首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The iron-sulfur cluster-free hydrogenase (Hmd) from methanogenic archaea harbors an iron-containing cofactor of yet unknown structure. X-ray absorption spectroscopy of the active, as isolated enzyme from Methanothermobacter marburgensis (mHmd) and of the active, reconstituted enzyme from Methanocaldococcus jannaschii (jHmd) revealed the presence of mononuclear iron with two CO, one sulfur and one or two N/O in coordination distance. In jHmd, the single sulfur ligand is most probably provided by Cys176, as deduced from a comparison of the activity and of the x-ray absorption and M?ssbauer spectra of the enzyme mutated in any of the three conserved cysteines. In the isolated Hmd cofactor, two CO, one sulfur, and two nitrogen/oxygen atoms coordinate the iron, the sulfur ligand being most probably provided by mercaptoethanol, which is absolutely required for the extraction of the iron-containing cofactor from the holoenzyme and for the stabilization of the extracted cofactor. In active mHmd holoenzyme, the number of iron ligands increased by one when one of the Hmd inhibitors (CO or KCN) were present, indicating that in active Hmd, the iron contains an open coordination site, which is proposed to be the site of H2 interaction.  相似文献   

2.
H2-forming methylenetetrahydromethanopterin dehydrogenase (Hmd) is an unusual hydrogenase present in many methanogenic archaea. The homodimeric enzyme dubbed 'metal-free' hydrogenase does not contain iron-sulfur clusters or nickel and thus differs from [Ni-Fe] and [Fe-Fe] hydrogenases, which are all iron-sulfur proteins. Hmd preparations were found to contain up to 1 mol iron per 40 kDa subunit, but the iron was considered to be a contaminant as none of the catalytic and spectroscopic properties of the enzyme indicated that it was an essential component. Hmd does, however, harbour a low molecular mass cofactor of yet unknown structure. We report here that the iron found in Hmd is most probably functional after all. Further investigation was initiated by the discovery that Hmd is inactivated upon exposure to UV-A (320-400 nm) or blue-light (400-500 nm). Enzyme purified in the dark exhibited an absorption spectrum with a maximum at approximately 360 nm and which mirrored its sensitivity towards light. In UV-A/blue-light the enzyme was bleached. The cofactor extracted from active Hmd was also light sensitive. It showed an UV/visible spectrum similar to that of the active enzyme and was bleached upon exposure to light. Photobleached cofactor no longer had the ability to reconstitute active Hmd from the apoenzyme. When purified in the dark, Hmd consistently contained per monomer about one Fe, which was tightly bound to the cofactor. The iron was released from the enzyme and from the cofactor upon light inactivation. Hmd activity was inhibited by high concentrations of CO and CO protected the enzyme from light inactivation indicating that the iron in Hmd is of functional importance. Therefore, reference to Hmd as 'metal-free' hydrogenase is no longer appropriate.  相似文献   

3.
Reynolds CM  Poole LB 《Biochemistry》2001,40(13):3912-3919
AhpF, the flavoprotein reductase component of the Salmonella typhimurium alkyl hydroperoxide reductase system, catalyzes the reduction of an intersubunit disulfide bond in the peroxidatic active site of the system's other component, AhpC, a member of the peroxiredoxin family. Previous studies have shown that AhpF can be dissected into two functional units, a thioredoxin reductase-like C-terminus (containing FAD and a redox-active disulfide, Cys345-Cys348) and an N-terminal domain containing a second redox-active disulfide center (Cys129-Cys132). The role of the N-terminal domain as the direct reductant of AhpC, mediating electron transfer from the C-terminal redox centers of AhpF, has been firmly established by several approaches. Not known, however, was whether the transfer of electrons between the C-terminal and N-terminal disulfide centers occurred as an inter- or intrasubunit process in dimeric AhpF. Two heterodimeric AhpF species were therefore created in which one of the two pathways was completely disrupted while the other was left partially intact in each construct. Only the heterodimer containing one monomer of wild type AhpF and a monomer of mutated (and truncated) AhpF exhibited peroxidase activity with AhpC indicating that electron transfer between domains of AhpF is an intrasubunit process.  相似文献   

4.
Kakuta Y  Ishimatsu I  Numata T  Kimura K  Yao M  Tanaka I  Kimura M 《Biochemistry》2005,44(36):12086-12093
Ribonuclease P (RNase P) is a ribonucleoprotein complex involved in the removal of 5' leader sequences from tRNA precursors (pre-tRNA). The human protein Rpp21 is essential for human RNase P activity in tRNA processing in vitro. The crystal structure of Ph1601p from the hyperthermophilic archaeon Pyrococcus horikoshii OT3, the archaeal homologue of Rpp21, was determined using the multiple anomalous dispersion (MAD) method with the aid of anomalous scattering in zinc and selenium at 1.6 A resolution. Ph1601p comprises an N-terminal domain (residues 1-55), a central linker domain (residues 56-79), and a C-terminal domain (residues 80-120), forming an L-shaped structure. The N-terminal domain consists of two long alpha-helices, while the central and C-terminal domains fold in a zinc ribbon domain. The electrostatic potential representation indicates the presence of positively charged clusters along the L arms, suggesting a possible role in RNA binding. A single zinc ion binds the well-ordered binding site that consists of four Cys residues (Cys68, Cys71, Cys97, and Cys100) and appears to stabilize the relative positions of the N- and C-domains. Mutations of Cys68 and Cys71 or Cys97 and Cys100 to Ser destabilize the protein structure, which results in inactivation of the RNase P activity. In addition, site-directed mutagenesis suggests that Lys69 at the central loop and Arg86 and Arg105 at the zinc ribbon domain are strongly involved in the functional activity, while Arg22, Tyr44, Arg65, and Arg84 play a modest role in the activity.  相似文献   

5.
Leach MR  Sandal S  Sun H  Zamble DB 《Biochemistry》2005,44(36):12229-12238
The formation of the [NiFe] metallocenter of Escherichia coli hydrogenase 3 requires the participation of proteins encoded by the hydrogenase pleiotropy operon hypABCDEF. The insertion of Ni(II) into the precursor enzyme follows the incorporation of the iron center and is the function of HypA, a Zn(II)-binding protein, and HypB, a GTPase. The Ni(II) donor and the mechanism of transfer of Ni(II) into the hydrogenase precursor protein are not known. In this study, we demonstrate that HypB is a nickel-binding protein capable of binding 1 equiv of Ni(II) with a K(d) in the sub-picomolar range. In addition, HypB has a weaker metal-binding site that is not specific for Ni(II) over Zn(II). Examination of the isolated C-terminal GTPase domain revealed that the high-affinity metal binding capability was severely abrogated but the low-affinity site was intact. By mutating conserved cysteine and histidine residues in E. coli HypB, we have localized the high-affinity Ni(II)-binding site to an N-terminal CXXCGC motif and the low-affinity metal-binding site to the GTPase domain. A model for the function of HypB during the Ni(II) loading of hydrogenase is proposed.  相似文献   

6.
E Heyduk  T Heyduk  J C Lee 《Biochemistry》1992,31(14):3682-3688
Escherichia coli cAMP receptor protein (CRP) is a homodimer in which each subunit is composed of two domains. The C-terminal domain is responsible for DNA recognition, whereas the larger N-terminal domain is involved in cAMP binding. Biochemical and genetic evidence suggests that both intersubunit and interdomain interactions play important roles in the regulatory mechanism of this protein. Essentially all intersubunit contacts occur via a long C-helix which is a part of the N-terminal domain. In this work, intersubunit interactions in CRP were studied with the use of two proteolytic fragments of the protein. Subtilisin digestion produces a fragment (S-CRP) which includes residues 1-117 and in which about 85% of the C-helix is removed, whereas chymotrypsin digestion produces a fragment (CH-CRP) consisting of residues 1-136, in which the whole C-helix is preserved. Both fragments were purified and subjected to functional tests which included cAMP binding, subunit assembly, and hydrodynamic properties in the presence and absence of cAMP. S-CRP binds cAMP with a similar affinity to that of native CRP but with reduced cooperativity. CH-CRP exhibits about 1 order of magnitude tighter binding of cAMP than S-CRP or CRP and the highest degree of negative cooperativity. Both fragments are dimeric with dimerization constants around 10(8) M-1. Ligand binding promotes dimerization and induces a small contraction of both S-CRP and CH-CRP. There is no apparent correlation between dimer stability and cooperativity of ligand binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Site-directed mutagenesis has been used to replace Tyr-88 at the dimer interface of the N-terminal domain of lambda repressor with cysteine. Computer model building had suggested that this substitution would allow formation of an intersubunit disulfide without disruption of the dimer structure [Pabo, C. O., & Suchanek, E. G. (1986) Biochemistry (preceding paper in this issue)]. We find that the Cys-88 protein forms a disulfide-bonded dimer that is very stable to reduction by dithiothreitol and has increased operator DNA binding activity. The covalent Cys88-Cys88' dimer is also considerably more stable than the wild-type protein to thermal denaturation or urea denaturation. As a control, Tyr-85 was replaced with cysteine. A Cys85-Cys85' disulfide cannot form without disrupting the wild-type structure, and we find that this disulfide bond reduces the DNA binding activity and stability of the N-terminal domain.  相似文献   

8.
Jönsson TJ  Ellis HR  Poole LB 《Biochemistry》2007,46(19):5709-5721
AhpC and AhpF from Salmonella typhimurium undergo a series of electron transfers to catalyze the pyridine nucleotide-dependent reduction of hydroperoxide substrates. AhpC, the peroxide-reducing (peroxiredoxin) component of this alkyl hydroperoxidase system, is an important scavenger of endogenous hydrogen peroxide in bacteria and acts through a reactive, peroxidatic cysteine, Cys46, and a second cysteine, Cys165, that forms an active site disulfide bond. AhpF, a separate disulfide reductase protein, regenerates AhpC every catalytic cycle via electrons from NADH which are transferred to AhpC through a tightly bound flavin and two disulfide centers, Cys345-Cys348 and Cys129-Cys132, through putative large domain movements. In order to assess cysteine reactivity and interdomain interactions in both proteins, a comprehensive set of single and double cysteine mutants (replacing cysteine with serine) of both proteins were prepared. Based on 5,5-dithiobis(2-nitrobenzoic acid) (DTNB) and AhpC reactivity with multiple mutants of AhpF, the thiolate of Cys129 in the N-terminal domain of AhpF initiates attack on Cys165 of the intersubunit disulfide bond within AhpC for electron transfer between proteins. Cys348 of AhpF has also been identified as the nucleophile attacking the Cys129 sulfur of the N-terminal disulfide bond to initiate electron transfer between these two redox centers. These findings support the modular architecture of AhpF and its need for domain rotations for function, and emphasize the importance of Cys165 in the reductive reactivation of AhpC. In addition, two new constructs have been generated, an AhpF-AhpC complex and a "twisted" form of AhpF, in which redox centers are locked together by stable disulfide bonds which mimic catalytic intermediates.  相似文献   

9.
The metal-free hydrogenase from methanogenic archaea (Hmd) is a unique enzyme: it catalyzes the reaction of its substrate, methenyl-tetrahydromethanopterin, with molecular hydrogen without the aid of a transition metal. In other words, Hmd is currently the only example of a purely organic hydrogenation catalyst. Recent results from various fields have shed new light on this enzyme. In biochemistry, there is experimental proof that a tightly bound (and metal-free) cofactor exists. Ab initio calculations have revealed that the concerted action of the Lewis-acidic substrate and a Br?nsted-base appears to induce facile heterolysis of the hydrogen molecule. In chemical model studies, a transition-metal-free hydrogenation of ketones was achieved in the presence of catalytic base. Taken together, the experimental results available to date point to an enzymatic mechanism in which the hydrogen molecule is heterolyzed by the joint action of the Lewis-acidic substrate methenyl-tetrahydromethanopterin and a Br?nsted-base in the active site (i.e. by bifunctional catalysis).  相似文献   

10.
Bacterial UDP-glucose dehydrogenase (UDPGlcDH) is essential for formation of the antiphagocytic capsule that protects many virulent bacteria such as Streptococcus pyogenes andStreptococcus pneumoniae type 3 from the host's immune system. We have determined the X-ray structures of both native and Cys260Ser UDPGlcDH from S. pyogenes (74% similarity to S. pneumoniae) in ternary complexes with UDP-xylose/NAD(+) and UDP-glucuronic acid/NAD(H), respectively. The 402 residue homodimeric UDPGlcDH is composed of an N-terminal NAD(+) dinucleotide binding domain and a C-terminal UDP-sugar binding domain connected by a long (48 A) central alpha-helix. The first 290 residues of UDPGlcDH share structural homology with 6-phosphogluconate dehydrogenase, including conservation of an active site lysine and asparagine that are implicated in the enzyme mechanism. Also proposed to participate in the catalytic mechanism are a threonine and a glutamate that hydrogen bond to a conserved active site water molecule suitably positioned for general acid/base catalysis.  相似文献   

11.
TF (tissue factor) is a transmembrane cofactor that initiates blood coagulation in mammals by binding Factor VIIa to activate Factors X and IX. The cofactor can reside in a cryptic configuration on primary cells and de-encryption may involve a redox change in the C-terminal domain Cys(186)-Cys(209) disulfide bond. The redox potential of the bond, the spacing of the reduced cysteine thiols and their oxidation by TF activators was investigated to test the involvement of the dithiol/disulfide in TF activation. A standard redox potential of -278 mV was determined for the Cys(186)-Cys(209) disulfide of recombinant soluble TF. Notably, ablating the N-terminal domain Cys(49)-Cys(57) disulfide markedly increased the redox potential of the Cys(186)-Cys(209) bond, suggesting that the N-terminal bond may be involved in the regulation of redox activity at the C-terminal bond. Using As(III) and dibromobimane as molecular rulers for closely spaced sulfur atoms, the reduced Cys(186) and Cys(209) sulfurs were found to be within 3-6 ? (1 ?=0.1 nm) of each other, which is close enough to reform the disulfide bond. HgCl2 is a very efficient activator of cellular TF and activating concentrations of HgCl2-mediated oxidation of the reduced Cys(186) and Cys(209) thiols of soluble TF. Moreover, PAO (phenylarsonous acid), which cross-links two cysteine thiols that are in close proximity, and MMTS (methyl methanethiolsulfonate), at concentrations where it oxidizes closely spaced cysteine residues to a cystine residue, were efficient activators of cellular TF. These findings further support a role for Cys(186) and Cys(209) in TF activation.  相似文献   

12.
Phenylalanine hydroxylase (PAH) is a tetrahydrobiopterin-dependent enzyme that catalyzes the hydroxylation of L-phenylalanine (L-Phe) to L-tyrosine using dioxygen as an additional substrate. The requirement of PAH for a cofactor is absolute, but several cofactor analogs are able to substitute the natural cofactor in catalysis. However, it is only the natural cofactor 6R-tetrahydrobiopterin (6R-BH(4)) that induces a negative regulatory effect on the enzyme. In order to get further insights on the molecular basis for this specificity, we studied the structure of the cofactor-enzyme complex and the conformational changes induced by cofactor binding by molecular dynamics simulations. Simulations were carried out on the enzyme alone and complexed with 6R-BH(4) and with two cofactor analogs, 6S-BH(4) and 6-methyl-tetrahydropterin (6M-PH(4)). In the resting unbound enzyme Tyr377 in the catalytic domain is hydrogen bonded to both Ser23 and Glu21 of the autoregulatory N-terminal sequence. This hydrogen bonding network is disturbed by the binding of BH(4), which interacts with Ser23. By doing so, 6R-BH(4) facilitates an interaction between Glu21 and the active site iron, further pulling the N-terminal into the active site of PAH and blocking the L-Phe binding site. Thus, in the 6R-BH(4) complexed enzyme, the N-terminal functions as an intrinsic amino acid regulatory sequence (IARS). Neither 6M-PH(4) nor 6S-BH(4) can interact favorably with Ser23, and do not induce an inhibitory effect on PAH. These simulations thus explain the previous findings that the two hydroxyl groups in the side chain of the 6R epimer of BH(4) are essential for the inhibitory regulatory effect on PAH.  相似文献   

13.
The structural basis for the coupling of ATP binding and hydrolysis to chaperone activity remains a central question in Hsp90 biology. By analogy to MutL, ATP binding to Hsp90 is thought to promote intramolecular N-terminal dimerization, yielding a molecular clamp functioning in substrate protein activation. Though observed in studies with recombinant domains, whether such quaternary states are present in native Hsp90s is unknown. In this study, native subunit interactions in GRP94, the endoplasmic reticulum Hsp90, were analyzed using chemical cross-linking in conjunction with tandem mass spectrometry. We report the identification of two distinct intermolecular interaction sites. Consistent with previous studies, one site comprises the C-terminal dimerization domain. The remaining site represents a novel intermolecular contact between the N-terminal and middle (M) domains of opposing subunits. This N+M domain interaction was present in the nucleotide-empty, ADP-, ATP-, or geldanamycin-bound states and could be selectively disrupted upon addition of synthetic geldanamycin dimers. These results identify a compact, intertwined quaternary conformation of native GRP94 and suggest that intersubunit N+M interactions are integral to the structural biology of Hsp90.  相似文献   

14.
[Fe] hydrogenase (iron–sulfur-cluster-free hydrogenase) catalyzes the reversible reduction of methenyltetrahydromethanopterin (methenyl-H4MPT+) with H2 to methylene-H4MPT, a reaction involved in methanogenesis from H2 and CO2 in many methanogenic archaea. The enzyme harbors an iron-containing cofactor, in which a low-spin iron is complexed by a pyridone, two CO and a cysteine sulfur. [Fe] hydrogenase is thus similar to [NiFe] and [FeFe] hydrogenases, in which a low-spin iron carbonyl complex, albeit in a dinuclear metal center, is also involved in H2 activation. Like the [NiFe] and [FeFe] hydrogenases, [Fe] hydrogenase catalyzes an active exchange of H2 with protons of water; however, this activity is dependent on the presence of the hydride-accepting methenyl-H4MPT+. In its absence the exchange activity is only 0.01% of that in its presence. The residual activity has been attributed to the presence of traces of methenyl-H4MPT+ in the enzyme preparations, but it could also reflect a weak binding of H2 to the iron in the absence of methenyl-H4MPT+. To test this we reinvestigated the exchange activity with [Fe] hydrogenase reconstituted from apoprotein heterologously produced in Escherichia coli and highly purified iron-containing cofactor and found that in the absence of added methenyl-H4MPT+ the exchange activity was below the detection limit of the tritium method employed (0.1 nmol min−1 mg−1). The finding reiterates that for H2 activation by [Fe] hydrogenase the presence of the hydride-accepting methenyl-H4MPT+ is essentially required. This differentiates [Fe] hydrogenase from [FeFe] and [NiFe] hydrogenases, which actively catalyze H2/H2O exchange in the absence of exogenous electron acceptors.  相似文献   

15.
The crystal structure of the nonheme iron-containing hydroxylase component of methane monooxygenase hydroxylase (MMOH) from Methylococcus capsulatus (Bath) has been solved in two crystal forms, one of which was refined to 1.7 Å resolution. The enzyme is composed of two copies each of three subunits (α2β2γ2), and all three subunits are almost completely α-helical, with the exception of two β hairpin structures in the α subunit. The active site of each α subunit contains one dinuclear iron center, housed in a four-helix bundle. The two iron atoms are octahedrally coordinated by 2 histidine and 4 glutamic acid residues as well as by a bridging hydroxide ion, a terminal water molecule, and at 4°C, a bridging acetate ion, which is replaced at −160°C with a bridging water molecule. Comparison of the results for two crystal forms demonstrates overall conservation and relative orientation of the domain structures. The most prominent structural difference identified between the two crystal forms is in an altered side chain conformation for Leu 110 at the active site cavity. We suggest that this residue serves as one component of a hydrophobic gate controlling access of substrates to and products from the active site. The leucine gate may be responsible for the effect of the B protein component on the reactivity of the reduced hydroxylase with dioxygen. A potential reductase binding site has been assigned based on an analysis of crystal packing in the two forms and corroborated by inhibition studies with a synthetic peptide corresponding to the proposed docking position. Proteins 29:141–152, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
O-Acetylserine sulfhydrylase is a homodimeric enzyme catalyzing the last step of cysteine biosynthesis via a Bi Bi ping-pong mechanism. The subunit is composed of two domains, each containing one tryptophan residue, Trp50 in the N-terminal domain and Trp161 in the C-terminal domain. Only Trp161 is highly conserved in eucaryotes and bacteria. The coenzyme pyridoxal 5'-phosphate is bound in a cleft between the two domains. The enzyme undergoes an open to closed conformational transition upon substrate binding. The effect of single Trp to Tyr mutations on O-acetylserine sulfhydrylase structure, function, and stability was investigated with a variety of spectroscopic techniques. The mutations do not significantly alter the enzyme secondary structure but affect the catalysis, with a predominant influence on the second half reaction. The W50Y mutation strongly affects the unfolding pathway due to the destabilization of the intersubunit interface. The W161Y mutation, occurring in the C-terminal domain, produces a reduction of the accessibility of the active site to acrylamide and stabilizes thermodynamically the N-terminal domain, a result consistent with stronger interdomain interactions.  相似文献   

17.
《BBA》2002,1553(1-2):140-157
Succinate-ubiquinone oxidoreductase (SQR) as part of the trichloroacetic acid cycle and menaquinol-fumarate oxidoreductase (QFR) used for anaerobic respiration by Escherichia coli are structurally and functionally related membrane-bound enzyme complexes. Each enzyme complex is composed of four distinct subunits. The recent solution of the X-ray structure of QFR has provided new insights into the function of these enzymes. Both enzyme complexes contain a catalytic domain composed of a subunit with a covalently bound flavin cofactor, the dicarboxylate binding site, and an iron–sulfur subunit which contains three distinct iron–sulfur clusters. The catalytic domain is bound to the cytoplasmic membrane by two hydrophobic membrane anchor subunits that also form the site(s) for interaction with quinones. The membrane domain of E. coli SQR is also the site where the heme b556 is located. The structure and function of SQR and QFR are briefly summarized in this communication and the similarities and differences in the membrane domain of the two enzymes are discussed.  相似文献   

18.
Yeast (Saccharomyces cerevisiae) pyrophosphatase (Y-PPase) is a tight homodimer with two active sites separated in space from the subunit interface. The present study addresses the effects of mutation of four amino acid residues at the subunit interface on dimer stability and catalytic activity. The W52S variant of Y-PPase is monomeric up to an enzyme concentration of 300 microm, whereas R51S, H87T, and W279S variants produce monomer only in dilute solutions at pH > or = 8.5, as revealed by sedimentation, gel electrophoresis, and activity measurements. Monomeric Y-PPase is considerably more sensitive to the SH reagents N-ethylmaleimide and p-hydroxymercurobenzosulfonate than the dimeric protein. Additionally, replacement of a single cysteine residue (Cys(83)), which is not part of the subunit interface or active site, with Ser resulted in insensitivity of the monomer to SH reagents and stabilization against spontaneous inactivation during storage. Active site ligands (Mg(2+) cofactor, P(i) product, and the PP(i) analog imidodiphosphate) stabilized the W279S dimer versus monomer predominantly by decreasing the rate of dimer to monomer conversion. The monomeric protein exhibited a markedly increased (5-9-fold) Michaelis constant, whereas k(cat) remained virtually unchanged, compared with dimer. These results indicate that dimerization of Y-PPase improves its substrate binding performance and, conversely, that active site adjustment through cofactor, product, or substrate binding strengthens intersubunit interactions. Both effects appear to be mediated by a conformational change involving the C-terminal segment that generally shields the Cys(83) residue in the dimer.  相似文献   

19.
氢酶结构及催化机理研究进展   总被引:4,自引:0,他引:4  
刘晶晶  龙敏南   《生物工程学报》2005,21(3):348-353
氢酶是一类催化氢的氧化或质子还原的酶,它在微生物产氢过程中扮演着重要角色。根据氢酶所含的金属元素,可分为NiFe_氢酶、Fe-氢酶和不含金属元素的metal_free氢酶。大多数氢酶含有金属原子,它们参与氢酶活性中心和[Fe_S]簇的形成。氢酶的活性中心直接催化氢的氧化与质子的还原,[Fe_S]簇则参与氢酶催化过程中电子的传输。目前已有数种NiFe_氢酶和Fe_氢酶的X射线衍射晶体结构被阐明。根据metal_free氢酶的序列特征,推断其结构与NiFe_氢酶和Fe_氢酶之间存在较大差异。对氢酶活性中心和[Fe_S]簇的深入研究,揭示了氢酶催化反应的机理。  相似文献   

20.
Erv2p is a small, dimeric FAD-dependent sulfhydryl oxidase that generates disulfide bonds in the lumen of the endoplasmic reticulum. Mutagenic and structural studies suggest that Erv2p uses an internal thiol-transfer relay between the FAD-proximal active site cysteine pair (Cys121-Cys124) and a second cysteine pair (Cys176-Cys178) located in a flexible, substrate-accessible C-terminal tail of the adjacent dimer subunit. Here, we demonstrate that Cys176 and Cys178 are the only amino acids in the tail region required for disulfide transfer and that their relative positioning within the tail peptide is important for activity. However, intragenic suppressor mutations could be isolated that bypass the requirement for Cys176 and Cys178. These mutants were found to disrupt Erv2p dimerization and to increase the activity of Erv2p for thiol substrates such as glutathione. We propose that the two Erv2p subunits act together to direct the disulfide transfer to specific substrates. One subunit provides the catalytic domain composed of the active site cysteine residues and the FAD cofactor, while the second subunit appears to have two functions: it facilitates disulfide transfer to substrates via the tail cysteine residues, while simultaneously shielding the active site cysteine residues from non-specific reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号