首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Among the early events of induced differentiation of murine erythroleukemia cells that we studied was the variations of cell distribution in the cell cycle as a function of the time of induction. Flow-cytofluorimetry measurements of DNA content and BrdU incorporation allowed for a precise determination of the variations of the cell cycle parameters. Cells underwent a transient arrest in both G1 and G2 + M between 6 to 16 h of induction. The progression of the cells through S phase seems not to be affected during this period. After this time cells escaped from G1 and reentered the S phase. We described previously [S. Khochbin et al. (1988) J. Mol. Biol. 200, 55-64], that p53 decreased continuously during the induction of MELC and remained at a steady-state level after 18 to 20 h of induction. In order to look for a possible redistribution of the protein along the cell cycle during the induction process, we measured the accumulation of the protein along the cell cycle. In noninduced cells there were four steps in the accumulation of the protein throughout the cell cycle: the amount of p53 was constant during G1 and it increased as cells progressed through S phase, which is characterized by an increased accumulation at the G1/S transition and a more moderate accumulation during progression through the rest of the S phase. A constant level in G2/M, approximately twice that obtained in G1, was achieved. There was no change in this distribution that correlated with the various modifications of the cell cycle in induced cells. It seems then, that p53 is associated neither with the progression of the cells in the S phase nor with the resumption of the DNA synthesis after the G1 block.  相似文献   

2.
Quantitative treatment of multiparametric determination on cells using flow cytofluorometry was made possible by the development of a computer program that allows the relative quantification of a specific protein as a function of the position of cells during the cell cycle. This type of analysis provides interesting information about the distribution of a given protein throughout the cell cycle. Four examples showing the distribution of specific proteins illustrate such a quantification during the cell cycle in two different cell lines. The program also allows for the handling of a series of histograms obtained by the analysis of protein distribution as a function of DNA content in relation to a third parameter. To illustrate possible applications for this program, the evolution of the distribution of two proteins, the oncoprotein p53 and the histone H1(0), during the induced differentiation of murine erythroleukemia cells has been studied.  相似文献   

3.
4.
When denervated at the medium bud stage, limb blastemas of the newt, Pleurodeles waltlii Michah, stop growing. In order to better understand the role of nerves in the cell cycle in blastemas, we studied the distribution of mesenchymal cells in the G0-1, G1, S, G2 and M phases 48 and 96 h after denervation. The cell-cycle phases were determined by examining Feulgen-stained nuclei using a SAMBA 200 (System for Analytical Microscopy in Biological Applications) cell image processor. The cell nuclei were automatically analyzed by calculating 18 parameters related to the densitometry and texture of chromatin, and the shape of each nucleus. Cell-cycle phases were classified according to the unsupervised recognition method using a SAMBA 200 system as proposed by Moustafa and Brugal for cell-kinetics analysis. The classification obtained was tested against the results of stepwise linear discriminant analysis performed according to the method of Giroud. Our results show that, in blastemas 96 h after denervation, the percentage of cells in the S, G2, and M phases decreases significantly, while the percentage of G1 and G0-1 cells increases (+ 51% for G1 cells; + 30% for G0-1 cells). Thus, it appears that denervation of medium-bud-stage limb blastemas promotes the lengthening of G1 and premature exiting of cells from the cycle into the G0-1 phase. These results show that nerves (i.e., neurotrophic factor) regulate cell kinetics during newt limb regeneration by maintaining blastema mesenchymal cells in the cell-cycle.  相似文献   

5.
Synchronization by Lovastatin arrests many cell types reversibly in the G1 phase of the cell cycle. Here we show that Lovastatin (10 µM) mediates cell cycle arrest in human breast cancer cells, MCF-7 and MDA-MB-231, where 85% of cells accumulate in the G1 phase of the cell cycle. Addition of mevalonate (at 100X the Lovastatin concentration) releases the cells from the G1 arrest and allows for synchronous entry into late G1, S and G2/M phases of the cell cycle. The expressions of different cyclins as a marker for different phases of the cell cycle are detected by western blot analysis and indicative of synchronous transition into each of cell cycle phases following the initial G1 arrest. Due to its level of synchrony and high yield of synchronous populations of cells, Lovastatin method of cell synchronization can be used for examining gene expression patterns in a variety of different cell lines.  相似文献   

6.
Mass cytometry is a recently introduced technology that utilizes transition element isotope-tagged antibodies for protein detection on a single-cell basis. By circumventing the limitations of emission spectral overlap associated with fluorochromes utilized in traditional flow cytometry, mass cytometry currently allows measurement of up to 40 parameters per cell. Recently, a comprehensive mass cytometry analysis was described for the hematopoietic differentiation program in human bone marrow from a healthy donor. The current study describes approaches to delineate cell cycle stages utilizing 5-iodo-2-deoxyuridine (IdU) to mark cells in S phase, simultaneously with antibodies against cyclin B1, cyclin A, and phosphorylated histone H3 (S28) that characterize the other cell cycle phases. Protocols were developed in which an antibody against phosphorylated retinoblastoma protein (Rb) at serines 807 and 811 was used to separate cells in G0 and G1 phases of the cell cycle. This mass cytometry method yielded cell cycle distributions of both normal and cancer cell populations that were equivalent to those obtained by traditional fluorescence cytometry techniques. We applied this to map the cell cycle phases of cells spanning the hematopoietic hierarchy in healthy human bone marrow as a prelude to later studies with cancers and other disorders of this lineage.  相似文献   

7.
The frequency of labeled mitoses (FLM) method for analyzing cell-cycle phases necessitates a determination of cell-cycle interdivision times and the absolute lengths of the cell-cycle phases. The change to flow sorting (FACS) analysis, a simpler, less labor intensive, and more rapid method, eliminated determinations of absolute phase times, yielding only percents of cells exhibiting particular DMA contents. Without an interdivision time value, conversion of these fractions into absolute phase lengths is not possible. This change in methodology has led to an alteration in how the cell cycle is viewed. The FLM method allowed the conclusion that G1 phase variability resulted from constancy of S and G2 phase lengths. In contrast, with FACS analysis, slow growing cells exhibiting a large fraction of cells with a G1-phase amount of DMA appeared to be "arrested in G1 phase". The loss of absolute phase length determinations has therefore led to the proposals of G1-phase arrest, G1-phase controls, restriction points, and G0 phase. It is suggested that these G1-phase controls and phenomena require a critical reevaluation in the light of an alternative cell-cycle model that does not require or postulate such G1-phase controls.  相似文献   

8.
To better understand how the flow cytometric bromodeoxyuridine (BrdUrd)-pulse-chase method detects perturbed cell kinetics we applied it to measure cell cycle progression delays following exposure to ionizing radiation. Since this method will allow both the use of asynchronous cell populations and the determination of the alterations in cell cycle progression specific to cells irradiated in given cell cycle phases, it has a significant advantage over laborious synchronization methods. Exponentially growing Chinese hamster ovary (CHO) K1 cells were irradiated with graded doses of X-rays and pulse-labelled with BrdUrd immediately thereafter. Cells were subcultured in a BrdUrd-free medium for various time intervals and prepared for flow cytometric analysis. Of five flow cytometric parameters examined, only those that involved cell transit through G2, i.e. the fraction of BrdUrd-negative G2 cells and the fraction of BrdUrd-positive cells that had not divided, showed radiation dose-dependent delays. The magnitude of the effects indicates that the cells irradiated in G2 and in S are equally delayed. S phase transit of cells irradiated in S or in G1 did not appear to be affected. There were apparent changes in flow of cells out of G1, which could be explained by the delayed entry of G2 cells into the compartment because of G2 arrest. Thus, in asynchronous cells the method was able to detect G2 delay in those cells irradiated in S and G2 phases and demonstrate the absence of cell-cycle delays in other phases.  相似文献   

9.
Murine erythroleukemic cells (MELC) were synchronized by sequential exposure to thymidine and hydroxyurea. Upon removal from hydroxyurea, cells cultured with or without agents that induce erythroid differentiation, such as hexamethylene bisacetamide (HMBA) or dimethylsulfoxide (Me2SO), proceed through S, G2 and mitosis with the same kinetics: S phase averages 5 h and G2 plus mitosis, 2 h. Cells cultured with HMBA and Me2SO remain in the subsequent G1 for 5–7 h, compared with an average of only 3 h for cells cultured without inducer. Modal cell volume doubles as the cells proceed from G1 to G2. During the inducer-mediated prolonged G1, MELC retain a small cell volume. In cultures of non-synchronous MELC, inducers also increase the G1 fraction, as well as the proportion of small cells. An Me2SO-resistant MELC variant (DR10), cultured with Me2SO, shows little prolongation of G1 and little difference in the modal cell volume compared with cells without inducer. However, HMBA, which induces differentiation of DR10 cells, prolongs G1 and increases the proportion of small cells. These studies indicate that early changes in cell volume associated with induction of MELC to differentiate, in large part reflect alterations in the cell cycle. Evidence is presented which suggests that only one round of DNA synthesis in the presence of inducer may be necessary to initiate differentiation.  相似文献   

10.
OBJECTIVE: To investigate, with laser scanning cytometry (LSC), proliferating cell nuclear antigen (PCNA) expression during the cell cycle in renal cell carcinoma. STUDY DESIGN: DNA ploidy and intracellular localization of PCNA in renal cell carcinoma were determined using LSC and immunohistochemistry. The subjects were nine patients who had received surgery for renal cell carcinoma. After DNA ploidy analysis, the glass slides were restained by immunohistochemistry of PCNA. LSC allowed direct observation of PCNA localization during the cell cycle because we could obtain immunohistochemical staining of PCNA as a function of cell cycle phase for individual cells. RESULTS: PCNA was not demonstrated in the nuclei of G0/G1 cells. PCNA expression increased from the S phase of the cell cycle. PCNA rapidly degraded at the end of the G2 phase. In the late G2 and M phase, PCNA was not detected in almost any nucleus. CONCLUSION: LSC allows morphologic observation of the intracellular distribution of PCNA during the cell cycle in renal cell carcinoma.  相似文献   

11.
Visualizing spatiotemporal dynamics of multicellular cell-cycle progression   总被引:1,自引:0,他引:1  
The cell-cycle transition from G1 to S phase has been difficult to visualize. We have harnessed antiphase oscillating proteins that mark cell-cycle transitions in order to develop genetically encoded fluorescent probes for this purpose. These probes effectively label individual G1 phase nuclei red and those in S/G2/M phases green. We were able to generate cultured cells and transgenic mice constitutively expressing the cell-cycle probes, in which every cell nucleus exhibits either red or green fluorescence. We performed time-lapse imaging to explore the spatiotemporal patterns of cell-cycle dynamics during the epithelial-mesenchymal transition of cultured cells, the migration and differentiation of neural progenitors in brain slices, and the development of tumors across blood vessels in live mice. These mice and cell lines will serve as model systems permitting unprecedented spatial and temporal resolution to help us better understand how the cell cycle is coordinated with various biological events.  相似文献   

12.
Using an asynchronously growing cell population, we investigated how X-irradiation at different stages of the cell cycle influences individual cell–based kinetics. To visualize the cell-cycle phase, we employed the fluorescent ubiquitination-based cell cycle indicator (Fucci). After 5 Gy irradiation, HeLa cells no longer entered M phase in an order determined by their previous stage of the cell cycle, primarily because green phase (S and G2) was less prolonged in cells irradiated during the red phase (G1) than in those irradiated during the green phase. Furthermore, prolongation of the green phase in cells irradiated during the red phase gradually increased as the irradiation timing approached late G1 phase. The results revealed that endoreduplication rarely occurs in this cell line under the conditions we studied. We next established a method for classifying the green phase into early S, mid S, late S, and G2 phases at the time of irradiation, and then attempted to estimate the duration of G2 arrest based on certain assumptions. The value was the largest when cells were irradiated in mid or late S phase and the smallest when they were irradiated in G1 phase. In this study, by closely following individual cells irradiated at different cell-cycle phases, we revealed for the first time the unique cell-cycle kinetics in HeLa cells that follow irradiation.  相似文献   

13.
Monocyte chemoattractant protein-1-induced protein 1 (MCPIP1) has a multidomain structure, which assures its pleiotropic activity. The physiological functions of this protein include repression of inflammatory processes and the prevention of immune disorders. The influence of MCPIP1 on the cell cycle of cancer cells has not been sufficiently elucidated. A previous study by our group reported that overexpression of MCPIP1 affects the cell viability, inhibits the activation of the phosphoinositide-3 kinase/mammalian target of rapamycin signalling pathway, and reduces the stability of the MYCN oncogene in neuroblastoma (NB) cells. Furthermore, a decrease in expression and phosphorylation levels of cyclin-dependent kinase (CDK) 1, which has a key role in the M phase of the cell cycle, was observed. On the basis of these previous results, the purpose of our present study was to elucidate the influence of MCPIP1 on the cell cycle of NB cells. It was confirmed that ectopic overexpression of MCPIP1 in two human NB cell lines, KELLY and BE(2)-C, inhibited cell proliferation. Furthermore, flow cytometric analyses and imaging of the cell cycle with a fluorescence ubiquitination cell-cycle indicator test, demonstrated that overexpression of MCPIP1 causes an accumulation of NB cells in the G1 phase of the cell cycle, while the possibility of an increase in G0 phase due to induction of quiescence or senescence was excluded. Additional assessment of the molecular machinery responsible for the transition between the cell-cycle phases confirmed that MCPIP1 overexpression reduced the expression of cyclins A2, B1, D1, D3, E1, and E2 and decreased the phosphorylation of CDK2 and CDK4, as well as retinoblastoma protein. In conclusion, the present results indicated a relevant impact of overexpression of MCPIP1 on the cell cycle, namely a block of the G1/S cell-cycle checkpoint, resulting in arrest of NB cells in the G1 phase.  相似文献   

14.
15.
The catabolism of phosphatidylcholine (PtdCho) appears to play a key role in regulating the net accumulation of the lipid in the cell cycle. Current protocols for measuring the degradation of PtdCho at specific cell-cycle phases require prolonged periods of incubation with radiolabelled choline. To measure the degradation of PtdCho at the S and G2 phases in the MCF-7 cell cycle, protocols were developed with radiolabelled lysophosphatidylcholine (lysoPtdCho), which reduces the labelling period and minimizes the recycling of labelled components. Although most of the incubated lysoPtdCho was hydrolyzed to glycerophosphocholine (GroPCho) in the medium, the kinetics of the incorporation of label into PtdCho suggests that the labelled GroPCho did not contribute significantly to cellular PtdCho formation. A protocol which involved exposing the cells twice to hydroxyurea, was also developed to produce highly synchronized MCF-7 cells with a profile of G1:S:G2/M of 90:5:5. An analysis of PtdCho catabolism in the synchronized cells following labelling with lysoPtdCho revealed that there was increased degradation of PtdCho in early to mid-S phase, which was attenuated in the G2/M phase. The results suggest that the net accumulation of PtdCho in MCF-7 cells may occur in the G2 phase of the cell cycle.  相似文献   

16.
17.
A dynamic model of the cell cycle for eukaryotic cells, which takes into account the rates of ribosome and protein synthesis and the discontinuous events of DNA replication and cell division, is analyzed. It is shown that, by changing the values of the parameters, three different cell cycle regimens are possible, which are similar to cell cycle patterns experimentally observed and which show the action of different control mechanisms. The model allows the determination of the macromolecular levels as a function of the cycle time. Taking into consideration the age distribution function of the cells in an ideal exponentially growing population, mathematical relations are calculated that link the levels of macromolecular components (protein, ribosomes and DNA) to the temporal parameters of the cell cycle, such as the relative duration of the S phase. It is also shown that the relative length of all cell cycle phases may be determined if the labelling index and the relative DNA content of the cell population are known. All these relations suggest new and convenient procedures to determine cell cycle parameters.  相似文献   

18.
The fraction of membrane-bound and free polysomes during different phases of the cell cycle was determined in suspension cultures of mouse plasmacytoma cells, synchronized by growth in isoleucine-deficient medium. The membrane-bound polysomes reached a maximum value (about 28 % of total polysomes) during the G 1 phase. In the S phase and G 2 phase only 18 to 20 % of the total polysomes were found to be membrane-bound. A high percentage of membrane-bound polysomes in the G 1 phase of the cell cycle agrees with the earlier finding that maximum synthesis of immunoglobulin light chain takes place on polysomes bound to the membrane in the G 1 phase of the cell cycle. The presence of a significant fraction of membrane-bound polysomes in the S and G 2 phases of the cell cycle would suggest that membrane-bound polysomes are also involved in the synthesis of proteins other than immunoglobulins.The ultrastructure of the cells during the various phases of the cell cycle was also studied. During the G 1 phase the surface of the majority of cells was distinguished by the presence of ruffles and slender villus-like cytoplasmic projections. In the S phase the surface contour tended to become smooth and even. These differences in the surface morphology may reflect the change in function which occurs during the transition from the G 1 to the S phase.  相似文献   

19.
Increasing the knowledge of various cell cycle kinetic parameters, such as the length of the cell cycle and its different phases, is of considerable importance for several purposes including tumor diagnostics and treatment in clinical health care and a deepened understanding of tumor growth mechanisms. Of particular interest as a prognostic factor in different cancer forms is the S phase, during which DNA is replicated. In the present paper, we estimate the DNA replication rate and the S phase length from bromodeoxyuridine-DNA flow cytometry data. The mathematical analysis is based on a branching process model, paired with an assumed gamma distribution for the S phase duration, with which the DNA distribution of S phase cells can be expressed in terms of the DNA replication rate. Flow cytometry data typically contains rather large measurement variations, however, and we employ nonparametric deconvolution to estimate the underlying DNA distribution of S phase cells; an estimate of the DNA replication rate is then provided by this distribution and the mathematical model.  相似文献   

20.
The frequency of labeled mitoses (FLM) method for analyzing cell-cycle phases necessitates a determination of cell-cycle interdivision times and the absolute lengths of the cell-cycle phases. The change to flow sorting (FACS) analysis, a simpler, less labor intensive, and more rapid method, eliminated determinations of absolute phase times, yielding only percents of cells exhibiting particular DNA contents. Without an interdivision time value, conversion of these fractions into absolute phase lengths is not possible. This change in methodology has led to an alteration in how the cell cycle is viewed. The FLM method allowed the conclusion that G1-phase variability resulted from constancy of S and G2 phase lengths. In contrast, with FACS analysis, slow growing cells exhibiting a large fraction of cells with a G1-phase amount of DNA appeared to be “arrested in G1 phase”. The loss of absolute phase length determinations has therefore led to the proposals of G1-phase arrest, G1-phase controls, restriction points, and G0 phase. It is suggested that these G1-phase controls and phenomena require a critical reevaluation in the light of an alternative cell-cycle model that does not require or postulate such G1-phase controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号