首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Landscape-scale patterns of freshwater fish diversity and assemblage structure remain poorly documented in many areas of Central America, while aquatic ecosystems throughout the region have been impacted by habitat degradation and hydrologic alterations. Diadromous fishes may be especially vulnerable to these changes, but there is currently very little information available regarding their distribution and abundance in Central American river systems. We sampled small streams at 20 sites in the Sixaola River basin in southeastern Costa Rica to examine altitudinal variation in the diversity and species composition of stream fish assemblages, with a particular focus on diadromous species. A set of environmental variables was also measured in the study sites to evaluate how changes in fish assemblage structure were related to gradients in stream habitat. Overall, fish diversity and abundance declined steeply with increasing elevation, with very limited species turnover. The contribution of diadromous fishes to local species richness and abundance increased significantly with elevation, and diadromous species dominated assemblages at the highest elevation sites. Ordination of the sampling sites based on fish species composition generally arranged sites by elevation, but also showed some clustering based on geographic proximity. The dominant gradient in fish community structure was strongly correlated with an altitudinal habitat gradient identified through ordination of the environmental variables. The variation we observed in stream fish assemblages over relatively small spatial scales has significant conservation implications and highlights the ecological importance of longitudinal connectivity in Central American river systems.  相似文献   

2.
River regulation infrastructure has been implicated in worldwide aquatic biodiversity loss. In‐stream barriers such as weirs prevent fish migration and the impact can be particularly severe for diadromous species. Fishways are frequently installed on in‐stream barriers to reconnect migratory pathways and rehabilitate diadromous fish populations. Sequential fishways may be necessary in rivers where multiple barriers prevent migration. We monitored a coastal fish community's response to fish passage restoration at 10 predominantly low‐level weirs in the freshwater reaches of the Nepean River in southeastern Australia. Few studies have simultaneously assessed fish community passage at successive fishways within a river system. Prior to the installation of the fishways, there was a gradient of reduced species diversity in an upstream direction including the absence of many diadromous species, despite the regular inundation frequency of most weirs. Following the installation of the fishways, species diversity was still greater in the downstream monitoring sites; however, there was evidence of a positive change in fish community structure in middle and upstream sites. Most notably, three diadromous species rapidly expanded their distribution upstream and one amphidromous species expanded its downstream distribution. This study demonstrates appropriately designed successive fishways can successfully reconnect river systems for an entire fish community, encompassing species with a broad range of swimming abilities and diverse life histories.  相似文献   

3.
Habitat loss and fragmentation are the most important causes of biological diversity loss, changing the properties of the remaining environment. The Neotropical Region is one of the most affected areas due to the conversion of natural habitats into agricultural activities and deforestation. In this region, bats represent almost 50% of all mammal species, reaching the highest taxonomic and functional diversity. Bats are valuable indicators of biodiversity and ecosystem health, but their response to habitat loss and fragmentation was poorly studied in Argentina. The aim of this study was to analyze the response of bat assemblages to habitat alteration in Northwestern Argentina. The specimens were collected in eight different localities, four well-preserved and four disturbed sites of the Yungas Forests. To describe the structure of bat assemblages, rank-abundance curves, species richness and Shannon (H’) and Simpson (D’) diversity indexes were calculated. To test the assemblage variations among sites, PCA and NPMANOVA analysis were performed. After 96 sampling nights, a total of 565 bats from 23 species were captured. A great variation in the assemblage structure was registered, regardless the disturbance level of the sites. These variations were not significantly different according to statistical analysis. The results support the hypothesis that areas with moderate fragmentation can sustain a high diversity of bat species. Moreover, these results showed that consistent responses to landscape composition at the assemblage level are harder to identify in fragmented Neotropical Forests. The responses of bats to habitat alteration tend to be highly species-specific.  相似文献   

4.
Understanding the impact of barriers and habitat fragmentation on the ecology and genetics of species is of broad interest to many biologists. In aquatic systems, hydroelectric dams often present an impenetrable barrier to migratory fish and can have negative effects on their persistence. Hydroelectric dams constructed in the Coquitlam and Alouette Rivers in the Fraser River drainage (British Columbia, Canada) in the early 1900s were thought to have led to complete loss of anadromous sockeye salmon from both rivers. For both reservoirs, recent water release programs resulted in the unexpected downstream migration of juvenile sockeye salmon and the subsequent upstream migration of adults towards the reservoir 2 years later. Here we investigate the evolutionary impact of dams on the sockeye salmon migration behavior by investigating the genetic distinction between migratory and non-migratory individuals within the Alouette and Coquitlam reservoirs. We also compare historical and contemporary genetic connectivity among 11 Lower Fraser River sockeye sites to infer recent population connectivity changes that might have been influenced by anthropogenic activities. Our molecular genetic analyses show a genetic distinction between the sea-run and resident individuals from the Coquitlam reservoir and population splitting time estimates suggest a very recent divergence between them. These results indicate a genetic component to migration behavior. For our broader survey from 11 sites, our comparisons suggest a general decline in gene flow, with a few interesting exceptions. In summary, our results suggest (i) early stage divergence between life history forms of sockeye salmon within one reservoir, and (ii) recent changes in genetic connectivity among Lower Fraser River populations; both of these results have potential recovery implications for historically migratory populations that were affected by anthropogenic barriers such as hydroelectric dams.  相似文献   

5.
Most investigations of biogenic habitat provision consider the promotion of local biodiversity by single species, yet habitat-forming species are often themselves components of diverse assemblages. Increased prevalence of anthropogenic changes to assemblages of habitat-forming species prompts questions about the importance of facilitator biodiversity to associated organisms. We used observational and short-term (30 days) manipulative studies of an intertidal seaweed system to test for the implications of changes in four components of biodiversity (seaweed species richness, functional group richness, species composition, and functional group composition) on associated small mobile invertebrate epifauna. We found that invertebrate epifauna richness and abundance were not influenced by changes in seaweed biodiversity. Invertebrate assemblage structure was in most cases not influenced by changes in seaweed biodiversity; only when algal assemblages were composed of monocultures of species with ‘foliose’ morphologies did we observe a difference in invertebrate assemblage structure. Correlations between algal functional composition and invertebrate assemblage structure were observed, but there was no correlation between algal species composition and invertebrate assemblage structure. These results suggest that changes in seaweed biodiversity are likely to have implications for invertebrate epifauna only under specific scenarios of algal change.  相似文献   

6.
Habitat loss and fragmentation due to urbanization are the most pervasive threats to biodiversity in southern California. Loss of habitat and fragmentation can lower migration rates and genetic connectivity among remaining populations of native species, reducing genetic variability and increasing extinction risk. However, it may be difficult to separate the effects of recent anthropogenic fragmentation from the genetic signature of prehistoric fragmentation due to previous natural geological and climatic changes. To address these challenges, we examined the phylogenetic and population genetic structure of a flightless insect endemic to cismontane southern California, Stenopelmatus'mahogani' (Orthoptera: Stenopelmatidae). Analyses of mitochondrial DNA sequence data suggest that diversification across southern California began during the Pleistocene, with most haplotypes currently restricted to a single population. Patterns of genetic divergence correlate with contemporary urbanization, even after correcting for (geographical information system) GIS-based reconstructions of fragmentation during the Pleistocene. Theoretical simulations confirm that contemporary patterns of genetic structure could be produced by recent urban fragmentation using biologically reasonable assumptions about model parameters. Diversity within populations was positively correlated with current fragment size, but not prehistoric fragment size, suggesting that the effects of increased drift following anthropogenic fragmentation are already being seen. Loss of genetic connectivity and diversity can hinder a population's ability to adapt to ecological perturbations commonly associated with urbanization, such as habitat degradation, climatic changes and introduced species. Consequently, our results underscore the importance of preserving and restoring landscape connectivity for long-term persistence of low vagility native species.  相似文献   

7.
1. Floodplain rivers in Australia's wet/dry tropics are regarded as being among the most ecologically intact and bio-diverse lotic ecosystems in the world, yet there have been relatively few community-based studies of their aquatic fauna.
2. To investigate relationships between hydrological connectivity and biodiversity in the region, macroinvertebrates were collected from sites within two contrasting floodplain rivers, the 'tropical' Gregory River and 'dryland' Flinders River systems, during the dry season and analysed at various spatial scales. A subset of sites was re-sampled in the following dry season to explore temporal variation. The fauna consisted of 124 morphotaxa, dominated by gatherers and the Insecta.
3. As predicted, hydrological connectivity (the lotic or lentic status of waterbodies) had a major influence on macroinvertebrate assemblage composition and diversity, both in space and time. Assemblages from waterbodies with similar connection histories were most alike, and beta-diversity between assemblages was greatest between lotic and lentic waterbodies, tending to increase with increasing spatial separation.
4. At smaller spatial scales, a number of within-waterbody, habitat and water quality characteristics were important for explaining variation (61%) in the taxonomic organization of assemblages, and characteristics associated with primary productivity and habitat diversity were important for explaining variation (45%) in the functional organization of assemblages. However, much of the small-scale environmental variation across the study region appeared to be related to broad-scale variation in hydrological connectivity, which had both direct and indirect effects on macroinvertebrate assemblages.
5. Conservation of the biodiversity in Australia's wet/dry tropics may depend on conserving the natural variation in hydrological connectivity and the unregulated flow of floodplain rivers.  相似文献   

8.
In freshwater ecosystems, spatial turnover in fish assemblages is often attributed to dispersal limitation imposed by fragmentation of water bodies. Other factors like environmental properties or biotic interactions have often been assumed to be minute relative to dispersal limitation when hydrogeological barriers are abundant. This study aims to describe the spatial differentiation of cichlid fish assemblages in the upper río Madera in Bolivia, Brazil and Perú, a large drainage system characterized by the absence of significant hydrogeological barriers. We assessed the relative importance of spatial, climatic and geological predictors in the observed biogeographic structure using an integrative combination of cluster analyses, elements of metacommunity structure analysis, variation partitioning, and network analysis. Our results show that distinct assemblages of cichlid fish species replace each other across the landscape and that this turnover is partially determined by climate and geological gradients. A considerable fraction of the cichlid assembly structure could not be assigned to either space, climate or geology and might be explained by unmeasured parameters such as habitat structure or biotic interactions. Incorporating knowledge on spatial turnover of species assemblages into conservation strategies will be essential for the biodiversity management of the diverse aquatic fauna of the upper río Madera.  相似文献   

9.
Quantifying the effects of landscape change on population connectivity is compounded by uncertainties about population size and distribution and a limited understanding of dispersal ability for most species. In addition, the effects of anthropogenic landscape change and sensitivity to regional climatic conditions interact to strongly affect habitat fragmentation and loss. To further develop conservation theory and to understand the interplay between all of these factors, we simulated habitat fragmentation and loss across the Western United States for several hypothetical species associated with four biome types, and a range of habitat requirements and dispersal abilities. We found dispersal ability and population size of the focal species to be equally sensitive to habitat extent, while dispersal ability is more sensitive to habitat fragmentation. There were also strong critical threshold effects where habitat connectivity decreased disproportionately to decreases in life-history traits making these species near these thresholds more sensitive to changes in habitat loss and fragmentation. Overall, grassland and forest associated species are also most at risk from habitat loss and fragmentation driven by human related land-use. These two largest biome types were most sensitive at large contiguous patch sizes which is often considered most important for metapopulation viability and biodiversity conservation. Hypothetical simulation studies such as this can be of great value to scientists in further conceptualizing and developing conservation theory, and evaluating spatially-explicit scenarios of habitat connectivity. Our results are available for download in a web-based interactive mapping prototype useful for accessing the results of this study.  相似文献   

10.
Lake sturgeon (Acipenser fulvescens) are of conservation concern throughout their range. Many populations are dependent on fluvial habitats which have been increasingly impacted and fragmented by dams and human development. Although lake sturgeon were once abundant in the Ottawa River and its tributaries, historical commercial harvests and other anthropogenic factors caused severe declines and low contemporary numbers in lake sturgeon populations. Contemporary habitat fragmentation by dams may be increasing isolation among habitat patches and local rates of decline, raising concerns for persistence of local populations. We used microsatellite DNA markers to assess population structure and diversity of lake sturgeon in the Ottawa River, and analyzed samples from 10 sites that represent more than 500 km of riverine habitat. To test for evidence of anthropogenic fragmentation, patterns of genetic diversity and connectivity within and among river segments were tested for concordance with geographic location, separation by distance and obstacles to migration, considering both natural and artificial barriers as well as barrier age. Despite extensive habitat fragmentation throughout the Ottawa River, statistical analyses failed to refute panmixia of lake sturgeon in this system. Although the long generation time of lake sturgeon appears to have effectively guarded against the negative genetic impacts of habitat fragmentation and loss so far, evidence from demographic studies indicates that restoring connectivity among habitats is needed for the long-term conservation and management of this species throughout this river system.  相似文献   

11.
Aim To contrast floristic spatial patterns and the importance of habitat fragmentation in two plant communities (grassland and scrubland) in the context of ecological succession. We ask whether plant assemblages are affected by habitat fragmentation and, if so, at what spatial scale? Does the relative importance of the niche differentiation and dispersal‐limitation mechanisms change throughout secondary succession? Is the dispersal‐limitation mechanism related to plant functional traits? Location A Mediterranean region, the massif of Albera (Spain). Methods Using a SPOT satellite image to describe the landscape, we tested the effect of habitat fragmentation on species composition, determining the spatial scale of the assemblage response. We then assessed the relative importance of dispersal‐related factors (habitat fragmentation and geographical distance) and environmental constraints (climate‐related variables) influencing species similarity. We tested the association between dispersal‐related factors and plant traits (dispersal mode and life form). Results In both community types, plant composition was partially affected by the surrounding vegetation. In scrublands, animal‐dispersed and woody plants were abundant in landscapes dominated by closed forests, whereas wind‐dispersed annual herbs were poorly represented in those landscapes. Scrubby assemblages were more dependent on geographical distance, habitat fragmentation and climate conditions (temperature, rainfall and solar radiation); grasslands were described only by habitat fragmentation and rainfall. Plant traits did not explain variation in spatial structuring of assemblages. Main conclusions Plant establishment in early Mediterranean communities may be driven primarily by migration from neighbouring established communities, whereas the importance of habitat specialization and community drift increases over time. Plant life forms and dispersal modes did not explain the spatial variation of species distribution, but species richness within the community with differing plant traits was affected by habitat patchiness.  相似文献   

12.
1. Changes in land use and habitat fragmentation are major drivers of global change, and studying their effects on biodiversity constitutes a major research programme. However, biodiversity is a multifaceted concept, with a functional component linking species richness to ecosystem function. Currently, the interaction between functional and taxonomic components of biodiversity under realistic scenarios of habitat degradation is poorly understood. 2. The expected functional richness (FR)-species richness relationship (FRSR) is positive, and attenuated for functional redundancy in species-rich assemblages. Further, environmental filters are expected to flatten that association by sorting species with similar traits. Thus, analysing FRSR can inform about the response of biodiversity to environmental gradients and habitat fragmentation, and its expected functional consequences. 3. Top predators affect ecosystem functioning through prey consumption and are particularly vulnerable to changes in land use and habitat fragmentation, being good indicators of ecosystem health and suitable models for assessing the effects of habitat fragmentation on their FR. 4. Thus, this study analyses the functional redundancy of a vertebrate predator assemblage at temperate forest fragments in a rural landscape of Chiloe island (Chile), testing the existence of environmental filters by contrasting an empirically derived FRSR against those predicted from null models, and testing the association between biodiversity components and the structure of forest fragments. 5. Overall, contrasts against null models indicate that regional factors determine low levels of FR and redundancy for the vertebrate predator assemblage studied, while recorded linear FRSR indicates proportional responses of the two biodiversity components to the structure of forest fragments. Further, most species were positively associated with either fragment size or shape complexity, which are highly correlated. This, and the absence of ecological filters at the single-fragment scale, rendered taxonomically and functionally richer predator assemblages at large complex-shaped fragments. 6. These results predict strong effects of deforestation on both components of biodiversity, potentially affecting the functioning of remnants of native temperate forest ecosystems. Thus, the present study assesses general responses of functional and taxonomic components of biodiversity to a specific human-driven process.  相似文献   

13.
Human development of pond and lake shorelines may significantly impact native lacustrine biota including a variety of aquatic macroinvertebrate groups. In an effort to better understand the habitat associations and sensitivities of lacustrine damselflies (Odonata: Zygoptera), we sampled adults in littoral macrophyte habitat during two flight periods at 35 randomly selected pond and lake sites in southern Maine during 2000 and 2001. Data were also collected to help characterize water body, shoreline disturbance, and aquatic vegetation at each study site. Nonmetric multidimensional scaling was used for ordination of damselfly assemblages, and coordinates from the most stable solution were related to site variables using forward stepwise multiple regression. Our results suggest that the diversity and composition of damselfly assemblages is related to the abundance and richness of littoral zone macrophytes, extent of riparian disturbance, benthic substrate granularity, and lake productivity; all variables subject to anthropogenic degradation on excessively developed waterbodies. Additionally, we developed a Habitat Tolerance Index useful for distinguishing between relative habitat specialists and generalists from among a diverse assemblage of 19 lacustrine species. Finally, species-specific damselfly associations with multiple genera of floating and emergent macrophytes were assessed using both nonparametric correlation and multiplicative regression yielding significant relationships for 17 species, including two damselflies of global conservation concern (Enallagma laterale and E. pictum). We conclude that the protection of littoral and shoreline habitat integrity, with special emphasis on emergent and floating macrophytes, is critical to the conservation of lacustrine biodiversity.  相似文献   

14.
Agricultural land use is a primary driver of environmental impacts on streams. However, the causal processes that shape these impacts operate through multiple pathways and at several spatial scales. This complexity undermines the development of more effective management approaches, and illustrates the need for more in‐depth studies to assess the mechanisms that determine changes in stream biodiversity. Here we present results of the most comprehensive multi‐scale assessment of the biological condition of streams in the Amazon to date, examining functional responses of fish assemblages to land use. We sampled fish assemblages from two large human‐modified regions, and characterized stream conditions by physical habitat attributes and key landscape‐change variables, including density of road crossings (i.e. riverscape fragmentation), deforestation, and agricultural intensification. Fish species were functionally characterized using ecomorphological traits describing feeding, locomotion, and habitat preferences, and these traits were used to derive indices that quantitatively describe the functional structure of the assemblages. Using structural equation modeling, we disentangled multiple drivers operating at different spatial scales, identifying causal pathways that significantly affect stream condition and the structure of the fish assemblages. Deforestation at catchment and riparian network scales altered the channel morphology and the stream bottom structure, changing the functional identity of assemblages. Local deforestation reduced the functional evenness of assemblages (i.e. increased dominance of specific trait combinations) mediated by expansion of aquatic vegetation cover. Riverscape fragmentation reduced functional richness, evenness and divergence, suggesting a trend toward functional homogenization and a reduced range of ecological niches within assemblages following the loss of regional connectivity. These results underscore the often‐unrecognized importance of different land use changes, each of which can have marked effects on stream biodiversity. We draw on the relationships observed herein to suggest priorities for the improved management of stream systems in the multiple‐use landscapes that predominate in human‐modified tropical forests.  相似文献   

15.

Aim

Temperate tree species overwhelmingly responded to past climate change by migrating rather than adapting. However, past climate change did not have the modern human‐driven patterns of land use and fragmentation, raising questions of whether tree migration will still be able to keep pace with climate. Previous studies using coarse‐grained or randomized landscapes suggest that dispersal may be delayed but have not identified outright barriers to migration. Here, we use real‐world fragmented landscapes at the scale of forest stands to assess the migration capacity of eastern tree species.

Location

Eastern U.S.A.

Time period

Present day to 2100.

Major taxa studied

Eastern U.S. trees.

Methods

We simulated dispersal over 100 years for 15 species common to the mid‐Atlantic region and that are predicted to gain suitable habitat in the northeast. In contrast to previous studies, we incorporated greater realism with species‐specific life histories and real‐world spatial configurations of anthropogenic land use. We used simulation results to calculate dispersal rates for each species and related these to predicted rates of species habitat shift.

Results

Our simulations suggest that land use in the human‐dominated east‐coast corridor slows species dispersal rates by 12–40% and may prevent keeping pace with climate. Species most impacted by anthropogenic land use were often those with the highest predicted species habitat shifts. We identified two major dispersal barriers, the Washington DC metropolitan area and central NY, that severely impeded tree migration.

Main conclusions

Patterns of anthropogenic land use not only slowed migration but also resulted in effective barriers to dispersal. These impacts were exacerbated by tree life histories, such as long ages to maturity and narrow dispersal kernels. Without intervention, the migration lags predicted here may lead to loss in biodiversity and ecosystem functions as current forest species decline, and may contribute to formation of novel communities.  相似文献   

16.
基于景观遗传学的滇金丝猴栖息地连接度分析   总被引:1,自引:0,他引:1  
薛亚东  李丽  李迪强  吴巩胜  周跃  吕玺喜 《生态学报》2011,31(20):5886-5893
结合景观遗传学,应用最小费用距离模型对物种栖息地进行连接度分析,能够为生物多样性保护和自然保护区管理提供更加真实准确及可实践操作的指导。选取滇金丝猴这一珍稀濒危物种,结合景观遗传学,应用最小费用距离模型对其栖息地进行了连接度和潜在扩散廊道分析。并且通过连接度的分析和制图绘制出了更为准确的种群间潜在扩散廊道,确定了受人工障碍影响的廊道及敏感区域。结果表明,研究区内的5个亚群中,仅S3亚群内的5个猴群保持着较好的连接度,总体来说,各亚群内的连接度相对于各亚群间连接度保持的较好。除S3亚群中猴群间的潜在扩散廊道较为理想外,其余种群间的潜在扩散廊道均受人工斑块的影响,多数廊道被人工障碍阻断,或面临即将被阻断的情况,对于滇金丝猴的扩散交流影响较大。敏感区域多集中在中南部的3个亚群间,这些敏感区域应作为景观恢复及保护区规划的重要优先区域。  相似文献   

17.
Inferring the processes underlying spatial patterns of genomic variation is fundamental to understand how organisms interact with landscape heterogeneity and to identify the factors determining species distributional shifts. Here, we use genomic data (restriction site‐associated DNA sequencing) to test biologically informed models representing historical and contemporary demographic scenarios of population connectivity for the Iberian cross‐backed grasshopper Dociostaurus hispanicus, a species with a narrow distribution that currently forms highly fragmented populations. All models incorporated biological aspects of the focal taxon that could hypothetically impact its geographical patterns of genomic variation, including (a) spatial configuration of impassable barriers to dispersal defined by topographic landscapes not occupied by the species; (b) distributional shifts resulting from the interaction between the species bioclimatic envelope and Pleistocene glacial cycles; and (c) contemporary distribution of suitable habitats after extensive land clearing for agriculture. Spatiotemporally explicit simulations under different scenarios considering these aspects and statistical evaluation of competing models within an Approximate Bayesian Computation framework supported spatial configuration of topographic barriers to dispersal and human‐driven habitat fragmentation as the main factors explaining the geographical distribution of genomic variation in the species, with no apparent impact of hypothetical distributional shifts linked to Pleistocene climatic oscillations. Collectively, this study supports that both historical (i.e., topographic barriers) and contemporary (i.e., anthropogenic habitat fragmentation) aspects of landscape composition have shaped major axes of genomic variation in the studied species and emphasizes the potential of model‐based approaches to gain insights into the temporal scale at which different processes impact the demography of natural populations.  相似文献   

18.
We examined Indiana fish assemblages using taxonomy and ecological categories to assess temporal shifts in community structure and recent environmental relationships. Historic (1945) and recent (1996–2007) presence/absence data were compiled by subbasin and analyzed with Nonmetric Multidimensional Scaling (NMS) ordination and by species richness. Canonical Correspondence Analysis (CCA) was used to test taxonomic identity and ecological category abundance data for explanation with recent (1996–2007) environmental variables. We found a decrease in assemblage heterogeneity for recent assemblages and an increase in the number of tolerant species per subbasin. Recent Indiana streams are dominated by tolerant fishes with generalist life history strategies and low functional variation. The use of ecological categories resulted in weaker relationships with environmental variables than analyses with taxonomic identities. Analyses using taxonomy resulted in strong assemblage explanation from stream size and flow variation, while analyses using ecological categories resulted in strong assemblage explanation from habitat variation in silt substrates and flow. Analyses of recent assemblage structure using ecological categories resulted in decreased assemblage variation among subbasins than in analyses using taxonomic identities. We found that fish assemblages of Indiana streams are structured primarily by habitat complexity and have been altered during the past 50 years through multiple disturbances including fragmentation, siltation, and species introductions.  相似文献   

19.
Landscape modification and habitat fragmentation disrupt the connectivity of natural landscapes, with major consequences for biodiversity. Species that require patchily distributed habitats, such as those that specialize on early successional ecosystems, must disperse through a landscape matrix with unsuitable habitat types. We evaluated landscape effects on dispersal of an early successional obligate, the New England cottontail (Sylvilagus transitionalis). Using a landscape genetics approach, we identified barriers and facilitators of gene flow and connectivity corridors for a population of cottontails in the northeastern United States. We modeled dispersal in relation to landscape structure and composition and tested hypotheses about the influence of habitat fragmentation on gene flow. Anthropogenic and natural shrubland habitats facilitated gene flow, while the remainder of the matrix, particularly development and forest, impeded gene flow. The relative influence of matrix habitats differed between study areas in relation to a fragmentation gradient. Barrier features had higher explanatory power in the more fragmented site, while facilitating features were important in the less fragmented site. Landscape models that included a simultaneous barrier and facilitating effect of roads had higher explanatory power than models that considered either effect separately, supporting the hypothesis that roads act as both barriers and facilitators at all spatial scales. The inclusion of LiDAR-identified shrubland habitat improved the fit of our facilitator models. Corridor analyses using circuit and least cost path approaches revealed the importance of anthropogenic, linear features for restoring connectivity between the study areas. In fragmented landscapes, human-modified habitats may enhance functional connectivity by providing suitable dispersal conduits for early successional specialists.  相似文献   

20.
  1. Habitat fragmentation is one of the main threats to biodiversity. Barriers to dispersal caused by anthropogenic habitat alteration may affect phylogeographic patterns in freshwater mussels. Knowledge of the phylogenetic and phylogeographic patterns of unionoids is vital to inform protection of their biodiversity.
  2. Here, we assessed influences of dams and their environmental effects on the genetic diversity and population connectivity of a broadly distributed freshwater mussel, Nodularia douglasiae, in Poyang Lake Basin.
  3. The results showed high genetic diversity in areas without dams and low genetic diversity in areas with dams. High genetic differentiation and low gene flow were found among the 11 populations. Genetic variation was significantly correlated with dissolved oxygen levels.
  4. The observation of low genetic diversity in populations separated by dams indicated that those populations were subjected to genetic erosion and demographic decline because they are disconnected from other populations with higher diversity. High genetic differentiation and low gene flow among the 11 populations could be correlated with anthropogenic habitat alteration.
  5. These results indicated that anthropogenic habitat alterations have led to the decline in freshwater mussel diversity. Therefore, we recommend maintaining favourable habitat conditions and connectivity of rivers or lakes, and strengthening study of life histories with host-test experiments to identify potential host fish species to strengthen the knowledge base underpinning freshwater mussel conservation.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号