首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The morphologically uniform species Gonium pectorale is a colonial green flagellate of worldwide distribution. The affinities of 25 isolates from 18 sites on five continents were assessed by both DNA sequence comparisons and sexual compatibility. Complete sequences were obtained (i) for the internal transcribed spacer ITS-1 and ITS-2 regions of ribosomal DNA and (ii) for each of three single-copy spliceosomal introns, two in a small G protein and one in the actin gene. ITS sequences appeared to homogenize sufficiently rapidly to behave as a single copy gene. Intron sequence differences between isolates in this species reached nucleotide substitution saturation, while ITS sequences did not. Parsimony and evolutionary distance analysis of the two types of DNA data gave essentially the same tree conformation. By all these criteria, the group of G. pectorale isolates fell into two main clades, A and B. Clade A, with isolates from four continents, was comprised of four subclades of quite closely related isolates, plus one strain of ambiguous affinity. Clade B was comprised of two subclades represented by South African and South American isolates, respectively; thus, only subclades of clade B showed geographical localization. With respect to mating, all isolates except one homothallic strain and one apparently sterile strain fell into either one or the other of two mating types. Pairings in all possible combinations revealed that isolates from the same site formed abundant zygotes, which germinated to produce new, sexually active organisms. Zygotes were also formed in many pairings of other combinations, including crosses of clade A with clade B organisms, but none of the latter produced viable germlings. The ability to mate and produce viable progeny that were themselves capable of sexual reproduction was restricted to members of subclades established on the basis of DNA sequence similarities. Thus, the grades of difference in both nuclear intron sequences and rDNA ITS sequences paralleled those observed in the sexual analysis. Received: 9 March 1998 / Accepted: 1 June 1998  相似文献   

2.
Recombination is well known as a complicating factor in the interpretation of molecular phylogenies. Here we describe a maximum likelihood sliding window method based on a likelihood ratio test for scanning DNA sequence alignments for regions of incongruent phylogenetic signals, such as those influenced by recombination. Using this method, we identify several instances of gene conversion between paralogous chaperonin genes in euryarchaeote Archaea, many of which are not detected by two other widely used methods. In the Thermococcus/Pyrococcus lineage, where a gene duplication producing a and b paralogues predates the divergence of Thermococcus strains KS-1 and KS-8, gene conversion has homogenized portions of the a and b genes in KS-8 since the divergence of these two strains. A region near the 3′ end of the a and b paralogues in the methanogen Methanobacterium thermoautotrophicum also appears to have undergone gene conversion. We apply the method to two additional test data sets, the argF gene of Neisseria and a set of actin paralogues in maize, and show that it successfully identifies all the recombinant regions that were previously detected with other methods. Our approach is relatively insensitive to the presence of divergent sequences in the alignment, making it ideal for detecting recombination between both closely and distantly related genes.  相似文献   

3.
We have determined the genomic structure of an integrin β-subunit gene from the coral, Acropora millepora. The coding region of the gene contains 26 introns, spaced relatively uniformly, and this is significantly more than have been found in any integrin β-subunit genes from higher animals. Twenty-five of the 26 coral introns are also found in a β-subunit gene from at least one other phylum, indicating that the coral introns are ancestral. While there are some suggestions of intron gain or sliding, the predominant theme seen in the homologues from higher animals is extensive intron loss. The coral baseline allows one to infer that a number of introns found in only one phylum of higher animals result from frequent intron loss, as opposed to the seemingly more parsimonious alternative of isolated intron gain. The patterns of intron loss confirm results from protein sequences that most of the vertebrate genes, with the exception of β4, belong to one of two β subunit families. The similarity of the patterns within each of the β1,2,7 and β3,5,6,8 groups indicates that these gene structures have been very stable since early vertebrate evolution. Intron loss has been more extensive in the invertebrate genes, and obvious patterns have yet to emerge in this more limited data set. Received: 5 March 2001 / Accepted: 17 May 2001  相似文献   

4.
A phylogenetic analysis of the five major families of DNA polymerase is presented. Viral and plasmid sequences are included in this compilation along with cellular enzymes. The classification by Ito and Braithwaite (Ito and Braithwaite 1991) of the A, B, C, D, and X families has been extended to accommodate the ``Y family' of DNA polymerases that are related to the eukaryotic RAD30 and the bacterial UmuC gene products. After analysis, our data suggest that no DNA polymerase family was universally conserved among the three biological domains and no simple evolutionary scenario could explain that observation. Furthermore, viruses and plasmids carry a remarkably diverse set of DNA polymerase genes, suggesting that lateral gene transfer is frequent and includes non-orthologous gene displacements between cells and viruses. The relationships between viral and host genes appear very complex. We propose that the gamma DNA polymerase of the mitochondrion replication apparatus is of phage origin and that this gene replaced the one in the bacterial ancestor. Often there was no obvious relation between the viral and the host DNA polymerase, but an interesting exception concerned the family B enzymes: in which ancient gene exchange can be detected between the viruses and their hosts. Additional evidence for horizontal gene transfers between cells and viruses comes from an analysis of the small damage-inducible DNA polymerases. Taken together, these findings suggest a complex evolutionary history of the DNA replication apparatus that involved significant exchanges between viruses, plasmids, and their hosts.  相似文献   

5.
The primary structure of the Chla/b/c-binding protein from Mantoniella squamata is determined. This is the first report that protein sequencing reveals one modified amino acid resulting in a LHCP-specific TFA-cleavage site. The comparison of the sequence of Mantoniella with other Chla/b-and Chla/c-binding proteins shows that the modified amino acid is located in a region which is highly conserved in all these proteins. The alignment also reveals that the LHCP of Mantoniella is related to the Chla/b-binding proteins. Finally, possible Chl-binding regions are discussed.Abbreviations a.m.u. atomic mass unit - LHC light-harvesting complex - LHC II major LHC of Photosystem II - LHCP light-harvesting chlorophyll-binding protein - LSIMS liquid secondary ion mass spectrometry - TFA trifluoroacetic acid  相似文献   

6.
A method is presented for estimating the transition/transversion ratio (TI/TV), based on phylogenetically independent comparisons. TI/TV is a parameter of some models used in phylogeny estimation intended to reflect the fact that nucleotide substitutions are not all equally likely. Previous attempts to estimate TI/TV have commonly faced three problems: (1) few taxa; (2) nonindependence among pairwise comparisons; and (3) multiple hits make the apparent TI/TV between two sequences decrease over time since their divergence, giving a misleading impression of relative substitution probabilities. We have made use of the time dependency, modeling how the observed TI/TV changes over time and extrapolating to estimate the ``instantaneous' TI/TV—the relevant parameter for phylogenetic inference. To illustrate our method, TI/TV was estimated for two mammalian mitochondrial genes. For 26 pairs of cytochrome b sequences, the estimate of TI/TV was 5.5; 16 pairs of 12s rRNA yielded an estimate of 9.5. These estimates are higher than those given by the maximum likelihood method and than those obtained by averaging all possible pairwise comparisons (with or without a two-parameter correction for multiple substitutions). We discuss strengths, weaknesses, and further uses of our method. Received: 22 August 1995 / Accepted: 26 July 1996  相似文献   

7.
We analyzed the phylogenetic relationship between the species of Lordiphosa and other Drosophilidae using alcohol dehydrogenase (Adh) gene sequences. The phylogenetic trees consistently show that the four species Drosophila kurokawai, D. collinella, D. stackelbergi, and D. clarofinis, which include three species groups of Lordiphosa, form a monophyletic clade. This clade is placed as a sister group to the willistoni and saltans groups of Sophophora. On the other hand, three species of Lordiphosa, D. tenuicauda, D. pseudotenuicauda, and D. acutissima, all of which belong to the tenuicauda group, are not shown to be related to the major Lordiphosa lineage. In the phylogenetic trees, these species are included into the clade comprised of Drosophila and Hirtodrosophila, although it remains uncertain whether the tenuicauda group is a monophyletic group or not. These results indicate that Lordiphosa is polyphyletic and that most of the members of the subgenus have a close relationship to the neotropical groups of Sophophora. The above conclusion is compatible with the hypothesis of Okada (Mushi [1963] 37:79–100) and Lastovka and Máca (Acta Ent Bohemoslov [1978] 75:404–420) that Lordiphosa is most closely related to Sophophora; in contrast, our results contradict the hypothesis of Grimaldi (Bull Am Mus Nat Hist [1990] 197:1–139) that Lordiphosa is a sister group to the genus Scaptomyza. Received: 12 May 1999 / Accepted: 14 April 2000  相似文献   

8.
The mitochondrial cytochrome b (cyt-b) gene is widely used in systematic studies to resolve divergences at many taxonomic levels. The present study focuses mainly on the utility of cyt-b as a molecular marker for inferring phylogenetic relationship at various levels within the fish family Cichlidae. A total of 78 taxa were used in the present analysis, representing all the major groups in the family Cichlidae (72 taxa) and other families from the suborders Labroidei and Percoidei. Gene trees obtained from cyt-b are compared to a published total evidence tree derived from previous studies. Minimum evolution trees based on cyt-b data resulted in topologies congruent with all previous analyses. Parsimony analyses downweighting transitions relative to transversions (ts1:tv4) or excluding transitions at third codon positions resulted in more robust bootstrap support for recognized clades than unweighted parsimony. Relative rate tests detected significantly long branches for some taxa (LB taxa) which were composed mainly by dwarf Neotropical cichlids. An improvement of the phylogenetic signal, as shown by the four-cluster likelihood mapping analysis, and higher bootstrap values were obtained by excluding LB taxa. Despite some limitations of cyt-b as a phylogenetic marker, this gene either alone or in combination with other data sets yields a tree that is in agreement with the well-established phylogeny of cichlid fish. Received: 11 October 2000 / Accepted: 26 February 2001  相似文献   

9.
Glutamine synthetase type I (GSI) genes have previously been described only in prokaryotes except that the fungus Emericella nidulans contains a gene (fluG) which encodes a protein with a large N-terminal domain linked to a C-terminal GSI-like domain. Eukaryotes generally contain the type II (GSII) genes which have been shown to occur also in some prokaryotes. The question of whether GSI and GSII genes are orthologues or paralogues remains a point of controversy. In this article we show that GSI-like genes are widespread in higher plants and have characterized one of the genes from the legume Medicago truncatula. This gene is part of a small gene family and is expressed in many organs of the plant. It encodes a protein similar in size and with between 36 and 46% amino acid sequence similarity to prokaryotic GS proteins used in the analyses, whereas it is larger and with less than 25% similarity to GSII proteins, including those from the same plant species. Phylogenetic analyses suggest that this protein is most similar to putative proteins encoded by expressed sequence tags of other higher plant species (including dicots and a monocot) and forms a cluster with FluG as the most divergent of the GSI sequences. The discovery of GSI-like genes in higher plants supports the paralogous evolution of GSI and GSII genes, which has implications for the use of GS in molecular studies on evolution. Received: 4 May 1999 / Accepted: 17 September 1999  相似文献   

10.
Phylogenetic relationships among the Japanese papilionid butterflies were analyzed by comparing 783 nucleotide sequences of the mitochondrial gene encoding NADH dehydrogenase subunit 5 (ND5). Phylogenetic trees of the representative species from each family in the superfamily Papilionoidea revealed that the species of the family Papilionidae and those of all other families formed distinct clusters, with a few species of the family Hesperiidae (Hesperioidea) as an outgroup. In the phylogenetic trees of most Japanese species of the family Papilionidae with Nymphalis xanthomelas (Nymphalidae) as an outgroup, the tribe Parnassiini (Parnassiinae) formed a cluster, and the rest formed the other cluster in which the tribe Zerynthiini (Parnassiinae) and the subfamily Papilioninae formed different subclusters. In the Papilioninae cluster, the tribes Troidini and Graphiini formed a subcluster, and the tribe Papilionini formed the other subcluster. These results generally agree with the traditional classification of the papilionid butterflies based on their morphological characteristics and support the proposed evolutionary genealogy of the butterflies based on their morphology, behavior, and larval host plants, except that the tribes Parnasiini and Zerynthiini (both Parnassiinae) are not in the same cluster. Received: 16 March 1998 / Accepted: 28 April 1998  相似文献   

11.
12.
We propose a new type of unsupervised, growing, self-organizing neural network that expands itself by following the taxonomic relationships that exist among the sequences being classified. The binary tree topology of this neutral network, contrary to other more classical neural network topologies, permits an efficient classification of sequences. The growing nature of this procedure allows to stop it at the desired taxonomic level without the necessity of waiting until a complete phylogenetic tree is produced. This novel approach presents a number of other interesting properties, such as a time for convergence which is, approximately, a lineal function of the number of sequences. Computer simulation and a real example show that the algorithm accurately finds the phylogenetic tree that relates the data. All this makes the neural network presented here an excellent tool for phylogenetic analysis of a large number of sequences. Received: 14 May 1996 / Accepted: 6 August 1996  相似文献   

13.
The sequence of the mitochondrial COII gene has been widely used to estimate phylogenetic relationships at different taxomonic levels across insects. We investigated the molecular evolution of the COII gene and its usefulness for reconstructing phylogenetic relationships within and among four collembolan families. The collembolan COII gene showed the lowest A + T content of all insects so far examined, confirming that the well-known A + T bias in insect mitochondrial genes tends to increase from the basal to apical orders. Fifty-seven percent of all nucleotide positions were variable and most of the third codon positions appeared free to vary. Values of genetic distance between congeneric species and between families were remarkably high; in some cases the latter were higher than divergence values between other orders of insects. The remarkably high divergence levels observed here provide evidence that collembolan taxa are quite old; divergence levels among collembolan families equaled or exceeded divergences among pterygote insect orders. Once the saturated third-codon positions (which violated stationarity of base frequencies) were removed, the COII sequences contained phylogenetic information, but the extent of that information was overestimated by parsimony methods relative to likelihood methods. In the phylogenetic analysis, consistent statistical support was obtained for the monophyly of all four genera examined, but relationships among genera/families were not well supported. Within the genus Orchesella, relationships were well resolved and agreed with allozyme data. Within the genus Isotomurus, although three pairs of populations were consistently identified, these appeared to have arisen in a burst of evolution from an earlier ancestor. Isotomurus italicus always appeared as basal and I. palustris appeared to harbor a cryptic species, corroborating allozyme data. Received: 12 January 1996 / Accepted: 10 August 1996  相似文献   

14.
We report sequences for nuclear lamins from the teleost fish Danio and six invertebrates. These include two cnidarians (Hydra and Tealia), one priapulid, two echinoderms, and the cephalochordate Branchiostoma. Combining these results with earlier data on Drosophila, Caenorhabditis elegans, and various vertebrates, the following conclusions on lamin evolution can be drawn. First, all invertebrate lamins resemble in size the vertebrate B-type lamin. Second, all lamins described previously for amphibia, birds and mammals as well as the first lamin of a fish, characterized here, show a cluster of 7 to 12 acidic residues in the tail domain. Since this acidic cluster is absent from all invertebrate lamins including that of the cephalochordate Branchiostoma, it was acquired with the vertebrate lineage. The larger A-type lamin of differentiated cells must have arisen subsequently by gene duplication and insertion of an extra exon. This extra exon of the vertebrate A-lamins is the only major change in domain organization in metazoan lamin evolution. Third, the three introns of the Hydra and Priapulus genes correspond in position to the last three introns of vertebrate B-type lamin genes. Thus the entirely different gene organization of the C. elegans and Drosophila Dmo genes seems to reflect evolutionary drift, which probably also accounts for the fact that C. elegans has the most diverse lamin sequence. Finally we discuss the possibility that two lamin types, a constitutively expressed one and a developmentally regulated one, arose independently on the arthropod and vertebrate lineages. Received: 4 February 1999 / Accepted: 1 April 1999  相似文献   

15.
16.
The complete nucleotide sequence of the 18S subunit of ribosomal DNA (rDNA) was determined for the venerid clams Callista chione (Pitarinae) and Venus verrucosa (Venerinae). Comparison of the new sequences with the published sequences of 1 annelid, 2 gastropods, 2 polyplacophorans, and 19 bivalves showed that when the annelids are used as outgroup the gastropods diverge from the bivalves, which form a cluster including the polyplacophorans. When the gastropods alone were compared with the bivalves, the latter split in two groups corresponding to the two subclasses of Heterodonta and Pteriomorpha. The former include two taxa that diverged early, Galeomma and Tridacna, while the Veneridae and Mactridae form two sister groups. In contrast to previous reports and in line with morphological data, the Ostreidae are included in the Pteriomorphia and form a monophyletic group. Received: 16 May 1998 / Accepted: 11 August 1998  相似文献   

17.
Water-soluble polysaccharide fractions were extracted from the brown alga Laminaria cichorioides. Samples were collected monthly from May to October in Troitsa Bay (Japan Sea, Russia). Analysis showed that the content and monosaccharide composition of the fractions changed with the collection season. Fucoidan was isolated and purified from the most fucose-rich fraction, collected in July, and subjected to autohydrolysis to obtain fucooligosaccharides, suitable for mass-spectrometric analysis. Both ESIMS and MALDI-TOFMS analyses show that multisulfated (up to 3) fucooligosaccharides with polymerization degree n from 2 to 5, including mono- and disulfated-fucose residues, were the major products of autohydrolysis. The structural features of the fucooligosaccharides and their alditol derivatives were elucidated by tandem MALDI-TOFMS and ESIMS. The results obtained allowed us to conclude that fragments of the fucoidan, collected in July, were predominantly linked with a (1→3)-type of linkage and that sulfate groups occupied mostly C-2 or C-2/C-4 of the α-l-fucose residues.  相似文献   

18.
19.
Complete chloroplast 23S rRNA and psbA genes from five peridinin-containing dinoflagellates (Heterocapsa pygmaea, Heterocapsa niei, Heterocapsa rotun-data, Amphidinium carterae, and Protoceratium reticulatum) were amplified by PCR and sequenced; partial sequences were obtained from Thoracosphaera heimii and Scrippsiella trochoidea. Comparison with chloroplast 23S rRNA and psbA genes of other organisms shows that dinoflagellate chloroplast genes are the most divergent and rapidly evolving of all. Quartet puzzling, maximum likelihood, maximum parsimony, neighbor joining, and LogDet trees were constructed. Intersite rate variation and invariant sites were allowed for with quartet puzzling and neighbor joining. All psbA and 23S rRNA trees showed peridinin-containing dinoflagellate chloroplasts as monophyletic. In psbA trees they are related to those of chromists and red algae. In 23S rRNA trees, dinoflagellates are always the sisters of Sporozoa (apicomplexans); maximum likelihood analysis of Heterocapsa triquetra 16S rRNA also groups the dinoflagellate and sporozoan sequences, but the other methods were inconsistent. Thus, dinoflagellate chloroplasts may actually be related to sporozoan plastids, but the possibility of reproducible long-branch artifacts cannot be strongly ruled out. The results for all three genes fit the idea that dinoflagellate chloroplasts originated from red algae by a secondary endosymbiosis, possibly the same one as for chromists and Sporozoa. The marked disagreement between 16S rRNA trees using different phylogenetic algorithms indicates that this is a rather poor molecule for elucidating overall chloroplast phylogeny. We discuss possible reasons why both plastid and mitochondrial genomes of alveolates (Dinozoa, Sporozoa and Ciliophora) have ultra-rapid substitution rates and a proneness to unique genomic rearrangements. Received: 27 December 1999 / Accepted: 24 March 2000  相似文献   

20.
A global alignment of EF-G(2) sequences was corrected by reference to protein structure. The selection of characters eligible for construction of phylogenetic trees was optimized by searching for regions arising from the artifactual matching of sequence segments unique to different phylogenetic domains. The spurious matchings were identified by comparing all sections of the global alignment with a comprehensive inventory of significant binary alignments obtained by BLAST probing of the DNA and protein databases with representative EF-G(2) sequences. In three discrete alignment blocks (one in domain II and two in domain IV), the alignment of the bacterial sequences with those of Archaea–Eucarya was not retrieved by database probing with EF-G(2) sequences, and no EF-G homologue of the EF-2 sequence segments was detected by using partial EF-G(2) sequences as probes in BLAST/FASTA searches. The two domain IV regions (one of which comprises the ADP-ribosylatable site of EF-2) are almost certainly due to the artifactual alignment of insertion segments that are unique to Bacteria and to Archaea–Eucarya. Phylogenetic trees have been constructed from the global alignment after deselecting positions encompassing the unretrieved, spuriously aligned regions, as well as positions arising from misalignment of the G′ and G″ subdomain insertion segments flanking the ``fifth' consensus motif of the G domain (?varsson, 1995). The results show inconsistencies between trees inferred by alternative methods and alternative (DNA and protein) data sets with regard to Archaea being a monophyletic or paraphyletic grouping. Both maximum-likelihood and maximum-parsimony methods do not allow discrimination (by log-likelihood difference and difference in number of inferred substitutions) between the conflicting (monophyletic vs. paraphyletic Archaea) topologies. No specific EF-2 insertions (or terminal accretions) supporting a crenarchaeal–eucaryal clade are detectable in the new EF-G(2) sequence alignment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号