidative and genetic stress. Manganese superoxide dismutase (MnSOD), found in mitochondria or peroxisomes, contains Mn(III) at the active site. Therefore, it is of interest to study MnSOD from bread wheat (a grain crop). However, a structure model is not yet solved for bread wheat MnSOD. Hence, we describe the structure model of bread wheat MnSOD developed using homology model. The model provides molecular insight to metal binding molecular function towards the understanding of oxidative stress resistance in plants. The distinction of bread wheat (a monocot) MnSOD from dicots is also shown using phylogenetic analysis.  相似文献   

15.
Synthetic hexaploid wheat (SHW) that combines novel and elite genes from the tetraploid wheat Triticum turgidum L. and wild ancestor Aegilops tauschii Coss., has been used to genetically improve hexaploid common wheat. The abundant genetic diversity in SHW can effectively make breakthroughs in wheat genetic improvement through the inclusion of increased variation. In this paper, we reviewed the current advances in research and utilization of the primary SHW lines and SHW-derived wheat varieties that have enhanced evolution of modern wheat under conditions of natural and artificial selection in southwestern China. Using primary SHW lines, four high-yielding wheat varieties have been developed. In addition, using the SHW-derived varieties as breeding parents, 12 new wheat varieties were also developed. Results of genotype–phenotype and fingerprint analysis showed that the introgressed alleles from SHW lines have contributed a great number of elite characters to the new wheat varieties, and these elite characters include disease resistance, more spikes per plant, more grains per spike, larger grains, and higher grain-yield potential. We found that the primary SHW lines and SHW-derived varieties have identifiable effects to enhance genetic variation and adaptive evolution of modern hexaploid wheat, which significantly increased the grain yields of hexaploid wheat in recent years. These findings have significant implications in the breeding of high-yielding wheat varieties resistant to biotic and abiotic stresses using SHW as genetic resources.  相似文献   

16.
Summary Heritability estimates of five characters of the wheat plant were studied in five crosses involving six cultivars of bread wheat. Parents, F1, F2 and backcrosses to both parents were used in the estimation of the genetic parameters.Heritability was low for number of fertile spikes/plant, moderate for number of spikelets/spike, number of kernels/spike, 1000-kernel weight and moderately high for number of kernels/spike. Evidence for mainly nonadditive gene effects were observed in the expression of number of fertile spikes and 1000-kernel weight. Although nonadditives contributed to a lesser degree to the gene action, additives seemed to be the most important genetic expression regulating number of spikelets/spike, number of kernels/spike, and number of kernels/spikelet. Except for number of fertile spikes/plant, selection in F2-populations seems to be promising.  相似文献   

17.
PCR analysis was used to create DNA markers to the Vrd1 gene. DNA of almost isogenic lines with respect to Vrd genes of the cultivars Mironovskaya 808 and Erytrospermum 604 was used. It was shown that in the monogenic Vrd1 dominant genotypes the product of amplification (280 b.p.) is absent in comparison with the DNA of the vrd recessive and monogenic Vrd2 dominant genotypes. The linkage of the marker with the Vrd1 gene has been determined using DNA analysis of plant population obtained as a result of crossing of Erytrospermum 604 (vrd recessive) and Triple Dirk C (Vrd1vrd2). F2 population segragated in two groups on the character of 280 b.p. amplification product "presence/absence". The segregation significantly coincided to the theoretical one (by ?2 test) with 1:3 expectation. The revealed molecular marker identified homozygous dominant Vrd1 plants only. The DNA-marker to Vrd1 gene is nulle-allelic 280(-).  相似文献   

18.
Summary Phenotypic and genotypic correlation coefficients and path-coefficients were studied in the biparental (BIPs) and F3 self progenies of the two wheat crosses. A comparison of correlation coefficients in the BIPs and the F3's revealed that as many as twelve new significant correlations were noticed in case of the BIPs in cross I although some of them occurred in the undesirable direction. On the other hand, only three new correlations were observed in the BIPs of cross II, although as many as fifteen correlations were not significant. Results suggested that intermating in the F2 was effective in breaking the linkages. Path-coefficient analysis further revealed that the direct effect of tillers/ plant on grain yield was important and remained unchanged in both populations of cross I. In cross II, the direct effect of tillers/plants on grain yield was also high and it increased in the BIPs. Intermating seemed to have influenced considerably both the direct and indirect effects.  相似文献   

19.
The expression of the ribosomal RNA (rRNA) genes from rye, located within the nucleolus organizer regions (NORs), is repressed by cytosine methylation in wheat x rye hybrids and in triticale, as consequence of nucleolar dominance. Our previous study revealed that bread wheat cultivars with a maximum number of four Ag-NORs presented high level of rDNA cytosine methylation when compared to others with a maximum of six Ag-NORs. In order to evaluate the inheritance of the Ag-NORs number and NOR methylation patterns, we produced F1 hybrids between bread wheat cultivars with four Ag-NORs and bread wheat cultivars with six Ag-NORs (in the direct and reciprocal senses). The F2 progenies of these F1 hybrids were also evaluated for the NOR number and methylation patterns. Parent bread wheat cultivars with a maximum of four Ag-NORs after treated with 5-azacytidine evidenced a maximum of six Ag-NORs per metaphase cell and a maximum of six nucleoli per interphase nucleus, confirming that the expression of the rRNA genes in bread wheat is related to cytosine methylation. Most of the F1 hybrids showed a maximum number of four or six Ag-NORs, similarly to that of the female parent suggesting a non-mendelian inheritance, while other hybrids presented four or six Ag-NORs in both senses of the cross. The F1 NOR methylation patterns showed some fragments common to their parents but also novel fragments suggesting genomic and/or chromosome rearrangements after hybridization. Despite the different NOR patterns among the parents, an invariable NOR pattern was found among the F1 plants suggesting a tendency to stability, which was also transmitted to the F2. The F2 progenies showed plants with a maximum of four, five and/or six Ag-NORs. The ratio of plants with four, five and/or six Ag-NORs per F2 progeny was variable and did not follow any specific mendelian proportion. These results allowed us to suggest that the inheritance of the number of Ag-NORs by the F1 and F2 plants did not follow any mendelian inheritance and were not correlated to NOR methylation patterns in contrast to what was verified for their parents.  相似文献   

20.
The intergenic spacer of the ribosomal DNA is highly variable, but is location specific in the nucleolar organizer region of the chromosomes. This study provides an event of high level of polymorphism / size variation and occurrence of 14 unique phenotypes in 48 landraces of Portuguese bread wheat cultivars for IGS-amplified products obtained by PCR-RFLP technique performed with TaqI. The attendant IGS polymorphism has been used to deduce affinities between landraces. Some of the high molecular weight IGS allelic variants were also probed for their chromosomal localization by sequential silver nitrate staining and fluorescence in situ hybridization. However, only the intergenic spacer allelic variant of 3.1 kb could be successfully hybridized, and was observed to be physically located on the chromosome pair 1B in the NOR loci of the cultivar ‘Magueija’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号