首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dechlorination and mineralization of pentachlorophenol (PCP) was investigated by simultaneously or sequentially combining two different anaerobic microbial populations, a PCP-dechlorinating culture capable of the reductive dechlorination of PCP to phenol and phenol- degrading cultures able to mineralize phenol under sulfate- or iron-reducing conditions. In the simultaneously combined mixture, PCP (about 35 microM) was mostly dechlorinated to phenol after incubation for 17 days under sulfate-reducing conditions or for 22 days under iron-reducing conditions. Thereafter, the complete removal of phenol occurred within 40 days under both conditions. In the sequentially combined mixture, most of the phenol, the end product of PCP dechlorination, was degraded within 12 days of inoculation with the phenol degrader, without a lag phase, under both sulfate- and iron-reducing conditions. In a radioactivity experiment, [14C-U]-PCP was mineralized to 14CO2 and 14CH4 by the combined anaerobic microbial activities. Analysis of electron donor and acceptor utilization and of the production and consumption of H2, CO2, and CH4 suggested that the dechlorinating and degrading microorganisms compete with other microorganisms to perform PCP dechlorination and part of the phenol degradation in complex anoxic environments in the presence of electron donors and acceptors. The presence of a small amount of autoclaved soil slurry in the medium was possibly another advantageous factor in the successful dechlorination and mineralization of PCP by the combined mixtures. This anaerobic-anaerobic combination technology holds great promise as a cost-effective strategy for complete PCP bioremediation in situ.  相似文献   

2.
We evaluated the use of straw compost and remediated soil as inocula for bioremediation of chlorophenol-contaminated soil. The in situ biotransformation of pentachlorophenol (PCP) and mineralization of radiolabeled [U-(sup14)C]PCP by straw compost and remediated soil were studied under field-simulating conditions before and after 3 months of adaptation with PCP in a percolator. After PCP adaptation, the straw compost mineralized up to 56% of the [(sup14)C]PCP. No partial dechlorination of PCP was found. The native straw compost did not mineralize PCP, but partial dechlorination of PCP occurred (i) at pH 8 under near-thermophilic conditions (45(deg)C) and (ii) at pH 7 under aerobic and mesophilic conditions. No biotransformation reactions occurred at room temperature (25(deg)C) at pH 8. Enrichment in the percolator enhanced the mineralization rate of remediated soil to 56% compared with that of the native remediated soil, which mineralized 24% of [(sup14)C]PCP added. Trace amounts of chloroanisoles as the only biotransformation products were detected in PCP-adapted remediated soil. Both inoculants studied here showed effective mineralization of PCP when they were adapted to PCP in the percolator. No harmful side reactions, such as extensive methylation, were observed.  相似文献   

3.
Catabolism of pentachlorophenol by a Flavobacterium sp   总被引:23,自引:0,他引:23  
The pathway employed for pentachlorophenol (PCP) degradation by an aerobic, chlorophenol-utilizing Flavobacterium sp. was initiated by conversion of PCP to tetrachloro-p-hydroquinone (TCH). 18O labelling experiments demonstrated that the first dechlorination, where a hydroxyl replaced the chlorine at PCP ring position number 4, involved a hydrolytic reaction. Then two reductive dechlorinations of TCH followed to yield firstly trichlorohydroquinone (TrCH) and then 2,6-dichlorohydroquinone (DCH). Thus, the initial steps in catabolism of PCP by the Flavobacterium were: PCP----TCH----TrCH.  相似文献   

4.
Because of a range of different industrial activities, sites contaminated with chloroethenes are a world-wide problem. Chloroethenes can be biodegraded by reductive dechlorination under anaerobic conditions as well as by oxidation under aerobic conditions. The tendency of chloroethenes to undergo reductive dechlorination decreases with a decreasing number of chlorine substituents, whereas with less chlorine substituents chloroethenes more easily undergo oxidative degradation. There is currently a growing interest in aerobic metabolic degradation of chloroethenes, which demonstrates advantages compared to cometabolic degradation pathways. Sequential anaerobic/aerobic biodegradation can overcome the disadvantages of reductive dechlorination and leads to complete mineralization of the chlorinated pollutants. This approach shows promise for site remediation in natural settings and in engineered systems.  相似文献   

5.
The reductive dechlorination of chlorophenols was studied in three fluidized-bed reactors (FBRs) with respect to enrichment, pathways, complete dechlorination, and overall performance. The methanogenic consortia, developed by previous researchers in our laboratory, have been further enriched by reducing the ratio of substrate to pentachlorophenol (PCP) and increasing the PCP loading. The performance of the consortia was improved, and complete dechlorination at high PCP loading rates was observed, reaching a PCP loading of 1227 µmol/L d with 99% chlorophenol removal. The dechlorination rates in the reactors for chlorophenol (CP) congeners were obtained and were used to evaluate the performance of the three consortia and to quantitatively estimate the fates of these chlorophenols in the reactors. The consortium with the best performance was further investigated in bottle tests by treatment with heat and metabolic inhibitors to examine chlorophenol degradation and to characterize the CP degraders. The degradation of all monochlorophenols was completely inhibited after heat treatment, but the degradation of all other tested chlorophenols was hardly affected by heat treatment, indicating that spore-forming bacteria likely were involved in dechlorination. Addition of sulfate negatively affected CP degradation, but addition of molybdate reduced the effect of sulfate. Tests with 2-bromoethanesulfonic acid and vancomycin indicated that bacteria were responsible for chlorophenol degradation in the consortium.  相似文献   

6.
The effects of bioaugmentation with a pentachlorophenol (PCP)-adapted consortium and biostimulation with glucose as a carbon source on anaerobic bioremediation of PCP-contaminated soil were investigated in terms of the initial PCP removal rate and the extent of PCP dechlorination and mineralization. Samples from two PCP-contaminated sites were prepared, put into a series of Hungate tubes, inoculated, and fed under different conditions. Chlorophenols in the tubes were monitored over a 4-month period to measure PCP transformation in the soil. In less contaminated soil (10 mg PCP/kg soil), it was found that biostimulation with glucose at 1 g/kg soil or bioaugmentation at 0.14 g volatile suspended solids (VSS)/kg soil could greatly improve PCP degradation. The best PCP degradation was obtained when both bioaugmentation and biostimulation were applied, but higher levels of glucose (2 g/kg soil) or inoculum (0.56 g VSS/kg soil) had little additional effect. The highest initial PCP-removal rate reached 8.1 μmol/kg soil-d, which is almost 20 times greater than in the unamended controls. PCP was dechlorinated to lesser chlorinated phenols with 0.6 chlorine remaining on average, and the extent of mineralization approached 70% in 4 months. In highly PCP-contaminated soil (90 mg PCP/kg soil), PCP degradation was partially inhibited, but the relative effects of augmentation, stimulation, and combined treatments were the same as in the less contaminated soil.  相似文献   

7.
Pentachlorophenol (PCP) use as a general biocide, particularly for treating wood, has led to widespread environmental contamination. Biodegradation has emerged as the main mechanism for PCP degradation in soil and groundwater and a key strategy for remediation. Examining the microbial biodegrading potential for PCP at a contaminated site is crucial in determining its fate. Hundreds of studies have been published on PCP microbial degradation, but few have described the biodegradation of PCP that has been in contact with soils for many years. The bioavailability of “aged” hydrophobic organics is a significant concern. PCP- and 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP)-contaminated soil samples from several depths at a former wood treatment site were placed under varying conditions in the laboratory to determine the anaerobic and aerobic potential for biodegradation of chlorophenols at the site. PCP biodegradation occurred in both anaerobic and aerobic soil samples. Rapid aerobic degradation occurred in samples spiked with 2- and 4-chlorophenol, but not with 3-chlorophenol. Reductive dechlorination of PCP in anaerobic samples resulted in the accumulation of 3-chlorophenol. In most anaerobic replicates, 3-chlorophenol was degraded with the appearance of detectable, but not quantifiable amounts of phenol. These results indicate excellent potential for remediation at the site using the indigenous microorganisms under both aerobic and anaerobic conditions. However, a fraction of the PCP was unavailable for degradation.  相似文献   

8.
Anaerobic granules developed for the treatment of pentachlorophenol (PCP) completely minearilized14C-labeled PCP to14CH4 and14CO2. Release of chloride ions from PCP was performed by live cells in the granules under anaerobic conditions. No chloride ions were released under aerobic conditions or by autoclaved cells. Addition of sulfate enhanced the initial chloride release rate and accelerated the process of mineralization of14C-labeled PCP. Addition of molybdate (10 mM) inhibited the chloride release rate and severely inhibited PCP mineralization. This suggests involvement of sulfate-reducing bacteria in PCP dechlorination and mineralization. Addition of 2-bromoethane sulfonate slightly decreased the chloride release rate and completely stopped production of14CH4 and14CO2 from [14C]PCP. 2,4,6-trichlorophenol was observed as an intermediate during PCP dechlorination. On the basis of experimental results, dechlorination of 2,4,6-trichlorophanol by the granules was conducted through 2,4-dichlorophenol, 4-chlorophenol or 2-chlorophenol to phenol at pH 7.0–7.2.  相似文献   

9.
The reductive dechlorination of pentachlorophenol (PCP) was investigated in anaerobic sediments that contained nonadapted or 2,4- or 3,4-dichlorophenol (DCP)-adapted microbial communities. Adaptation of sediment communities increased the rate of conversion of 2,4- or 3,4-DCP to monochlorophenols (CPs) and eliminated the lag phase before dechlorination was observed. Both 2,4- and 3,4-DCP-adapted sediment communities dechlorinated the six DCP isomers to CPs. The specificity of chlorine removal from the DCP isomers indicated a preference for ortho-chlorine removal by 2,4-DCP-adapted sediment communities and for para-chlorine removal by 3,4-DCP-adapted sediment communities. Sediment slurries containing nonadapted microbial communities either did not dechlorinate PCP or did so following a lag phase of at least 40 days. Sediment communities adapted to dechlorinate 2,4- or 3,4-DCP dechlorinated PCP without an initial lag phase. The 2,4-DCP-adapted communities initially removed the ortho-chlorine from PCP, whereas the 3,4-DCP-adapted communities initially removed the para-chlorine from PCP. A 1:1 mixture of the adapted sediment communities also dechlorinated PCP without a lag phase. Dechlorination by the mixture was regiospecific, following a para greater than ortho greater than meta order of chlorine removal. Intermediate products of degradation, 2,3,5,6-tetrachlorophenol, 2,3,5-trichlorophenol, 3,5-DCP, 3-CP, and phenol, were identified by a combination of cochromatography (high-pressure liquid chromatography) with standards and gas chromatography-mass spectrometry.  相似文献   

10.
Zeng G  Yu Z  Chen Y  Zhang J  Li H  Yu M  Zhao M 《Bioresource technology》2011,102(10):5905-5911
Two composting piles were prepared by adding to a mixture of rice straw, vegetables and bran: (i) raw soil free from pentachlorophenol (PCP) contamination (pile A) and (ii) PCP-contaminated soil (pile B). It was shown by the results that compost maturity characterized by water soluble carbon (WSC), TOC/TN ratio, germination index (GI) and dehydrogenase activity (DA) was significantly affected by PCP exposure, which resulted in an inferior degree of maturity for pile B. DGGE analysis revealed an inhibited effect of PCP on compost microbial abundance. The bacteria community shifts were mainly consistent with composting factors such as temperature, pH, moisture content and substrates. By contrast, the fungal communities were more sensitive to PCP contamination due to the significant correlation between fungal community shifts and PCP removal. Therefore, the different microbial community compositions for properly evaluating the degree of maturity and PCP contamination were suggested.  相似文献   

11.
Anaerobic biodegradation of pentachlorophenol (PCP) in a contaminated soil from a wood-treating industrial site was studied in soil slurry microcosms inoculated with a PCP-degrading methanogenic consortium. When the microcosms containing 10%–40% (w/v) soil were inoculated with the consortium, more than 90% of the PCP was removed in less than 30 days at 29 °C. Less-chlorinated phenols, mainly 3-chlorophenol were slowly degraded and accumulated in the cultures. Addition of glucose and sodium formate to the microcosms was not necessary, suggesting that the organic compounds in the soil can sustain the dechlorinating activity. Inoculation of Desulfitobacterium frappieri strain PCP-1 along with a 3-chlorophenol-degrading consortium in the microcosms also resulted in the rapid dechlorination of PCP and the slow degradation of 3-chlorophenol. Competitive polymerase chain reaction experiments showed that PCP-1 was present at the same level throughout the 21-day biotreatment. D. frappieri, strain PCP-1, inoculated into the soil microcosms, was able to remove PCP from soil containing up to 200 mg PCP/kg soil. However, reinoculation of the strain was necessary to achieve more than 95% PCP removal with a concentration of 300 mg and 500 mg PCP/kg soil. These results demonstrate that D. frappieri strain PCP-1 can be used effectively to dechlorinate PCP to 3-chlorophenol in contaminated soils. Received: 14 November 1997 / Received revision: 29 January 1998 / Accepted: 24 February 1998  相似文献   

12.
Pentachlorophenol biodegradation by Pseudomonas spp. UG25 and UG30   总被引:1,自引:0,他引:1  
Eighty-nine bacterial isolates obtained by enrichment from pentachlorophenol (PCP)-contaminated soil samples were tested for PCP dechlorination activity and hybridization to pcpB (encoding PCP-4-monooxygenase) and pcpC (encoding tetrachlorohydroquinone reductive dehalogenase) gene probes synthesized by polymerase chain reaction from Flavobacterium sp. ATCC 39723 genomic DNA. Seven isolates were able to dechlorinate PCP, hybridize to both pcpB and pcpC DNA probes, and mineralize sodium pentachlorophenate (NaPCP) at an initial concentration of 100g/ml. Although the seven PCP-mineralizing isolates possessed DNA sequences homologous to the Flavobacterium pcpB and pcpC genes, restriction analysis revealed sequence differences between the isolates and the Flavobacterium PCP dechlorination genes. Two isolates, designated UG25 and UG30, with the fastest onset and highest extent of PCP mineralization were selected for further study. Both isolates were tentatively identified as Pseudomonas spp. and exhibited stoichiometric release of Cl– ions as PCP was degraded. The release of Cl– began concomitantly with PCP disappearance from the medium. Both UG25 and UG30 degraded NaPCP at a concentration of 250 g/ml in a minimal salt medium. Supplementation of the medium with glutamate increased the NaPCP degradation threshold of UG25 to a concentration of 300 g/ml but did not affect that of UG30. 31P-NMR spectra of UG25 and UG30 cell suspensions exposed to PCP showed lower intracellular ATP levels and a more acidic cytoplasmic pH relative to untreated cells. This de-energization may explain the lack of cell growth in the presence of high PCP concentrations.  相似文献   

13.
Thermophilic (50 degrees C) anaerobic biodegradation of pentachlorophenol (PCP) was investigated by using different inocula from natural ecosystems and anaerobic digesters. The inocula tested were three freshwater sediments, four anaerobic sewage sludge samples from digesters treating sludge from wastewater plants with various industrial inputs, and digested manure from an anaerobic reactor. Only one digested-sludge sample and the manure sample were from thermophilic environments. The initial PCP concentration was 7.5 or 37.5 microM. After 8 months, PCP had disappeared from the sediment samples and various, less chlorinated intermediates were present. Additions of extra PCP were degraded within 4 weeks, and a maximal observed dechlorination rate of 1.61 mumol/liter/day in the vials with addition of 7.5 microM PCP and 7.50 mumol/liter/day in the vials with addition of 37.5 microM PCP were measured for a freshwater sediment. In contrast, only 2.8 to 17.5% of the initial PCP added had disappeared from the sludge samples after 8 months of incubation. The complex pattern of intermediates formed indicated that the dechlorination of PCP proceeded via different pathways, involving at least two different populations in the dechlorination processes.  相似文献   

14.
Thermophilic (50 degrees C) anaerobic biodegradation of pentachlorophenol (PCP) was investigated by using different inocula from natural ecosystems and anaerobic digesters. The inocula tested were three freshwater sediments, four anaerobic sewage sludge samples from digesters treating sludge from wastewater plants with various industrial inputs, and digested manure from an anaerobic reactor. Only one digested-sludge sample and the manure sample were from thermophilic environments. The initial PCP concentration was 7.5 or 37.5 microM. After 8 months, PCP had disappeared from the sediment samples and various, less chlorinated intermediates were present. Additions of extra PCP were degraded within 4 weeks, and a maximal observed dechlorination rate of 1.61 mumol/liter/day in the vials with addition of 7.5 microM PCP and 7.50 mumol/liter/day in the vials with addition of 37.5 microM PCP were measured for a freshwater sediment. In contrast, only 2.8 to 17.5% of the initial PCP added had disappeared from the sludge samples after 8 months of incubation. The complex pattern of intermediates formed indicated that the dechlorination of PCP proceeded via different pathways, involving at least two different populations in the dechlorination processes.  相似文献   

15.
田哲  张昱  杨敏 《微生物学通报》2015,42(5):936-943
随着四环素类抗生素在畜禽养殖中的广泛应用,畜禽粪便已成为四环素类抗生素和抗性基因的重要富集位点,其未经处理直接施用具有潜在的生态环境和人类健康风险。堆肥化处理可有效消减畜禽粪便中的四环素类抗生素,并且对抗性基因的扩散和传播具有一定的控制效果。本综述比较了不同的堆肥化工艺对粪肥中四环素类抗生素消减的效果,并重点讨论了其微生物降解机理,总结了堆肥化处理对粪肥中四环素抗性基因消减的研究进展,进一步讨论了堆肥化处理过程中抗性基因变化的微生态机理与控制策略,最后提出了采用热水解等预处理工艺去除抗生素压力和采用厌氧堆肥化工艺增强抗性基因控制的技术建议,以及从动态的角度采用高通量的检测技术来解析抗性基因消减机制的研究策略建议。  相似文献   

16.
A shallow water table aquifer under the U.S. Coast Guard Air Station at Traverse City, MI, has acclimated to the aerobic and anaerobic transformation of monoaromatic hydrocarbons (BTX) released from an aviation gasoline spill. The aquifer also exhibits reductive dechlorination of a chlorinated solvent spill adjacent to the aviation gasoline spill. The groundwater is buffered near neutrality. The aviation gasoline plume is methanogenic and the aquifer contains enough iron minerals to support significant iron solubilization. Field evidence of both aerobic and anaerobic biotransformation of monoaromatics was confirmed by laboratory studies of aquifer material obtained from the site. In the laboratory studies, the removal of the monoaromatics in the anaerobic material was rapid and compared favorably with removal in aerobic material. The kinetics of anaerobic removal of monoaromatics in the laboratory were similar to the kinetics at field scale in the aquifer. Biotransformation of the chlorinated solvents was not observed until late in the study, when daughter products from reductive dechlorination of the chlorinated solvents were identified by GC/MS.  相似文献   

17.
Complete mineralization of 50 µM of pentachlorophenol (PCP) was achieved anaerobically under continuous flow conditions using two columns connected in series with a hydraulic retention time of 14.2 days, showing the highest reported mineralization rate yet of 3.5 µM day?1. The first column, when injected with a reductive PCP dechlorinating consortium, dechlorinated PCP to mainly phenol and traces of 3‐chlorophenol (3‐CP) using lactate supplied continuously as an electron donor. The second column, with an anaerobic phenol degrading consortium, decomposed phenol and 3‐CP under iron‐reducing conditions with substantial fermentative degradation of organic compounds. When 20 mM of lactate was introduced into the first column, the phenol degradation activity of the second column was lost in a short period of time, because the amorphous Fe(III) oxide (FeOOH) that had been packed in the column before use was depleted by lactate metabolites, such as acetate and propionate, flowing into the second column from the first column. The complete mineralization of PCP was maintained for a long period by reducing the lactate concentration to 4 mM, effectively extending the longevity of second‐column activity with no depletion of FeOOH for more than 200 pore volumes (corresponding to 3,000 days). The carbon balance showed that 50 µM PCP and 4 mM lactate in the influent had transformed to CO2 (81%) and CH4 (3%) and had contributed to biomass growth (8%). A comparison of the microbial consortia introduced into the columns and those flowing out from the columns suggested that the introduced population did not flow out during the experiments, although the microbial composition of the phenol column was considered to be affected by the inflow of microbes from the PCP dechlorination column. These results suggest that a sequential combination of reductive dechlorinating and anaerobic oxidizing consortia is useful for anaerobic remediation of chlorinated aromatic compounds in a microbial permeable reactive barrier. Biotechnol. Bioeng. 2010;107: 775–785. © 2010 Wiley Periodicals, Inc.  相似文献   

18.
Vitamin B(12), reduced by titanium (III) citrate to vitamin B(12s), catalyzes the reductive dechlorination of chlorophenols. Reductive dechlorination of pentachlorophenol and of all tetrachlorophenol and trichlorophenol isomers was observed. Reaction of various chlorophenols with vitamin B(12) favored reductive dechlorination at positions adjacent to another chlorinated carbon, but chlorines ortho to the hydroxyl group of a phenol were particularly resistant to reductive dechlorination, even if they were also ortho to a chlorine. This resulted in a reductive dechlorination pattern favoring removal of para and meta chlorines, which differs substantially from the pattern exhibited by anaerobic microbial consortia.  相似文献   

19.
Electronic properties were correlated with observed reductive dechlorination pathways by unacclimated consortia for chlorinated phenols, dihydroxybenzenes, benzoic acids, and anilines. Molecular structures and properties were calculated using the semi-empirical Modified Neglect of Differential Overlap method at the Cornell Supercomputing Facility. Observed preferential positions for reductive dechlorination by unacclimated consortia correlate well with the largest negative value for the carbon-chlorine bond charge. Of 16 dechlorination pathways observed for unacclimated bacteria, the most negative carbon-chlorine bond charge correlated with 15 pathways.This correlation between the observed dechlorination position and the parent compound's electronic properties is consistent with the observed reductive dechlorination of chlorophenols and chlorinated dihydroxybenzenes at the ortho position, and the meta dechlorination of chlorobenzoic acids. Net carbonchlorine bond charges also correlate with the preferred dechlorination position for two of three known chloroaniline pathways, suggesting preferential removal of chlorines from the ortho position of chloroanilines.Abbreviations CA chloroaniline - CBz chlorobenzoic acid - CC chlorocatechol - CP chlorophenol - DCA dichloroaniline - DCBz dichlorobenzoic acid - DCC dichlorocatechol - DCH dichlorohydroquinone - DCP dichlorophenol - DCR dichlororesorcinol - PCP pentachlorophenol - TCA trichloroaniline - TCBz trichlorobenzoic acid - TCC trichlorocatechol - TCH trichlorohydroquinone - TCP trichlorophenol - TCR trichlororesorcinol - TeCA tetrachloroaniline - TeCBz tetrachlorobenzoic acid - TeCC tetrachlorocatechol - TeCH tetrachlorohydroquinone - TeCP tetrachlorophenol - TeCR tetrachlororesorcinol  相似文献   

20.
The role of soil, straw, and sawdust as supports in enhancing pentachlorophenol (PCP) mineralization by an indigenous soil consortium was examined by assessing the bioavailability of the substrate and other nutrients. PCP sorption tests were conducted in the presence of sterile supports to evaluate PCP bioavailability. Indigenous biomass, practically free of soil particles, was prepared to test the influence of sterile soil and soil components on the mineralization of increasing PCP concentrations. Organic supports such as straw and sawdust were very good sorbents for PCP, resulting in a slow, continuous desorption of substrate, high mineralization rates, and reduced toxicity to the active biomass. Soil and clay retained less PCP and desorbed it in decreasing amounts. Soil was the best amendment to enhance the mineralization of 100 mg/L PCP. Soil, soil extract, and the lowest-molecular-weight fraction of the soil extract facilitated the complete mineralization of 300 mg/L of PCP with a lag time of about 9 days, compared to 21 days for the unamended culture. Addition of soil enhanced PCP mineralization by an indigenous consortium, probably because soil particles served as an adsorbent for the contaminant to decrease its toxicity, as a support for biomass colonization, and as a source of supplementary nutrients for the biomass. This concept is of importance, particularly for the production of active and resistant biomass for the biotreatment of contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号