首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The fetus obtains a significant amount of cholesterol from de novo synthesis. Studies have suggested that maternal cholesterol may also contribute to the cholesterol accrued in the fetus. Thus, the present studies were completed to determine whether diet-induced maternal hypercholesterolemia would affect fetal sterol metabolism. To accomplish this, maternal plasma cholesterol concentrations were increased sequentially by feeding hamsters 0.0%, 0.12%, 0.5%, and 2.0% cholesterol. At 11 days into a gestational period of 15.5 days, cholesterol concentrations and sterol synthesis rates were measured in the three fetal tissues: the placenta, yolk sac, and fetus. In the placenta and yolk sac, the cholesterol concentration increased significantly when dams were fed as little as 0.12% cholesterol (P < 0.0167), and sterol synthesis rates decreased in dams fed at least 0.5% or 2% cholesterol, respectively (P < 0.0167). In the fetus, changes in fetal cholesterol concentration and sterol synthesis rates occurred only when dams were fed at least 0.5% cholesterol, which corresponded to a greater than 2-fold increase in maternal plasma cholesterol concentrations. When the cholesterol concentration in the fetal tissues in each animal was plotted as a function of maternal plasma cholesterol concentration, a linear relationship was found (P < 0.001).These studies demonstrate that sterol homeostasis in fetal tissues, including the fetus, is affected by maternal plasma cholesterol concentration in a gradient fashion and that sterol metabolism in the fetus is dependent on sterol homeostasis in the yolk sac and/or placenta.  相似文献   

2.
The requirement for cholesterol is greater in developing tissues (fetus, placenta, and yolk sac) as compared to adult tissues. Here, we compared cholesterol-induced suppression of sterol synthesis rates in the adult liver to the fetal liver, fetal body, placenta, and yolk sac of the Golden Syrian hamster. Sterol synthesis rates were suppressed maximally in non-pregnant adult livers when cholesterol concentrations were increased. In contrast, sterol synthesis rates were suppressed only marginally in fetal livers, fetal bodies, placentas, and yolk sacs when cholesterol concentrations were increased. To begin to elucidate the mechanism responsible for the blunted response of sterol synthesis rates in fetal tissues to exogenous cholesterol, the ratio of sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) to Insig-1 was measured in these same tissues since the ratio of SCAP to the Insigs can impact SREBP processing. The fetal tissues had anywhere from a 2- to 6-fold greater ratio of SCAP to Insig-1 than did the adult liver, suggesting constitutive processing of the SREBPs. As expected, the level of mature, nuclear SREBP-2 was not different in the fetal tissues with different levels of cholesterol whereas it was different in adult livers. These findings indicate that the suppression of sterol synthesis to exogenous sterol is blunted in developing tissues and the lack of response appears to be mediated at least partly through relative levels of Insigs and SCAP.  相似文献   

3.
Cholesterol is essential for antenatal development. However, the transport of maternal cholesterol to the embryo has not been sufficiently studied, and that to the fetus is still controversial. To this end, a 1 mg dose of [3,4-(13)C(2)]cholesterol was injected daily into pregnant mice and the labeled cholesterol was measured by gas chromatography-mass spectrometry. After venous injections from days 10 to 17 of gestation, [(13)C]cholesterol levels in total ((12)C and (13)C) cholesterol were increased to 5.1% and 2.8% in maternal and fetal plasma, respectively. Labeled cholesterol was identified in the liver, kidneys, and intestines, but not in the brain, of the fetus. After injections from days 1 to 8, [(13)C]cholesterol levels were increased to 12.4% and 8.0% of total cholesterol in maternal plasma and the embryo, respectively. The level of 11.5% in the yolk sac was higher than that in the embryo. Intrauterine transfer of maternal cholesterol to the embryo as well as the fetus was evident in mice, and both the placenta and the yolk sac appear to be sites of intermediate passage in murine pregnancy.  相似文献   

4.
The calcium-binding protein oncomodulin, previously found only in tumors, has been detected during rat development. Specific antisera to purified rat hepatoma oncomodulin (MW 11,500) were used to detect oncomodulin by radioimmunoassay (RIA) and by avidin-biotin-peroxidase complex (ABC) immunohistochemistry. Using RIA, oncomodulin was found to increase in placenta from below the limits of detection (2 ng/mg protein) on Day 13 to approximately 25 ng/mg on Day 16 of pregnancy, and to remain high through to the end of gestation. Determinations on separated inner and outer placenta showed the increase to be greater in the outer placenta (basal zone and decidua) than in the inner placenta (labyrinth). The ABC technique on paraffin sections produced positive staining for oncomodulin throughout the placenta, with the most intense staining occurring in the outer placenta (cytotrophoblast and giant cells of the basal zone). Parietal and visceral yolk sac, and amnion also stained positively, while fetal organs did not. Oncomodulin synthesis measured by [35S]methionine incorporation into immunoprecipitates occurred in isolated inner and outer placenta, whole placenta, the separated trophectoderm and endoderm of the parietal yolk sac, and amnion. No oncomodulin synthesis could be measured in visceral yolk sac, fetal liver, or 16-day embryo. This occurrence in developing and transformed tissues demonstrates that oncomodulin is an oncodevelopmental protein.  相似文献   

5.
Cholesterol is necessary for the proper growth and development of the fetus. Consequently, disruptions in cholesterol biosynthesis lead to abnormal fetal development. It has been shown that in cells exposed to polyunsaturated fatty acids (PUFA), the expressions of genes and activities of enzymes involved in cholesterol synthesis are reduced. Similarly, we found that adult male hamsters fed PUFA-enriched diets had an approximately 60% reduction in in vivo hepatic sterol synthesis rates. If fetal tissues respond to PUFA in the same manner as do adult livers, then maternal dietary PUFA could lead to a reduction in fetal sterol synthesis rates and possibly abnormal development. To investigate the impact of maternal dietary fatty acids on fetal sterol synthesis rates, female hamsters were fed diets enriched in various fatty acids before and throughout gestation. In vivo sterol synthesis rates were measured in fetuses at mid- and late gestation. At both gestational stages, dietary PUFA had no effect on fetal sterol synthesis rates. This lack of effect was not a consequence of a lack of PUFA enrichment in fetal fatty acids or the lack of PUFA receptor expression in the fetus. We hypothesize that the fetus may experience a dysregulation of sterol synthesis as the result of the fetus being in a negative sterol balance; the PUFA-induced suppression of sterol synthesis in the adult male hamster liver was ablated by creating a net negative sterol balance across the adult hepatocyte.  相似文献   

6.
The fetus has a high requirement for cholesterol and synthesizes cholesterol at elevated rates. Recent studies suggest that fetal cholesterol also can be obtained from exogenous sources. The purpose of the current study was to examine the transport of maternal cholesterol to the fetus and determine the mechanism responsible for any cholesterol-driven changes in transport. Studies were completed in pregnant hamsters with normal and elevated plasma cholesterol concentrations. Cholesterol feeding resulted in a 3.1-fold increase in the amount of LDL-cholesterol taken up by the fetus and a 2.4-fold increase in the amount of HDL-cholesterol taken up. LDL-cholesterol was transported to the fetus primarily by the placenta, and HDL-cholesterol was transported by the yolk sac and placenta. Several proteins associated with sterol transport and efflux, including those induced by activated liver X receptor, were expressed in hamster and human placentas: NPC1, NPC1L1, ABCA2, SCP-x, and ABCG1, but not ABCG8. NPC1L1 was the only protein increased in hypercholesterolemic placentas. Thus, increasing maternal lipoprotein-cholesterol concentrations can enhance transport of maternal cholesterol to the fetus, leading to 1) increased movement of cholesterol down a concentration gradient in the placenta, 2) increased lipoprotein secretion from the yolk sac (shown previously), and possibly 3) increased placental NPC1L1 expression.  相似文献   

7.
Studies to determine the effects of pre-natal interventions on maternal and fetal cholesterol homeostasis were carried out in the guinea pig. Guinea pig dams were fed either non-purified guinea pig diet or diet supplemented with either 1.1% of the bile acid binding resin cholestyramine or 0.25% cholesterol. Whole body rates of endogenous cholesterol synthesis were determined by quantitation of [3H]water incorporation into digitonin precipitable sterols in non-pregnant animals and at 40 and 60 days of gestation in the dam and fetus. Maternal hepatic cholesterol synthesis was reduced 87% by dietary cholesterol and was increased 3.5-fold with cholestyramine feeding. Fetal hepatic and peripheral tissue cholesterol synthesis rates peaked at 40 days gestation when peripheral tissue cholesterol synthesis was 5.7-fold higher and hepatic synthesis 6.2-fold greater than the near adult levels observed at 60 days. Cholesterol synthesis in the fetus was relatively insensitive to dietary manipulations; however, maternal cholestyramine treatment did result in a 1.4-fold increase in fetal carcass cholesterol synthesis at 60 days gestation. These data demonstrate that maternal cholesterogenic systems maintain responsiveness to dietary regulation during pregnancy; whereas fetal cholesterol homeostasis is relatively insensitive to dietary cholesterol throughout gestation yet may respond to induction by maternal cholestyramine treatment during the late gestation period.  相似文献   

8.
The present studies were performed to further characterize a mouse yolk sac protein which is similar or identical to the vitamin D-dependent intestinal calcium-binding protein (CaBP). Yolk sac protein and purified rat intestinal CaBP displayed full identity upon immunodiffusion (Ouchterlony) using antiserum to the rat intestinal CaBP. Immunoreactive CaBP in yolk sac homogenates eluted from gel permeation columns with the low molecular weight peak of 45Ca2+ binding (Chelex assay), and the electrophoretic mobility of the protein was markedly increased by EDTA. On days 11-13 of gestation, the concentrations of immunoreactive CaBP in yolk sac were 4-5-fold higher than in placenta; by days 16-17, the concentrations in yolk sac and placenta were similar. Incubation of yolk sac with [3H]leucine demonstrated synthesis of immunoprecipitable [3H]CaBP. A single band of 3H-labeled protein was seen on sodium dodecyl sulfate gel electrophoresis of the immunoprecipitate. This protein co-migrated with radioactive placental CaBP with an apparent Mr of 10,050. Addition of 1,25-dihydroxycholecalciferol (calcitriol) to organ culture media with or without serum increased the amount and concentration of CaBP in yolk sac (p less than 0.001) at 48 h. CaBP synthesis in yolk sac appeared to be independent of calcitriol concentrations in the maternal circulation since injection of the hormone into the maternal compartment produced no change in yolk sac CaBP despite increases of maternal intestinal and renal CaBP. These studies demonstrate that yolk sac immunoreactive CaBP is synthesized in yolk sac and has an apparent molecular size and calcium-binding properties characteristic of mammalian vitamin D-dependent calcium-binding proteins. The in vitro response of yolk sac CaBP to calcitriol is the first evidence of a vitamin D effect on the fetal membranes and suggests one function for calcitriol receptors in these tissues.  相似文献   

9.
Obese leptin-deficient (ob/ob) mice have increased levels of high-density lipoprotein (HDL) and a unique lipoprotein referred to as low-density lipoprotein (LDL)/HDL1. When crossed onto an apolipoprotein AI (apoAI)-deficient (-/-) background, ob/ob;apoAI-/- mice accumulate LDL/HDL1 in the absence of traditional HDL. To determine the role of LDL/HDL1 in atherosclerosis, C57BL/6, apoAI-/-, ob/ob and ob/ob;apoAI-/- mice were placed on butterfat diet. After 20 weeks, all four groups had a significant increase in total cholesterol levels. The cholesterol in C57BL/6 mice was carried on very low-density lipoprotein (VLDL) and LDL and, in ob/ob and ob/ob;apoAI-/- mice, on HDL and LDL/HDL1. Atherosclerotic lesion area was similar among C57BL/6, ob/ob and ob/ob;apoAI-/- groups despite their dissimilar lipoprotein profiles. Hepatic triglyceride production and VLDL clearance rates were similar among the four groups. The ob/ob;apoAI-/- group had a significant decrease in liver weight and an increase in white adipose tissue (WAT) weight compared to the ob/ob group. Hepatic scavenger receptor class B type I (SR-BI) levels were decreased in both liver and WAT in ob/ob;apoAI-/- compared to ob/ob mice. Conclusions regarding the atherogenicity of LDL/HDL1 were confounded by the differences in lipoprotein profiles among the four groups. However, our studies provide support for the concept that apoAI and SR-BI assist in the partitioning of lipid from adipose tissue to the liver.  相似文献   

10.
In a microspectrophotometric study, photographic emulsions and a computer are used for measuring the hemoglobin content of a large number (about 50,000) of erythroid cells in fetal mice. Histograms of the hemoglobin content in erythroid cells illustrate the kinetics of erythropoiesis in yolk sac derived nucleated cells in the fetal peripheral blood, in fetal liver, and in fetal spleen. After the occasional extrusion of their nucleus, yolk sac derived erythrocytes remain as “macrocytes” in fetal circulation two or three days longer than the nucleated yolk sac derived erythrocytes do. Erythrocytes in fetal liver have a constant hemoglobin content of 28 pg 2 until day 17 of gestation. During further erythropoiesis in liver and then in the spleen, this amount is gradually adapted to the normal hemoglobin content in red blood cells of 16 pg.  相似文献   

11.
Mice with a targeted mutation of 3beta-hydroxysterol Delta(7)-reductase (Dhcr7) that cannot convert 7-dehydrocholesterol to cholesterol were used to identify the origin of fetal sterols. Because their heterozygous mothers synthesize cholesterol normally, virtually all sterols found in a Dhcr7 knockout fetus having a Delta(7) or a Delta(8) double bond must have been synthesized by the fetus itself but any cholesterol had to have come from the mother. Early in gestation, most fetal sterols were of maternal origin, but at approximately E13-14, in situ synthesis became increasingly important, and by birth, 55-60% of liver and lung sterols had been made by the fetus. In contrast, at E10-11, upon formation of the blood-brain barrier, the brain rapidly became the source of almost all of its own sterols (90% at birth). New, rapid, de novo sterol synthesis in brain was confirmed by the observation that concentrations of C24,25-unsaturated sterols were low in the brains of all very young fetuses but increased rapidly beginning at approximately E11-12. Reduced activity of sterol C24,25-reductase (Dhcr24) in brain, suggested by the abundance of C24,25-unsaturated compounds, seems to be the result of suppressed Dhcr24 expression. The early fetal brain also appears to conserve cholesterol by keeping cholesterol 24-hydroxylase expression low until approximately E18.  相似文献   

12.
Physiological cholestasis linked to immature hepatobiliary transport systems for organic anions occurs in rat and human neonates. In utero, the placenta facilitates vectorial transfer of certain fetal-derived solutes to the maternal circulation for elimination. We compared the ontogenesis of organic anion transporters in the placenta and the fetal liver of the rat to assess their relative abundance throughout gestation and to determine whether the placenta compensates for the late maturation of transporters in the developing liver. The mRNA of members of the organic anion transporting polypeptide (Oatp) superfamily, the multidrug resistance protein (Mrp) family, one organic anion transporter (OAT), and the bile acid carriers Na(+)-taurocholate cotransporting polypeptide (Ntcp) and bile salt export pump (Bsep) was quantified by real-time PCR. The most abundant placental transporters were Oatp4a1, whose mRNA increased 10-fold during gestation, and Mrp1. Mrp1 immunolocalized predominantly to epithelial cells of the endoplacental yolk sac, suggesting an excretory role that sequesters fetal-derived solutes in the yolk sac cavity, and faintly to the basal syncytiotrophoblast surface. The mRNA levels of Oatp2b1, Mrp3, and Bsep in the placenta exceeded those in the fetal liver until day 20 of gestation, suggesting that the fetus relies on placental clearance of substrates when expression in the developing liver is low. Mrp3 immunolocalized to the epithelium of the endoplacental yolk sac and less abundantly in the labyrinth zone and endothelium of the maternal arteries. The placental expression of Oatp1a1, Oatp1a4, Oatp1a5, Oatp1b2, Oat, Ntcp, Mrp2, and Mrp6 was low.  相似文献   

13.
During inflammation and tissue injury, there is an increase in the plasma concentration of several proteins, the acute-phase proteins. The levels of some acute-phase proteins have been reported to increase in pregnant and tumour-bearing animals. Rat alpha 2-macroglobulin is classified as an acute-phase protein. In this study we report the expression of alpha 2-macroglobulin in various tissues during development of the rat embryo by analysis of mRNA. The tissues studied are liver, visceral yolk sac, placental labyrinth, decidua and trophoblast. In addition, the sites of alpha 2-macroglobulin expression are localized by in situ hybridization of cDNA for alpha 2-macroglobulin to mid-sagittal cryosections of rat embryos. The level of mRNA coding for alpha 2-macroglobulin is determined in the liver of rats aged between 12 days gestation and 2 days postnatal. alpha 2-Macroglobulin mRNA is first observed in fetal liver from 12 days of gestation and increases after day 17, reaching a maximum on day 20. At this time the level is greater than that found in the liver of an adult rat suffering from acute inflammation. alpha 2-Macroglobulin mRNA is detectable in the yolk sac, placental labyrinth, trophoblast tissue and decidua. In the decidua the alpha 2-macroglobulin message is first detected at 8 days of gestation, with high levels observed from 10 to 21 days of gestation. These observations are supported by in situ hybridization studies. Experiments using cultured hepatocytes show that cells derived from rats at 15 days and 19 days of gestation are capable of synthesizing and secreting alpha 2-macroglobulin. Both synthesis and secretion can be induced by the addition of dexamethasone to the culture medium.  相似文献   

14.
To analyze the regulation of transthyretin gene expression we have produced transgenic mice by microinjecting cloned human transthyretin genes into fertilized eggs of C57BL/6 mice. The 7.6-kilobase (kb) human transthyretin gene containing about 500 base pairs (bp) in the upstream region was used for microinjection. Seven out of nine transgenic mice had detectable amounts of human transthyretin in serum when analyzed by enzyme-linked immunosorbent assay. Transthyretin mRNA was detected in liver and yolk sac but not in other tissues including brain. The amount of mRNA was variable among transgenic mice and was about one-tenth of mouse endogenous transthyretin mRNA. Human and mouse transthyretin mRNAs were detected in liver of fetus and yolk sac at 13 days of gestation and unlike yolk sac the level of mRNA in liver increased gradually during development and reached the maximum at around 17 days of gestation. Human transthyretin was associated with mouse transthyretin to form tetramers as judged from the dilution curve of enzyme-linked immunosorbent assay and the spur formation in Ouchterlony assay.  相似文献   

15.
The placental transmission of antibodies directed toward paternal MHC Class I antigens to the developing fetus was studied to assess their effect on the expression of MHC antigens during fetal development and on the development of immune function. 125I-monoclonal anti-paternal MHC antibodies injected i.v. into pregnant mice on day 15 of gestation were efficiently transferred to the fetus within 24 hr in a dose-dependent manner. Biochemical studies on the transferred radioactivity showed that intact antibodies accumulated in the fetus for up to 3 days after antibody injection. During the same period, antibodies were eliminated from the maternal system. The transfer and accumulation of anti-MHC antibodies were independent of the MHC haplotype of the fetus. The pathway of antibody transfer and the localization of transmitted antibodies in the fetus were studied by autoradiographic analysis of the entire fetoplacental unit 24 hr after the injection of anti-paternal MHC antibodies. Our results indicate that antibodies are transferred by way of the placenta and yolk sac, and reach the fetus predominantly via the circulation. Within the embryo proper, the highest levels of antibody were found in the order of blood greater than thymus greater than fetal liver. Most other fetal organs, with the exception of brain and cartilage, showed antibody accumulation, but to a lesser extent. This pattern of antibody distribution over different tissues was similar for allogeneic and syngeneic fetuses. These findings demonstrate that various fetal tissues, including developing lymphoid cells can be directly exposed to the maternally transmitted anti-MHC antibodies, with possible functional consequences on the development of the fetal immune system.  相似文献   

16.
17.
The structure, physiology, and endocrinology of the yolk sac placenta of different marsupial groups is compared and phylogenetically analyzed to provide information on placental characters in the marsupial stem species. We conclude that the marsupial stem species possessed a functional yolk sac placenta. Histotrophic nutrition by uterine secretion decreased during late pregnancy and at least half of the yolk sac was vascularized at the time of shell coat rupture. Due to yolk sac fusion, the larger part of the avascular, bilaminar yolk sac could not serve as a placenta at late gestation in the polyovular marsupial stem species. The bilaminar yolk sac gained a relatively greater importance for nutrition in monovular australidelphians. In macropodids a greater proportion of the yolk sac remained bilaminar at the time of shell coat rupture than in the stem species. Another derived feature of macropodids is the sustained plasma progesterone synthesis that is in turn responsible for an extended secretory phase of the uterus and a lengthened gestation. The placenta of the marsupial stem species was probably capable of metabolising histo- and hemotrophes. Recognition of pregnancy during early stages of development is a derived character of macropodids that we suggest did not occur in the marsupial stem species. However, birth and birth behaviour were apparently induced by prostaglandins in the marsupial stem species. Although the yolk sac formed the definitive placenta, it is likely that the allantois provided a supplementary placental function in the marsupial stem species, but that the role of the allantois became progressively less important during the evolution of marsupial placentation.  相似文献   

18.
Presence of mast cell precursors in the yolk sac of mice   总被引:3,自引:0,他引:3  
Concentration of mast-cell precursors in hematopoietic tissues of mouse embryos was evaluated by a limiting dilution method. Cells from yolk sacs, livers, and bodies of (WB x C57BL/6)F1 (hereafter called WBB6F1)- +/+ embryos were injected directly into the skin of adult WBB6F1-W/Wv mice which were genetically depleted of tissue mast cells. Concentration of mast-cell precursors was calculated from the proportion of injection sites at which mast cells did not appear. Since the concentration of mast-cell precursors in the yolk sac was about 30 times as great as that of embryonic body at Day 9.5 of the pregnancy, the mast-cell precursors seemed to be generated within the yolk sac. The concentration in the yolk sac reached the maximum level at Day 11, and then dropped markedly at Day 13. In contrast, mast-cell precursors increased from Day 11 to Day 15 in the fetal liver. As a result, the concentration of 11-day yolk sacs was comparable to that of 15-day fetal liver. Although intravenous injection of 15-day fetal liver cells (2 x 10(6)) rescued the general mast-cell depletion of WBB6F1-W/Wv mice, the intravenous injection of the same number of 11-day yolk sac cells did not rescue it. In contrast with fetal livers, yolk sacs scarcely contained hematopoietic stem cells which were measured by spleen colony formation. Therefore, the mast-cell precursors of the yolk sac may not originate from such stem cells.  相似文献   

19.
The transport properties of the rat visceral yolk sac placenta from Days 14.5 to 18.5 of gestation were studied in vitro. All tissues had a positive potential difference, fetal side relative to maternal side, and showed net Na transport towards the fetus. Basal short-circuit current and net Na flux increased rapidly with gestational age over the period studied. Amphotericin B applied to the maternal surface of the yolk sac stimulated current and net Na flux, indicating that the apical membrane Na permeability limited transport and revealing a reserve capacity for transport. Contrary to their basal values, current and Na flux following treatment with amphotericin were independent of gestational age.  相似文献   

20.
Rat fetuses exhibit a high serum LDL concentration at term. Delivery caused a marked decrease of the LDL apolipoprotein (apo) B concentration independent of whether this occurred on days 21, 22 or 23 of gestation. The interruption of the yolk sac circulation by a ligature in situ for 6 h led to the same alterations of the LDL-apo B concentration as Caesarean section. Immunoelectronmicroscopic studies provided evidence that the epithelial cells of the visceral yolk sac exhibited electron dense LDL-sized and apo B containing particles which were localized over the compartments of the Golgi complexes, endoplasmatic reticulum, secretory vesicles and intercellular spaces, but not over the cell nuclei, mitochondria or lysosomes. ApoB containing LDL-sized particles could be obtained by ultracentrifugation from the disrupted material of the microsomal fraction of yolk sac homogenates. Isolated segments of the yolk sac membranes were capable to secrete apoB containing lipoproteins floating in the d less than 1.020 g/ml as well as in the d = 1.020-1.064 g/ml fraction with a 10-fold higher amount of apoB in the higher density class. Incorporation experiments with [35S] methionine gave evidence that these lipoproteins were at least partially provided with newly synthesized apoB predominantly found in the LDL fraction. The size of the negatively stained particles in the d = 1.020-1.064 g/ml fraction secreted from yolk sac segments corresponded to that of LDL from fetal rat serum. In contrast their acylglycerol content was significantly higher, whereas the percentage contribution of total cholesterol and protein was markedly reduced in comparison with serum LDL of the fetus. In summary, biochemical and ultrastructural studies provide clear cut evidence that the rat yolk sac is able to synthesize and to deliver apo B containing lipoproteins in the density ranges of VLDL, IDL and particular of LDL thus contributing to the supply of serum lipoproteins in the rat fetus. By recalculation of recent tracer kinetic data (Plonné et al. (1990) J. Lipid Res. 31, 747) using a mathematical step function model it was possible to assess the contribution of the rat yolk sac to the LDL influx into the fetal serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号