首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adrenal gland plays a fundamental role in the response to a variety of stress situations. After a stress condition, adrenal medullary chromaffin cells release, by exocytosis, high quantities of catecholamine (epinephrine, EP; norepinephrine, NE), especially EP. Once in the blood stream, catecholamines reach different target organs, and induce their biological actions through the activation of different adrenoceptors. Adrenal gland cells may also be activated by catecholamines, through hormonal, paracrine and/or autocrine system. The presence of functional adrenoceptors on human adrenal medulla and their involvement on catecholamines secretion was not previously evaluated. In the present study we investigated the role of β(1)-, β(2)- and β(3)-adrenoceptors on catecholamine release from human adrenal chromaffin cells in culture. We observed that the β-adrenoceptor agonist (isoproterenol) and β(2)-adrenoceptor agonist (salbutamol) stimulated catecholamine (NE and EP) release from human adrenal chromaffin cells. Furthermore, the β(2)-adrenoceptor antagonist (ICI 118,551; 100 nM) and β(3)-adrenoceptor antagonist (SR 59230A; 100 nM) inhibited the catecholamine release stimulated by isoproterenol and nicotine in chromaffin cells. The β(1)-adrenoceptor antagonist (atenolol; 100 nM) did not change the isoproterenol- neither the nicotine-evoked catecholamine release from human adrenal chromaffin cells. Moreover, our results show that the protein kinase A (PKA), protein kinase C (PKC), mitogen-activated protein kinase (MAPK) and phospholipase C (PLC) are intracellular mechanisms involved in the catecholamine release evoked by salbutamol. In conclusion, our data suggest that the activation of β(2)- and β(3)-adrenoceptors modulate the basal and evoked catecholamine release, NE and EP, via an autocrine positive feedback loop in human adrenal chromaffin cells.  相似文献   

2.
B A Barron  T D Hexum 《Life sciences》1986,38(10):935-940
Retrograde perfusion was used to investigate the effect of an opiate agonist and an opiate antagonist on the release of catecholamines and [Met5]-enkephalin immunoreactive material (ME-IRM) from bovine adrenal glands. Etorphine (5 X 10(-7) M) inhibited the spontaneous outflow of ME-IRM by approximately 10 percent but had no significant effect on the spontaneous catecholamine release. Acetylcholine (ACh, 5 X 10(-5) M) or 1,1-dimethyl-4-phenylpiperazinium (DMPP, 5 X 10(-5) M) stimulated release of ME-IRM and catecholamines was significantly decreased by the addition of etorphine. Diprenorphine (5 X 10(-7) M) had no significant effect on the spontaneous outflow of either ME-IRM or catecholamines. Diprenorphine reversed the inhibition of the DMPP-stimulated release caused by etorphine. After submaximal stimulation of the gland with DMPP (1 X 10(-5) M), a further stimulation of release of ME-IRM and catecholamines was observed after the addition of diprenorphine alone, i.e., in the absence of etorphine. These results provide further evidence supporting the contention that opiates modulate the secretion of catecholamines and ME-IRM from the adrenal gland.  相似文献   

3.
Besides cholinergic regulation, catecholamine secretion from adrenal chromaffin cells can be elicited and/or modulated by noncholinergic neurotransmitters and hormones. This study was undertaken to investigate the influence of somatostatin and octreotide on [3H]MPP+ secretion evoked by KCl or cholinergic agents, from bovine adrenal chromaffin cells. The release of [3H]MPP+ was markedly increased by excess KCl (50 mM), acetylcholine (50 microM-10 mM) and by the nicotinic agonists, nicotine (5-100 microM) and 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP, 10-100 microM), but not by the muscarinic agonist, pilocarpine (10-100 microM). Acetylcholine-evoked release of [3H]MPP+ from these cells was mainly mediated by nicotinic receptors: a) nicotine and DMPP stimulated the release of [3H]MPP+, b) a nicotinic antagonist, hexamethonium, markedly blocked the acetylcholine-evoked response and c) pilocarpine was devoid of effect on [3H]MPP+ secretion. At all concentrations tested, somatostatin and octreotide interfered neither with [3H]MPP+ basal release nor with KCl-induced release of [3H]MPP+. However, somatostatin (0.01-0.3 microM) increased the release of [3H]MPP+ induced by a high concentration of acetylcholine (10 mM). Octreotide (1-10 microM) had no effect. These results, showing that somatostatin potentiates acetylcholine-induced [3H]MPP+ release, support the hypothesis that somatostatin may increase the release of catecholamines from adrenal medullary cells.  相似文献   

4.
Y M Chen  W R Dixon 《Life sciences》1990,46(16):1167-1173
The effect of etorphine on nicotine and muscarine-mediated catecholamine (CA) release from isolated perfused rat adrenal glands was investigated. Nicotine increased CA secretion at the low concentration of 0.5 micrograms while higher concentrations of muscarine (5 micrograms) were required. Moreover, muscarine released primarily epinephrine (EP) from rat adrenal glands while nicotine released norepinephrine (NE) and Ep. Etorphine inhibited NE and EP release evoked by nicotine to the same extent, whereas, muscarine-mediated release of NE and EP was not affected. Mecamylamine and verapamil inhibited nicotine but not muscarine-induced CA secretion. Our results suggest that etorphine preferentially interacts with nicotinic receptors on rat adrenal chromaffin cell membranes.  相似文献   

5.
Abstract— Suspensions of isolated adrenal cells were prepared by digesting hamster adrenal glands with collagenase, and the secretion of catecholamine from these cells was studied. Acetylcholine (ACh) produces a dose-dependent increase in catecholamine secretion; half-maximal secretion is produced by 3 μm -ACh, and maximal secretion by 100 μm -ACh. The cholinergic receptor in these cells appears to be nicotinic, since catecholamine secretion is stimulated by the nicotinic agonists nicotine and dimeth-ylphenylpiperaziniurn, but not by the muscarinic agonists pilocarpine or oxotremorine. ACh-induced catecholamine secretion is inhibited by hexamethonium, tubocurarine, and atropine, but is not inhibited by α-bungarotoxin. ACh-induced catecholamine secretion is dependent upon the presence of extracellular Ca2+, and appears to occur by exocytosis, since the release of catecholamine is accompanied by the release of dopamine β-monooxygenase, but not of lactate dehydrogenase. These biochemical studies complement the morphological evidence for exocytosis in hamster adrenal glands, and indicate that catecholamine secretion from hamster chromaffin cells is similar to that from chromaffin cells of other species.  相似文献   

6.
Activation of the hypothalamic-pituitary-adrenal gland (HPA) axis can modulate the immune system. Cytokines and neuropeptide Y (NPY) are potent regulators of the HPA axis and are both produced by the adrenal medulla. The cytokine interleukin-1beta (IL-1beta) belongs to the interleukin-1 family along with interleukin-1alpha and the interleukin receptor antagonist (IL-1ra). The aim of the present study was to determine the interaction between NPY and IL-1beta in catecholamine (norepinephrine, NE and epinephrine, EP) release from mouse chromaffin cells in culture. We found that IL-1beta increased the constitutive release of NPY, NE and EP from mouse chromaffin cells. This IL-1beta stimulatory effect was blocked by IL-1ra. The immunoneutralization of NPY and the use of the NPY Y(1) receptor antagonist (BIBP 3226) inhibited the stimulatory effect of IL-1beta on catecholamine release from these cells. The present work shows that IL-1beta induces catecholamine release, and in turn this peptide will induce an additional increase in catecholamine release acting through the Y(1) receptor. This work suggests that NPY is involved in the regulatory loop between the immune and the adrenal system in some pathophysiological conditions where plasmatic IL-1beta increases, like in sepsis, rheumatoid arthritis, stress or hypertension.  相似文献   

7.
The effect on gastrin and somatostatin release in sheep of stimulatory and inhibitory peptides and pharmacological agents was investigated using an in vitro preparation of ovine antral mucosa. Carbachol stimulated gastrin release in a dose-dependent manner but had no effect on somatostatin release. As atropine blocked the effect of carbachol, cholinergic agonists appear to stimulate gastrin secretion directly through muscarinic receptors on the G-cell and not by inhibition of somatostatin secretion. Both vasoactive-intestinal peptide (VIP) and gastric-inhibitory peptide (GIP) increased somatostatin release but did not inhibit basal gastrin secretion, although VIP was effective in reducing the gastrin response to Gastrin-releasing peptide (GRP). Porcine and human GRP were stimulatory to gastrin secretion in high doses but bombesin was without effect. The relative insensitivity to GRP (not of ovine origin) previously reported from intact sheep may be caused either by a high basal release of somatostatin or by the ovine GRP receptor or peptide differing from those of other mammalian species.  相似文献   

8.
We have compared the enkephalin-like material derived from proenkephalin released from perfused cat adrenal glands stimulated with pilocarpine (5 X 10(-4)M) and nicotine (5 X 10(-6) M). In addition, two doses of acetylcholine (10(-5) and 10(-4) M) and 50 mM K+ were tested. Free Met-enkephalin immunoreactivity and total Met-enkephalin immunoreactivity, as determined by enzymatic digestion of large enkephalin-containing fragments, were coreleased with catecholamines. Free Met-enkephalin immunoreactivity represented 13% of total immunoreactivity for nicotinic stimulation, 46% for pilocarpine, 33% for 10(-5) M acetylcholine, 22% for 10(-4) M acetylcholine, and 16% for 50 mM K+. Analysis of the perfusate by gel filtration showed that 80% of the total Met-enkephalin immunoreactivity whose release was induced by pilocarpine was eluted in fractions corresponding to fragments of low molecular weight, whereas these fractions accounted only for 10% of the total Met-enkephalin immunoreactivity whose release was induced by nicotine. HPLC analysis of low-molecular-weight peptide fractions revealed that Met-enkephalin, Met-enkephalin-Arg-Gly-Leu, and Met-enkephalin-Arg-Phe represented 69% of total Met-enkephalin immunoreactivity whose release was induced by pilocarpine. These results indicate that selective activation of muscarinic receptors is followed by release of low-molecular-weight material, whereas nicotine application also yielded high-molecular-weight peptides. Furthermore, increasing the acetylcholine concentration from 10(-5) to 10(-4) M and using 50 mM K+ increased proportionally the high-molecular-weight peptide secretion. Results are discussed in relation to the existence of a heterogeneous population of granules either in the same cell or in different cells, containing proenkephalin-derived peptides. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Salt loading on pigeons (C. livia) had stimulatory effects on brain amines (dopamine and 5-hydroxytryptamine), corticosterone, norepinephrine and epinephrine contents of adrenal gland. Conjoint administration of dopamine with hypertonic saline restored the brain amines and corticosterone of adrenal gland, but had no effect on catecholamine (CAM) contents of adrenal medulla. The excessive release of CAM in the plasma indicates sympathetic stimulation after both the treatments.  相似文献   

10.
Gastrin-releasing peptide (GRP) is a neuroendocrine hormone that may be involved in the pathophysiology of small cell lung carcinoma. We describe carboxylterminal peptide analogues of GRP and bombesin, a 14-residue amphibian homologue, that were modeled after the antagonist [Leu13-psi(CH2NH)-Leu14]bombesin and retained the psi bond. Three novel peptides contained a Leu insertion amino to the psi bond, i.e. ... Leu13Leu14 psi X (residues numbered after bombesin) where X = LeuNH2 or norleucine-NH2). The Leu-insertion analogues behaved as pure partial agonists/antagonists when examined for the ability to stimulate [3H]thymidine incorporation into quiescent Swiss 3T3 cells (agonist activity) and to diminish the agonist response of GRP (antagonist activity). A time course of [3H]thymidine incorporation into quiescent cells indicated maximal incorporation at 20-h post-peptide addition for bombesin and GRP and a Leu-insertion peptide, but the extent of the incorporation for the Leu-insertion peptide was half that of GRP and bombesin. The agonist dose responses of the Leu-insertion peptides (EC50 values of 1-10 nM) paralleled GRP and bombesin, but the maximal response of the Leu-insertion peptides, even at concentrations as high as 10(-4) M, was half the maximal value of GRP or bombesin. High concentrations of the Leu-insertion peptides antagonized 10 nM GRP (a concentration that produced a near-maximal GRP response) yielding a response that was half the maximal value of GRP and equivalent to the maximal response of the Leu-insertion peptides alone. Analogues of the form ... Leu13 psi X behaved as complete antagonists. The KD values of the Leu-insertion peptides for competitive binding versus 125I-GRP (2-50 nM) were as potent as parent ... Leu14 agonists. Stability studies indicated that peptide potencies for both agonist and antagonist activities diminished upon peptide incubation in medium or on cells. The results suggested that, for the Leu-insertion peptides, degradation into distinct products with different activities was not responsible for their partial agonist/antagonist behavior. Computer-generated molecular modeling studies indicated that the novel structures could adopt energy minimized conformations for either an agonist or an antagonist as proposed earlier (Coy, D.H., Heinz-Erian, P., Jiang, N.-Y., Sasaki, Y., Taylor, J., Moreau, J.-P., Wolfrey, W.T., Gardner, J.D., and Jensen, R. T. (1988) J. Biol. Chem. 263, 5056-5060).  相似文献   

11.
Substance P, a peptide endogenous to the splanchnic nerve, is known to inhibit the acetylcholine-and nicotine-induced release of catecholamines from isolated adrenal chromaffin cells. In the present study the effect of substance P on desensitization of catecholamine release from these cells was examined. Substance P (10(-5) M) completely protected against desensitization of catecholamine release produced by acetylcholine at 37 degrees C or 23 degrees C and by nicotine at 23 degrees C; substance P also afforded appreciable protection against nicotine-induced desensitization at 37 degrees C. The peptide had no effect on K+-induced desensitization of catecholamine release. Like substance P, d-tubocurarine also prevented nicotinic desensitization. Substance P prevented both of two components of nicotinic desensitization, i.e. the Ca2+-dependent component and the Ca2+-independent, depletion-independent component of desensitization. Substance P had little effect on subsequent catecholamine uptake, indicating that substance P's protection against desensitization is a result of facilitation of catecholamine release rather than inhibition of catecholamine reuptake. Nicotine-induced catecholamine release and nicotinic desensitization of catecholamine release were Na+-independent, although substance P's inhibition of nicotine-induced catecholamine release was reduced by extracellular Na+. These in vitro studies suggest a similar role for substance P in vivo: substance P's protection against nicotinic desensitization may ensure a maintained output of adrenal catecholamines during stress, when the splanchnic nerve releases large amounts of acetylcholine.  相似文献   

12.
The influence of nicotine on the basal and bombesin (BBS) stimulated plasma levels of gastrin, cholecystokinin (CCK) and pancreatic polypeptide (PP) was investigated in conscious dogs. Plasma levels of nicotine and gastrointestinal (GI) hormones were measured by employing gas liquid chromatography and specific radioimmunoassay (RIA). The basal levels of gastrin, CCK and PP were found to be in pg/ml (pmol/l) (mean +/- S.E.), 28 +/- 5 (13 +/- 3), 252 +/- 32 (66 +/- 8) and 347 +/- 136 (83 +/- 32), respectively and these values remained unchanged with nicotine. Significant increases in levels of gastrin, CCK and PP were, however, found with infusions of BBS alone or with BBS in combination with nicotine. Gastrin levels were higher whereas CCK and PP levels were lower with BBS alone than with BBS plus nicotine. The peak values for CCK and PP, but not gastrin, were less during second BBS infusion. These results indicate that nicotine, in presence of bombesin, has an inhibitory effect on the release of gastrin and a stimulatory effect on the release of PP and CCK.  相似文献   

13.
We have previously shown that plasma membranes from adrenal medulla possess specific high-affinity binding sites for prostaglandins (PGs) E1 and E2. We have now investigated the binding of PGE2 to intact bovine adrenal chromaffin cells and the effects of prostaglandins on the release of catecholamines from these cells. Adrenal chromaffin cells specifically bound PGE2 with a dissociation constant of 2 nM and a concentration of about 40,000 binding sites per cell. Low concentrations of PGE2 inhibited the nicotine-stimulated release of catecholamines from these cells. The effect of PGE2 was biphasic, the maximal inhibitory effect being observed at a concentration of between 1 and 10 nM. Higher concentrations (1 microM) of PGE2 had minimal inhibitory effects on nicotine-evoked noradrenaline release, but instead had a direct stimulatory effect in the absence of cholinergic agonists. Although the stimulatory effects of high concentrations of PGE2 were reproducibly observed in all cell preparations, only about one-half of the cultures tested responded to the inhibitory effects of this prostaglandin. It is possible that PGE2 plays a modulatory role in the regulation of catecholamine secretion from the adrenal medulla.  相似文献   

14.
Abstract: Acute nicotine administration stimulated [3H]norepinephrine ([3H]NE) release from cultured fetal locus coeruleus (LC) cells. The effect was concentration dependent, with an EC50 of 0.9 µ M , and was abolished by removal of calcium from, or addition of tetrodotoxin (500 n M ) to, the assay buffer. Other nicotinic receptor agonists stimulated [3H]NE release, with the rank order of potency being (±)-epibatidine > (−)-nicotine > 1,1-dimethyl-4-phenylpiperazinium (DMPP). Whereas (−)-nicotine and (±)-epibatidine exhibited equal maximal responses, DMPP was a partial agonist and (−)-cytisine had no agonist activity. Nicotine-stimulated release of [3H]NE was blocked by nicotinic receptor antagonists, with an order of potency of mecamylamine > lobeline > cytisine > methyllycaconitine > dihydro-β-erythroidine. The pharmacological profile of this nicotinic receptor is largely consistent with that described previously for an α4β2 subunit combination, although discrepancies in the efficacies of agonists were observed. No additivity in NMDA- and nicotine-stimulated [3H]NE release was observed, suggesting a common signal transduction mechanism. However, the pharmacological characteristics of MK-801 blockade of nicotine-induced responses were not consistent with those of an NMDA receptor. We therefore conclude that nicotine directly releases [3H]NE from LC cells and does not act indirectly via activation of glutamate release.  相似文献   

15.
The effects of two catecholamines, epinephrine (EP) and norepinephrine (NE), on carbohydrate metabolism were studied by incubating chinook salmon liver in vitro. Basal release of glucose over the course of a 5-h incubation was 7.93 +/- 1.70 mumol/g dry weight. Both EP and NE (2 X 10(-7) M) stimulated glucose release rapidly during the first hour. After 5 h, EP and NE significantly increased glucose release over basal levels to 43.55 +/- 9.01 and 32.75 +/- 6.17 mumol/g dry weight, respectively. Epinephrine- and NE-stimulated glucose release was dose dependent, with a minimum effective dose of 10(-9) M. ED50 for both agents was approximately 2 X 10(-7) M; maximal stimulation occurred at 10(-5) M. No difference in potency between the two catecholamines was found. The effects of adrenergic agonists and antagonists were also studied. Alpha-agonists, methoxamine and phenylephrine, had no effect on glucose release. Isoproterenol, a beta-agonist, stimulated glucose release in a manner similar to EP. The beta-antagonist, propranolol, inhibited both catecholamine- and isoproterenol-stimulated glucose release. Alpha-antagonists (phentolamine, prazosin, and yohimbine) had no effect on either catecholamine- or isoproterenol-stimulated glucose release. Epinephrine and NE stimulate glycogen phosphorylase activity; propranolol inhibits catecholamine-stimulated phosphorylase activity. These results indicate that catecholamines stimulate glucose mobilization in salmon liver by promoting glycogenolysis mediated through beta-adrenergic receptors.  相似文献   

16.
Vasoactive intestinal peptide (VIP) was found in the adrenal gland of ovine fetuses at 130-135 days gestation and was shown to stimulate catecholamine secretion. VIP was demonstrated by immunocytochemistry using the indirect antibody-enzyme method. VIP-immunoreactive nerve fibers were observed in the capsule, zona glomerulosa and inner layer of the cortex as well as in the medulla; furthermore small clusters of VIP-containing cell bodies were found at the corticomedullary border. To study the direct effect of VIP on catecholamine release, fetal adrenal medulla was dispersed into single cells and incubated in vitro with VIP for 6 hours. Catecholamine release into the medium was measured at 1, 3 and 6 hours. At 6 hours of incubation, VIP stimulated total catecholamine release from fetal adrenomedullary cells in a dose-dependent manner at concentrations ranging from 10(-8) to 10(-4) M. The release of norepinephrine and epinephrine, but not dopamine, was significantly enhanced. The presence of VIP in the fetal adrenal cortex and medulla, and the ability of VIP to stimulate catecholamine release from fetal adrenomedullary cells in vitro suggest that VIP may be an important modulator of medullary catecholamine secretion during fetal life.  相似文献   

17.
Adenosine was shown to inhibit norepinephrine (NE) release from sympathetic nerve endings. The purpose of this study was to examine whether endogenous adenosine restrains NE and epinephrine release from the adrenal medulla. The effects of an adenosine receptor antagonist, 1,3-dipropyl-8-(p-sulfophenyl) xanthine (DPSPX), on epinephrine and NE release induced by intravenous administration of insulin in conscious rats were examined. Plasma catecholamines were measured by HPLC with an electrochemical detector. DPSPX significantly increased plasma catecholamine in both control rats and rats treated with insulin. The effect of DPSPX on plasma catecholamine was significantly greater in rats treated with insulin. Additional experiments were performed in adrenalectomized rats to investigate the contribution of the adrenal medulla to the effect of DPSPX on plasma catecholamine. The effect of DPSPX and insulin on epinephrine in adrenalectomized rats was significantly reduced compared with that of the controls. Finally, we tested whether endogenous adenosine restrains catecholamine secretion partially through inhibiting the renin-angiotensin system. The effect of DPSPX on plasma catecholamine in rats pretreated with captopril (an angiotensin-converting enzyme inhibitor) was reduced. These results demonstrate that under basal physiological conditions, endogenous adenosine tonically inhibits catecholamine secretion from the adrenal medulla, and this effect is augmented when the sympathetic system is stimulated. The effect of endogenous adenosine on catecholamine secretion from the adrenal medulla is achieved partially through the inhibitory effect of adenosine on the renin-angiotensin system.  相似文献   

18.
The effect of 55 mM K+ and nicotine on intracellular free calcium was monitored in bovine adrenal chromaffin cells microinjected with aequorin. In contrast to results with quin 2, which suggested that stimulation of chromaffin cells resulted in sustained rises in free calcium, aequorin measurements showed that 55 mM K+ and nicotine resulted in a transient (60-90 s) elevation of free calcium. The peak free calcium and duration of the transient elicited by nicotine were dose-dependent. The concentration of nicotine (10 microM) giving a maximal secretory response gave a peak rise in free calcium of up to 1 microM. 55 mM K+ which only releases 30% of the catecholamine released by 10 microM nicotine generated a calcium transient indistinguishable from that due to 10 microM nicotine. These results support the idea that nicotine agonists generate an alternative second messenger in addition to the rise in free calcium.  相似文献   

19.
Epinephrine (E) and norepinephrine (NE) levels were measured simultaneously in the adrenal veins of 6 patients before and after stimulation with 0.25 mg beta 1-24 ACTH. In 1 patient with Cushing's syndrome, E and NE were also measured before and 30 min after dexamethasone. There was a significant increase in NE and E secretion (p less than 0.002) from both adrenal glands after ACTH stimulation. In the patient with Cushing's syndrome, there was also a slight increase in plasma E levels after dexamethasone. It is postulated that ACTH stimulated NE and E secretion by augmenting blood flow through the adrenals and by induction of tyrosine hydroxylase and dopamine beta-hydroxylase, although a direct effect of ACTH on NE and E secretion cannot be excluded. It is also possible that the increase in adrenal catecholamine secretion after ACTH may be due to ACTH augmentation of catecholamine secretion by endogenous opioids such as beta-endorphin.  相似文献   

20.
Effects of orexin on cultured porcine adrenal medullary and cortex cells   总被引:2,自引:0,他引:2  
New orexigenic peptides called orexins have recently been described in the neurons of the lateral hypothalamus and perifornical area. No orexins have been found in the adipose tissues or visceral organs, including the adrenal gland. However, expression of the orexin receptor (OXR) in the rat adrenal gland has been reported. With regard to the effects of orexins on peripheral organs, we previously reported that orexins suppress catecholamine synthesis and secretion in the rat pheochromocytoma cell line PC12. To further clarify the pharmacological effects of orexins on peripheral organs, we examined the effects of orexin-A on catecholamine, cortisol, and aldosterone secretion, using cultured porcine adrenal glands. We initially confirmed the expression of the orexin receptor (OXR-1) in cultured porcine adrenal medulla and cortex. Orexin-A (1000 nM) significantly increased the release of both epinephrine (E) and norepinephrine (NE) from porcine adrenal medullary cells. Similarly, orexin-A (> or = 100 nM) significantly increased the release of both cortisol and aldosterone from porcine adrenal cortex cells. Orexin-A (100 nM) significantly inhibited basal and the PACAP-induced increase in cAMP levels in adrenal medullary cells. Conversely, orexin-A (>o = 100 nM) significantly increased the cAMP level in adrenal cortex cells. These results indicate that orexin-A induces the release of catecholamine from porcine adrenal medullary cells, and aldosterone and cortisol from the cortex cells and has opposite effects on cAMP levels in adrenal medulla and cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号