首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abnormal accumulation of Ca2+ and exposure to pro-apoptotic proteins, such as Bax, is believed to stimulate mitochondrial generation of reactive oxygen species (ROS) and contribute to neural cell death during acute ischemic and traumatic brain injury, and in neurodegenerative diseases, e.g. Parkinson's disease. However, the mechanism by which Ca2+ or apoptotic proteins stimulate mitochondrial ROS production is unclear. We used a sensitive fluorescent probe to compare the effects of Ca2+ on H2O2 emission by isolated rat brain mitochondria in the presence of physiological concentrations of ATP and Mg2+ and different respiratory substrates. In the absence of respiratory chain inhibitors, Ca2+ suppressed H2O2 generation and reduced the membrane potential of mitochondria oxidizing succinate, or glutamate plus malate. In the presence of the respiratory chain Complex I inhibitor rotenone, accumulation of Ca2+ stimulated H2O2 production by mitochondria oxidizing succinate, and this stimulation was associated with release of mitochondrial cytochrome c. In the presence of glutamate plus malate, or succinate, cytochrome c release and H2O2 formation were stimulated by human recombinant full-length Bax in the presence of a BH3 cell death domain peptide. These results indicate that in the presence of ATP and Mg2+, Ca2+ accumulation either inhibits or stimulates mitochondrial H2O2 production, depending on the respiratory substrate and the effect of Ca2+ on the mitochondrial membrane potential. Bax plus a BH3 domain peptide stimulate H2O2 production by brain mitochondria due to release of cytochrome c and this stimulation is insensitive to changes in membrane potential.  相似文献   

2.
Hydroperoxides have previously been shown to induce Ca2+ release from intact rat liver mitochondria via a specific release pathway. Here it is reported that, in rat brain mitochondria, a hydroperoxide-induced Ca2+ release is also operative but is of minor importance. Hydroperoxide stimulates Ca2+ release in the presence of ruthenium red about twofold at a Ca2+ load of 40 nmol/mg mitochondrial protein. After addition of hydroperoxide, Ca2+ release from brain mitochondria can still be evoked by Na+. In the presence of succinate and rotenone, hydroperoxide induces only a very limited oxidation of pyridine nucleotides, most probably due to the low level of glutathione peroxidase (EC 1.11.1.9) and glutathione reductase (EC 1.6.4.2) found in brain mitochondria. Similar to liver mitochondria, a NADase (EC 3.2.2.5) activity is found in brain mitochondria. Its localization and sensitivity toward ADP and ATP, however, is different from that of the liver mitochondrial enzyme.  相似文献   

3.
In this study we show that micromolar Ca(2+) concentrations (>10 microM) strongly stimulate the release of reactive oxygen species (ROS) in rotenone-treated isolated rat forebrain mitochondria. Ca(2+)-stimulated mitochondrial ROS release was associated with membrane lipid peroxidation and was directly correlated with the degree of complex I inhibition by rotenone. On the other hand, Ca(2+) did not increase mitochondrial ROS release in the presence of the complex I inhibitor 1-methyl-4-phenylpyridinium. Cyclosporin A had no effect on Ca(2+)-stimulated mitochondrial ROS release in the presence of rotenone, indicating that mitochondrial permeability transition is not involved in this process. We hypothesized that Ca(2+)-induced mitochondrial oxidative stress associated with partial inhibition of complex I may be an important factor in neuronal cell death observed in the neurodegenerative disorder Parkinson's disease.  相似文献   

4.
The role of ADP in the regulation of Ca2+ efflux in rat brain mitochondria was investigated. ADP was shown to inhibit Ruthenium-Red-insensitive H+- and Na+-dependent Ca2+-efflux rates if Pi was present, but had no effect in the absence of Pi. The primary effect of ADP is an inhibition of Pi efflux, and therefore it allows the formation of a matrix Ca2+-Pi complex at concentrations above 0.2 mM-Pi and 25 nmol of Ca2+/mg of protein, which maintains a constant free matrix Ca2+ concentration. ADP inhibition of Pi and Ca2+ efflux is nucleotide-specific, since in the presence of oligomycin and an inhibitor of adenylate kinase ATP does not substitute for ADP, is dependent on the amount of ADP present, and requires ADP concentrations in excess of the concentrations of translocase binding sites. Brain mitochondria incubated with 0.2 mM-Pi and ADP showed Ca2+-efflux rates dependent on Ca2+ loads at Ca2+ concentrations below those required for the formation of a Pi-Ca2+ complex, and behaved as perfect cytosolic buffers exclusively at high Ca2+ loads. The possible role of brain mitochondrial Ca2+ in the regulation of the tricarboxylic acid-cycle enzymes and in buffering cytosolic Ca2+ is discussed.  相似文献   

5.
Inhibition of mitochondrial respiratory chain complex I by rotenone had been found to induce cell death in a variety of cells. However, the mechanism is still elusive. Because reactive oxygen species (ROS) play an important role in apoptosis and inhibition of mitochondrial respiratory chain complex I by rotenone was thought to be able to elevate mitochondrial ROS production, we investigated the relationship between rotenone-induced apoptosis and mitochondrial reactive oxygen species. Rotenone was able to induce mitochondrial complex I substrate-supported mitochondrial ROS production both in isolated mitochondria from HL-60 cells as well as in cultured cells. Rotenone-induced apoptosis was confirmed by DNA fragmentation, cytochrome c release, and caspase 3 activity. A quantitative correlation between rotenone-induced apoptosis and rotenone-induced mitochondrial ROS production was identified. Rotenone-induced apoptosis was inhibited by treatment with antioxidants (glutathione, N-acetylcysteine, and vitamin C). The role of rotenone-induced mitochondrial ROS in apoptosis was also confirmed by the finding that HT1080 cells overexpressing magnesium superoxide dismutase were more resistant to rotenone-induced apoptosis than control cells. These results suggest that rotenone is able to induce apoptosis via enhancing the amount of mitochondrial reactive oxygen species production.  相似文献   

6.
We previously showed that Ca2+-induced cyclosporin A-sensitive membrane permeability transition (MPT) of mitochondria occurred with concomitant generation of reactive oxygen species (ROS) and release of cytochrome c (Free Rad. Res.38, 29-35, 2004). To elucidate the role of alpha-tocopherol in MPT, we investigated the effect of alpha-tocopherol on mitochondrial ROS generation, swelling and cytochrome c release induced by Ca2+ or hydroxyl radicals. Biochemical analysis revealed that alpha-tocopherol suppressed Ca2+-induced ROS generation and oxidation of critical thiol groups of mitochondrial adenine nucleotide translocase (ANT) but not swelling and cytochrome c release. Hydroxyl radicals also induced cyclosporin A-sensitive MPT of mitochondria. alpha-Tocopherol suppressed the hydroxyl radical-induced lipid peroxidation, swelling and cytochrome c release from mitochondria. These results indicate that alpha-tocopherol inhibits ROS generation, ANT oxidation, lipid peroxidation and the opening of MPT, thereby playing important roles in the prevention of oxidative cell death.  相似文献   

7.
The uptake of Ca2+ in isolated mouse liver mitochondria respiring on succinate in the presence of rotenone and added Pi, was inhibited by dibucaine, fluorocitrate, p-hydroxymercuribenzoate (PMB), malonate, palmitoyl-CoA, succinyl-CoA and trifluoroperazine. The release of accumulated Ca2+ was stimulated by arsenite, malonate, PMB, palmitoyl-CoA and succinyl-CoA, whereas the release was inhibited by dibucaine, fluorocitrate, trifluoroperazine, and by oligomycin, especially in the presence of ADP. The pyridine nucleotides were oxidized in mitochondria incubated with PMB. The observations suggest a possible contributory role of reductive carboxylation for the uptake of Ca2+, and a possible role of citrate for the retention of Ca2+ in isolated mouse liver mitochondria.  相似文献   

8.
The influence of mitochondrial permeability transition pore (MPTP) opening on reactive oxygen species (ROS) production in the rat brain mitochondria was studied. It was shown that ROS production is regulated differently by the rate of oxygen consumption and membrane potential, dependent on steady-state or non-equilibrium conditions. Under steady-state conditions, at constant rate of Ca2+-cycling and oxygen consumption, ROS production is potential-dependent and decreases with the inhibition of respiration and mitochondrial depolarization. The constant rate of ROS release is in accord with proportional dependence of the rate of ROS formation on that of oxygen consumption. On the contrary, transition to non-equilibrium state, due to the release of cytochrome c from mitochondria and progressive respiration inhibition, results in the loss of proportionality in the rate of ROS production on the rate of respiration and an exponential rise of ROS production with time, independent of membrane potential. Independent of steady-state or non-equilibrium conditions, the rate of ROS formation is controlled by the rate of potential-dependent uptake of Ca2+ which is the rate-limiting step in ROS production. It was shown that MPTP opening differently regulates ROS production, dependent on Ca2+ concentration. At low calcium MPTP opening results in the decrease in ROS production because of partial mitochondrial depolarization, in spite of sustained increase in oxygen consumption rate by a cyclosporine A-sensitive component due to simultaneous work of Ca2+-uniporter and MPTP as Ca2+-influx and efflux pathways. The effect of MPTP opening at low Ca2+ concentrations is similar to that of Ca2+-ionophore, A-23187. At high calcium MPTP opening results in the increase of ROS release due to the rapid transition to non-equilibrium state because of cytochrome c loss and progressive gating of electron flow in respiratory chain. Thus, under physiological conditions MPTP opening at low intracellular calcium could attenuate oxidative damage and the impairment of neuronal functions by diminishing ROS formation in mitochondria.  相似文献   

9.
Cu deficiency disrupts the architecture of mitochondria, impairs respiration, and inhibits the activity of cytochrome c oxidase - the terminal, Cu-dependent respiratory complex (Complex IV) of the electron transport chain. This suggests that perturbations in the respiratory chain may contribute to the changes in mitochondrial structure caused by Cu deficiency. This study investigates the effect of Cu deficiency on Ca2+-induced mitochondrial swelling as it relates to changes in respiratory complex activities in cardiac mitochondria of rats. Male weanling rats were fed diets containing either no added Cu (Cu0), 1.5 mg Cu/kg (Cu1.5), 3 mg Cu/kg (Cu3) or 6 mg Cu/kg (Cu6). The rate of Ca2+-induced mitochondrial swelling in the presence of succinate and oligomycin was reduced, and the time to reach maximal swelling was increased only in the rats consuming Cu0 diet. Cytochrome c oxidase activity was reduced 60% and 30% in rats fed Cu0 and Cu1.5, respectively, while NADH:cytochrome c reductase (Complex I+ComplexIII) activity was reduced 30% in rats consuming both Cu0 and Cu1.5. Mitochondrial swelling is representative of mitochondrial permeability transition pore (MPTP) formation and the results suggest that Ca2+-induced MPTP formation occurs in cardiac mitochondria of Cu-deficient rats only when cytochrome c oxidase activity falls below 30% of normal. Decreased respiratory complex activities caused by severe Cu deficiency may inhibit MPTP formation by increasing matrix ADP concentration or promoting oxidative modifications that reduce the sensitivity of the calcium trigger for MPTP formation.  相似文献   

10.
Schild L  Reiser G 《The FEBS journal》2005,272(14):3593-3601
From in vivo models of stroke it is known that ischemia/reperfusion induces oxidative stress that is accompanied by deterioration of brain mitochondria. Previously, we reported that the increase in Ca2+ induces functional breakdown and morphological disintegration in brain mitochondria subjected to hypoxia/reoxygenation (H/R). Protection by ADP indicated the involvement of the mitochondrial permeability transition pore in the mechanism of membrane permeabilization. Until now it has been unclear how reactive oxygen species (ROS) contribute to this process. We now report that brain mitochondria which had been subjected to H/R in the presence of low micromolar Ca2+ display low state 3 respiration (20% of control), loss of cytochrome c, and reduced glutathione levels (75% of control). During reoxygenation, significant mitochondrial generation of hydrogen peroxide (H2O2) was detected. The addition of the membrane permeant superoxide anion scavenger TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) suppressed the production of H2O2 by brain mitochondria metabolizing glutamate plus malate by 80% under normoxic conditions. TEMPOL partially protected brain mitochondria exposed to H/R and low micromolar Ca2+ from decrease in state 3 respiration (from 25% of control to 60% of control with TEMPOL) and permeabilization of the inner membrane. Membrane permeabilization was obvious, because state 3 respiration could be stimulated by extramitochondrial NADH. Our data suggest that ROS and Ca2+ synergistically induce permeabilization of the inner membrane of brain mitochondria exposed to H/R. However, permeabilization can only partially be prevented by suppressing mitochondrial generation of ROS. We conclude that transient deprivation of oxygen and glucose during temporary ischemia coupled with elevation in cytosolic Ca2+ concentration triggers ROS generation and mitochondrial permeabilization, resulting in neural cell death.  相似文献   

11.
Cardiolipin peroxidation plays a critical role in mitochondrial cytochrome c release and subsequent apoptotic process. Mitochondrial pore transition (MPT) is considered as an important step in this process. In this work, the effect of peroxidized cardiolipin on MPT induction and cytochrome c release in rat heart mitochondria was investigated. Treatment of mitochondria with micromolar concentrations of cardiolipin hydroperoxide (CLOOH) resulted in a dose-dependent matrix swelling, DeltaPsi collapse, release of preaccumulated Ca2+ and release of cytochrome c. All these events were inhibited by cyclosporin A and bongkrekic acid, indicating that peroxidized cardiolipin behaves as an inducer of MPT. Ca2+ accumulation by mitochondria was required for this effect. ANT (ADP/ATP translocator) appears to be involved in the CLOOH-dependent MPT induction, as suggested by the modulation by ligands and inhibitors of adenine nucleotide translocator (ANT). Together, these results indicate that peroxidized cardiolipin lowers the threshold of Ca2+ for MPT induction and cytochrome c release. This synergistic effect of Ca2+ and peroxidized cardiolipin on MPT induction and cytochrome c release in mitochondria, might be important in regulating the initial phase of apoptosis and also may have important implications in those physiopathological situations, characterized by both Ca2+ and peroxidized cardiolipin accumulation in mitochondria, such as aging, ischemia/reperfusion and other degenerative diseases.  相似文献   

12.
The mitochondrial respiratory chain is a major source of reactive oxygen species (ROS) under pathological conditions including myocardial ischemia and reperfusion. Limitation of electron transport by the inhibitor rotenone immediately before ischemia decreases the production of ROS in cardiac myocytes and reduces damage to mitochondria. We asked if ROS generation by intact mitochondria during the oxidation of complex I substrates (glutamate, pyruvate/malate) occurred from complex I or III. ROS production by mitochondria of Sprague-Dawley rat hearts and corresponding submitochondrial particles was studied. ROS were measured as H2O2 using the amplex red assay. In mitochondria oxidizing complex I substrates, rotenone inhibition did not increase H2O2. Oxidation of complex I or II substrates in the presence of antimycin A markedly increased H2O2. Rotenone prevented antimycin A-induced H2O2 production in mitochondria with complex I substrates but not with complex II substrates. Catalase scavenged H2O2. In contrast to intact mitochondria, blockade of complex I with rotenone markedly increased H2O2 production from submitochondrial particles oxidizing the complex I substrate NADH. ROS are produced from complex I by the NADH dehydrogenase located in the matrix side of the inner membrane and are dissipated in mitochondria by matrix antioxidant defense. However, in submitochondrial particles devoid of antioxidant defense ROS from complex I are available for detection. In mitochondria, complex III is the principal site for ROS generation during the oxidation of complex I substrates, and rotenone protects by limiting electron flow into complex III.  相似文献   

13.
Apoptosis-inducing factor (AIF)-deficient harlequin (Hq) mice undergo neurodegeneration associated with a 40–50% reduction in complex I level and activity. We tested the hypothesis that AIF and complex I regulate reactive oxygen species (ROS) production by brain mitochondria. Isolated Hq brain mitochondria oxidizing complex I substrates displayed no difference compared to wild type (WT) in basal ROS production, H2O2 removal, or ROS production stimulated by complex I inhibitors rotenone or 1-methyl-4-phenylpyridinium. In contrast, ROS production caused by reverse electron transfer to complex I was attenuated by ~50% in Hq mitochondria oxidizing the complex II substrate succinate. Basal and rotenone-stimulated rates of H2O2 release from in situ mitochondria did not differ between Hq and WT synaptosomes metabolizing glucose, nor did the level of in vivo oxidative protein carbonyl modifications detected in synaptosomes, brain mitochondria, or homogenates. Our results suggest that AIF does not directly modulate ROS release from brain mitochondria. In addition, they demonstrate that in contrast to ROS produced by mitochondria oxidizing succinate, ROS release from in situ synaptosomal mitochondria or from isolated brain mitochondria oxidizing complex I substrates is not proportional to the amount of complex I. These findings raise the important possibility that complex I contributes less to physiological ROS production by brain mitochondria than previously suggested.  相似文献   

14.
There is dose-dependent Cd(2+)-evoked swelling of isolated rat liver mitochondria energized by complex I, II, or IV respiratory substrates in sucrose medium in the absence of added Ca(2+) and P(i), which is prevented by Sr(2+). Permeability transition effectors (ADP, CsA, EGTA, RR, DTT, ATR, P(i), and Ca(2+)) affect in a corresponding way Cd(2+)-promoted membrane permeabilization in NH(4)NO(3), KCl, and sucrose media. Maximal depression of Cd(2+)-induced swelling is achieved by simultaneous addition of ADP, Mg(2+), and CsA that produces either synergistic (NH(4)NO(3)) or additive (KCl and sucrose media) action. Sustained activation by low [Cd(2+)] of mitochondrial basal respiration in KCl medium is observed both in the absence and in the presence of rotenone and/or oligomycin but only in the latter case (rotenone+oligomycin) CsA inhibits completely Cd(2+) activation of St 4 respiration and partially reverses DNP-uncoupled respiration depressed by cadmium. Cd(2+) effects are discussed in terms of comparison with those of Zn(2+) and PhAsO.  相似文献   

15.
Abstract: The ability of mitochondrial Ca2+ transport to limit the elevation in free cytoplasmic Ca2+ concentration in neurones following an imposed Ca2+ load is reexamined. Cultured cerebellar granule cells were monitored by digital fura-2 imaging. Following KCI depolarization, addition of the protonophore carbonylcyanide m -chlorophenylhydrazone (CCCP) to depolarize mitochondria released a pool of Ca2+ into the cytoplasm in both somata and neurites. No CCCP-releasable pool was found in nondepolarized cells. Although the KCI-evoked somatic and neurite Ca2+ concentration elevations were enhanced when CCCP was present during KCI depolarization, this was associated with a collapsed ATP/ADP ratio. In the presence of the ATP synthase inhibitor oligomycin, glycolysis maintained high ATP/ADP ratios for at least 10 min. The further addition of the mitochondrial complex I inhibitor rotenone led to a collapse of the mitochondrial membrane potential, monitored by rhodamine-123, but had no effect on ATP/ADP ratios. In the presence of rotenone/oligomycin, no CCCP-releasable pool was found subsequent to KCI depolarization, consistent with the abolition of mitochondrial Ca2+ transport; however, paradoxically the KCI-evoked Ca2+ elevation is decreased. It is concluded that the CCCP-induced increase in cytoplasmic Ca2+ response to KCI is due to inhibition of nonmitochondrial ATP-dependent transport and that mitochondrial Ca2+ transport enhances entry of Ca2+, perhaps by removing the cation from cytoplasmic sites responsible for feedback inhibition of voltage-activated Ca2+ channel activity.  相似文献   

16.
Among the numerous effects of lithium on intracellular targets, its possible action on mitochondria remains poorly explored. In the experiments with suspension of isolated brain mitochondria, replacement of KCl by LiCl suppressed mitochondrial swelling, depolarization, and a release of cytochrome c induced by a single Ca2+ bolus. Li+ robustly protected individual brain mitochondria loaded with rhodamine 123 against Ca2+-induced depolarization. In the experiments with slow calcium infusion, replacement of KCl by LiCl in the incubation medium increased resilience of synaptic and nonsynaptic brain mitochondria as well as resilience of liver and heart mitochondria to the deleterious effect of Ca2+. In LiCl medium, mitochondria accumulated larger amounts of Ca2+ before they lost the ability to sequester Ca2+. However, lithium appeared to be ineffective if mitochondria were challenged by Sr2+ instead of Ca2+. Cyclosporin A, sanglifehrin A, and Mg2+, inhibitors of the mitochondrial permeability transition (mPT), increased mitochondrial Ca2+ capacity in KCl medium but failed to do so in LiCl medium. This suggests that the mPT might be a common target for Li+ and mPT inhibitors. In addition, lithium protected mitochondria against high Ca2+ in the presence of ATP, where cyclosporin A was reported to be ineffective. SB216763 and SB415286, inhibitors of glycogen synthase kinase-3beta, which is implicated in regulating reactive oxygen species-induced mPT in cardiac mitochondria, did not increase Ca2+ capacity of brain mitochondria. Altogether, these findings suggest that Li+ desensitizes mitochondria to elevated Ca2+ and diminishes cytochrome c release from brain mitochondria by antagonizing the Ca2+-induced mPT.  相似文献   

17.
In animal models, brain ischemia causes changes in respiratory capacity, mitochondrial morphology, and cytochrome c release from mitochondria as well as a rise in cytosolic Ca2+ concentration. However, the causal relationship of the cellular processes leading to mitochondrial deterioration in brain has not yet been clarified. Here, by applying various techniques, we used isolated rat brain mitochondria to investigate how hypoxia/reoxygenation and nonphysiological Ca2+ concentrations in the low micromolar range affect active (state 3) respiration, membrane permeability, swelling, and morphology of mitochondria. Either transient hypoxia or a micromolar rise in extramitochondrial Ca2+ concentration, given as a single insult alone, slightly decreased active respiration. However, the combination of both insults caused devastating effects. These implied almost complete loss of active respiration, release of both NADH and cytochrome c, and rupture of mitochondria, as shown by electron microscopy. Mitochondrial respiration deteriorated even in the presence of cyclosporin A, documenting that membrane permeabilization occurred independent of mitochondrial permeability transition pore. Ca2+ has to enter the mitochondrial matrix in order to mediate this mitochondrial injury, because blockade of the mitochondrial Ca2+-transport system by ruthenium red in combination with CGP37157 completely prevented damage. Furthermore, protection of respiration from Ca2+-mediated damage by the adenine nucleotide ADP, but not by AMP, during hypoxia/reoxygenation is consistent with the delayed susceptibility of brain mitochondria to prolonged hypoxia, which is observed in vivo.  相似文献   

18.
Apoptosis may be initiated in neurons via mitochondrial release of the respiratory protein, cytochrome c. The mechanism of cytochrome c release has been studied extensively, but little is known about its dynamics. It has been claimed that release is all-or-none, however, this is not consistent with accumulating evidence of cytosolic mechanisms for 'buffering' cytochrome c. This study has attempted to model an underlying disease pathology, rather than inducing apoptosis directly. The model adopted was diminished activity of the mitochondrial respiratory chain complex I, a recognized feature of Parkinson's disease. Titration of rat brain mitochondrial respiratory function, with the specific complex I inhibitor rotenone, caused proportional release of cytochrome c from isolated synaptic and non-synaptic mitochondria. The mechanism of release was mediated, at least in part, by the mitochondrial outer membrane component Bak and voltage-dependent anion channel rather than non-specific membrane rupture. Furthermore, preliminary data were obtained demonstrating that in primary cortical neurons, titration with rotenone induced cytochrome c release that was subthreshold for the induction of apoptosis. Implications for the therapy of neurodegenerative diseases are discussed.  相似文献   

19.
A small amount of reactive oxygen species (ROS) is generated through aerobic respiration even under physiological conditions. Because ROS are known to have various deteriorating actions, the way cells could evade the effects of ROS in and around mitochondria would determine the fate of cells. We previously reported that Cu,Zn-superoxide dismutase (SOD1), a cytosolic enzyme, is also localized in mitochondria in various types of cells. Therefore, we undertook this study to elucidate the physiological significance of SOD1 localization in and around mitochondria. We analyzed the effects of various reagents that could modulate mitochondrial respiration, ROS metabolism, and subcellular localization of SOD1 and cytochrome c. Using rat liver mitochondria, we have shown that Ca2+, Fe2+, or long-chain fatty acids increased the mitochondrial generation of ROS and that the resulting ROS oxidized the critical thiol groups in adenine nucleotide translocase (ANT). The oxidation of ANT induced mitochondrial swelling followed by the release of SOD1 and cytochrome c. Although inhibitors of electron transport, such as rotenone, antimycin A, and KCN, also increased ROS generation, they failed to (i) oxidize the critical thiol groups in ANT, (ii) induce swelling, and (iii) release SOD1 and cytochrome c. These results suggest that the oxidation of ANT thiols and the opening of the membrane permeability transition pores induce the release of both SOD1 and cytochrome c. We demonstrated that the loss of SOD1 increases the susceptibility of mitochondria to oxidative stresses and that the simultaneous release of SOD1 enhances the vicious cycle of apoptotic reactions triggered by the released cytochrome c. Therefore, SOD1 must have important roles in protecting mitochondria from ROS-induced injury. Our data also suggest that SOD1 release parallels cytochrome c release under all conditions. We propose that intramembranously localized SOD1 is a third reagent (along with AIF) that will regulate apoptosis.  相似文献   

20.
The effects of ADP, carboxyatractyloside (CAT) and the local anaesthetic nupercaine on the energy-dependent Ca2+ uptake by rat liver mitochondria oxidizing succinate in the presence of oligomycin were compared, using incubation media of 320 mosM and 120 mosM tonicities. In hypotonic media the mitochondrial Ca2+ capacity was increased by 50%, and the mitochondria were more stable to the damaging effects of Ca + Pi. In the presence of ADP the Ca2+ capacities of mitochondria increased both in normotonic and hypotonic media; however, the absolute amounts of calcium consumed were levelled off. CAT abolished the effect of ADP on the mitochondrial Ca2+ uptake and equalized the Ca2+ capacities of rat liver mitochondria in the both media. The local anaesthetic nupercaine also increased the Ca2+ capacity of mitochondria. The effects of nupercaine and ADP were additive. CAT abolished the effect of ADP but not that of nupercaine. Measurements of the intramitochondrial contents of adenine nucleotides showed that in 120 mosM media there was a significant increase in the intramitochondrial content of ATP and the total pool of adenine nucleotides. It was concluded that in hypotonic media the mitochondrial adenine nucleotide carrier exists predominantly in the m-conformation thus facilitating the energization of mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号