首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Microbiological research》2014,169(12):907-914
The influence of non-Saccharomyces yeast, Kluyveromyces lactis, on metabolite formation and the ethanol tolerance of Saccharomyces cerevisiae in mixed cultures was examined on synthetic minimal medium containing 20% glucose. In the late stage of fermentation after the complete death of K. lactis, S. cerevisiae in mixed cultures was more ethanol-tolerant than that in pure culture. The chronological life span of S. cerevisiae was shorter in pure culture than mixed cultures. The yeast cells of the late stationary phase both in pure and mixed cultures had a low buoyant density with no significant difference in the non-quiescence state between both cultures. In mixed cultures, the glycerol contents increased and the alanine contents decreased when compared with the pure culture of S. cerevisiae. The distinctive intracellular amino acid pool concerning its amino acid concentrations and its amino acid composition was observed in yeast cells with different ethanol tolerance in the death phase. Co-cultivation of K. lactis seems to prompt S. cerevisiae to be ethanol tolerant by forming opportune metabolites such as glycerol and alanine and/or changing the intracellular amino acid pool.  相似文献   

2.
Culture-dependent and -independent methods were used to examine the yeast diversity present in botrytis-affected (“botrytized”) wine fermentations carried out at high (~30°C) and ambient (~20°C) temperatures. Fermentations at both temperatures possessed similar populations of Saccharomyces, Hanseniaspora, Pichia, Metschnikowia, Kluyveromyces, and Candida species. However, higher populations of non-Saccharomyces yeasts persisted in ambient-temperature fermentations, with Candida and, to a lesser extent, Kluyveromyces species remaining long after the fermentation was dominated by Saccharomyces. In general, denaturing gradient gel electrophoresis profiles of yeast ribosomal DNA or rRNA amplified from the fermentation samples correlated well with the plating data. The direct molecular methods also revealed a Hanseniaspora osmophila population not identified in the plating analysis. rRNA analysis also indicated a large population (>106 cells per ml) of a nonculturable Candida strain in the high-temperature fermentation. Monoculture analysis of the Candida isolate indicated an extreme fructophilic phenotype and correlated with an increased glucose/fructose ratio in fermentations containing higher populations of Candida. Analysis of wine fermentation microbial ecology by using both culture-dependent and -independent methods reveals the complexity of yeast interactions enriched during spontaneous fermentations.  相似文献   

3.
Phosphatase activities of yeasts belonging to the genera Saccharomyces, Kluyveromyces and Rhodotorula were studied. Rhodotorula rubra exhibited activities at acid, neutral and alkaline pH; the other yeasts only had activity at acid pH. Growing yeasts in a constant pH (4.5) medium decreased phosphatase activities in Saccharomyces and Kluyveromyces, while neutral activity was enhanced in Rhodotorula rubra which excreted more enzyme under these conditions. Washing cells with sucrose solutions lowered phosphatase activities in all yeasts, due to enzyme liberation. Acid phosphatase activities in isolated and purified cell walls were very small. Phosphatases thus appear not to be strongly bound to yeast cell walls.  相似文献   

4.
Abstract

Ethanol-Producing Microrganisms

A wide variety of microbial species are known to produce ethanol as a product of carbohydrate fermentation.1 Organisms which have received attention in recent studies include a wide range of yeasts, some molds, and a number of specialized bacteria (Table 1). Traditionally, yeasts, particularly Saccharomyces cerevisiae, have been used for producing fermentation ethanol or alcoholic beverages in large-scale processes. In Table 1, Zymomonas mobilis, the predominant organism in fermentations producing Mexican “pulque” or palm wine,34-46 is the only bacterium of current economic significance. However, the development of interest in other species with the ability, for example, to convert xylose to ethanol or to ferment at high temperatures indicates that no existing strain of Saccharomyces or Zymomonas meets the specifications for all current and future uses. Certainly the use of alternative organisms, or even mixed cultures,4245 warrants investigation. However, this review will concentrate on proven ethanol producers (i.e., yeasts, particularly Saccharomyces spp., and Z. mobilis) and how these might be improved in a systematic way for ethanol production, using the wide range of genetic techniques which is now available.  相似文献   

5.
6.
A new method for the quantitative determination of members of the genusSaccharomyces in mixtures with other yeasts is described. It is based on the higher resistance of theSaccharomyces species toward phenylhydrazine. The method is not applicable only toSaccharomyces fragilis and to some of the species grouped sometimes under the genus Zygosaccharomyces. The method described can be used for detecting Saccharomyces individuals in cannery or wine-making raw materials and products, for purity control of production and collection strains of yeasts and for detecting contamination withSaccharomyces species during fodder yeast production.  相似文献   

7.
The killing/immunity interactions among killer strains of the genera Kluyveromyces, Hansenula and Saccharomyces from the Czechoslovak Collection of Yeasts were studied with the aim to find the strains with broad specificity and killer activity targeted against a range of undesirable wild yeasts causing stuck fermentations. Among 49 tested Kluyveromyces strains, five strains were found, and among 55 Hansenula strains, ten yeast strains were found with activity against a sensitive strain of Saccharomyces. Hansenula mrakii CCY 38-7-1 and Hansenula saturnus var. subsufficiens CCY 38-4-2 showed exceptional activity against the wine contaminants, Zygosaccharomyces bailii, as well as against pathogenic Candida species within a broad range of pH 2.9–5.1. Their potential biotechnological application is discussed.  相似文献   

8.
Saccharomyces cerevisiae and several other yeast species are among the most important groups of biotechnological organisms. S. cerevisiae and closely related ascomycetous yeasts are the major producer of biotechnology products worldwide, exceeding other groups of industrial microorganisms in productivity and economic revenues. Traditional industrial attributes of the S. cerevisiae group include their primary roles in food fermentations such as beers, cider, wines, sake, distilled spirits, bakery products, cheese, sausages, and other fermented foods. Other long-standing industrial processes involving S. cerevisae yeasts are production of fuel ethanol, single-cell protein (SCP), feeds and fodder, industrial enzymes, and small molecular weight metabolites. More recently, non-Saccharomyces yeasts (non-conventional yeasts) have been utilized as industrial organisms for a variety of biotechnological roles. Non-Saccharomyces yeasts are increasingly being used as hosts for expression of proteins, biocatalysts and multi-enzyme pathways for the synthesis of fine chemicals and small molecular weight compounds of medicinal and nutritional importance. Non-Saccharomyces yeasts also have important roles in agriculture as agents of biocontrol, bioremediation, and as indicators of environmental quality. Several of these products and processes have reached commercial utility, while others are in advanced development. The objective of this mini-review is to describe processes currently used by industry and those in developmental stages and close to commercialization primarily from non-Saccharomyces yeasts with an emphasis on new opportunities. The utility of S. cerevisiae in heterologous production of selected products is also described.  相似文献   

9.
G. I. Naumov 《Microbiology》2013,82(4):397-403
The review deals with the early studies of Saccharomyces paradoxus (syn. S. cerevisiae var. tetrasporus) yeast. The data demonstrate strong evidence that, in contrast to the well-known cultivated Saccharomyces yeasts (baker, wine, spirits, and beer yeast), wild Saccharomyces yeasts are often found in natural habitats, such as exudate and leaf litter of trees, decaying wood, soil, and insect intestines. These yeasts form a potentially valuable gene pool for research and breeding programs.  相似文献   

10.
Molecular evolution in yeast of biotechnological interest   总被引:1,自引:0,他引:1  
The importance of yeast in the food and beverage industries was only realized about 1860, when the role of these organisms in food manufacture became evident. Since they grow on a wide range of substrates and can tolerate extreme physicochemical conditions, yeasts, especially the genera Saccharomyces and Kluyveromyces, have been applied to many industrial processes, Industrial strains of these genera are highly specialized organisms that have evolved to utilize a range of environments and ecological niches to their full potential. This adaptation is called "domestication". This review describes the phylogenetic relationships among Saccharomyces and Kluyveromyces species and the different mechanisms involved in the adaptive evolution of industrial yeast strains.  相似文献   

11.
Xylose is one of the major fermentable sugars present in cellulosic biomass, second only to glucose. However, Saccharomyces spp., the best sugar-fermenting microorganisms, are not able to metabolize xylose. We developed recombinant plasmids that can transform Saccharomyces spp. into xylose-fermenting yeasts. These plasmids, designated pLNH31, -32, -33, and -34, are 2μm-based high-copy-number yeast-E. coli shuttle plasmids. In addition to the geneticin resistance and ampicillin resistance genes that serve as dominant selectable markers, these plasmids also contain three xylose-metabolizing genes, a xylose reductase gene, a xylitol dehydrogenase gene (both from Pichia stipitis), and a xylulokinase gene (from Saccharomyces cerevisiae). These xylose-metabolizing genes were also fused to signals controlling gene expression from S. cerevisiae glycolytic genes. Transformation of Saccharomyces sp. strain 1400 with each of these plasmids resulted in the conversion of strain 1400 from a non-xylose-metabolizing yeast to a xylose-metabolizing yeast that can effectively ferment xylose to ethanol and also effectively utilizes xylose for aerobic growth. Furthermore, the resulting recombinant yeasts also have additional extraordinary properties. For example, the synthesis of the xylose-metabolizing enzymes directed by the cloned genes in these recombinant yeasts does not require the presence of xylose for induction, nor is the synthesis repressed by the presence of glucose in the medium. These properties make the recombinant yeasts able to efficiently ferment xylose to ethanol and also able to efficiently coferment glucose and xylose present in the same medium to ethanol simultaneously.  相似文献   

12.
Alcoholic fermentation of grape must is a complex process, involving several yeast genera and species. The early stages in fermentation are dominated by non-Saccharomyces yeasts that are gradually replaced by the Saccharomyces cerevisiae species, which takes over the fermentation. Quantitative studies have reported the influence of non-Saccharomyces yeast species on wine quality and evaluated their biotechnological interest. The industrial yeast market, which, until recently, exclusively focused on S. cerevisiae, now offers S. cerevisiae/non-Saccharomyces (including Torulaspora delbrueckii) multi-starters. The development of these new mixed industrial starters requires a better understanding of the interaction mechanisms between yeast populations in order to optimize the aromatic impact of the non-Saccharomyces yeast while ensuring complete alcoholic fermentation thanks to S. cerevisiae. For this purpose, a new double-compartment fermentor was designed with the following characteristics: (1) physical separation of two yeast populations, (2) homogeneity of the culture medium in both compartments, (3) fermentation kinetics monitored by weight loss due to CO2 release, and (4) independent monitoring of growth kinetics in the two compartments. This tool was used to compare mixed inoculations of S. cerevisiae/T. delbrueckii with and without physical separation. Our results revealed that physical contact/proximity between S. cerevisiae and T. delbrueckii induced rapid death of T. delbrueckii, a phenomenon previously described and attributed to a cell–cell contact mechanism. In contrast, when physically separated from S. cerevisiae, T. delbrueckii maintained its viability and its metabolic activity had a marked impact on S. cerevisiae growth and viability. The double fermentor is thus a powerful tool for studying yeast interactions. Our findings shed new light on interaction mechanisms described in microorganism populations.  相似文献   

13.
Gas chromatographic analysis by direct injection of samples yielded quantitative data on acetoin content. Ninety-six strains of Hanseniaspora guilliermondii and Kloeckera apiculata were investigated for the ability to produce acetoin in synthetic medium and in must. High-level production of acetoin was found to be a characteristic of both species. In synthetic medium, the two species were not significantly different with respect to sugar utilization and ethanol or acetoin production. In grape must, the two species were significantly different (P = 0.001) in acetoin production and K. apiculata exhibited a significantly negative correlation between acetoin production and either sugar consumption or ethanol production. Use of selected apiculate yeasts in mixed cultures with Saccharomyces cerevisiae seems promising for optimization of wine bouquet.  相似文献   

14.
Killer toxins are extracellular antifungal proteins that are produced by a wide variety of fungi, including Saccharomyces yeasts. Although many Saccharomyces killer toxins have been previously identified, their evolutionary origins remain uncertain given that many of these genes have been mobilized by double-stranded RNA (dsRNA) viruses. A survey of yeasts from the Saccharomyces genus has identified a novel killer toxin with a unique spectrum of activity produced by Saccharomyces paradoxus. The expression of this killer toxin is associated with the presence of a dsRNA totivirus and a satellite dsRNA. Genetic sequencing of the satellite dsRNA confirmed that it encodes a killer toxin with homology to the canonical ionophoric K1 toxin from Saccharomyces cerevisiae and has been named K1-like (K1L). Genomic homologs of K1L were identified in six non-Saccharomyces yeast species of the Saccharomycotina subphylum, predominantly in subtelomeric regions of the genome. When ectopically expressed in S. cerevisiae from cloned cDNAs, both K1L and its homologs can inhibit the growth of competing yeast species, confirming the discovery of a family of biologically active K1-like killer toxins. The sporadic distribution of these genes supports their acquisition by horizontal gene transfer followed by diversification. The phylogenetic relationship between K1L and its genomic homologs suggests a common ancestry and gene flow via dsRNAs and DNAs across taxonomic divisions. This appears to enable the acquisition of a diverse arsenal of killer toxins by different yeast species for potential use in niche competition.  相似文献   

15.
When fruits ripen, microbial communities start a fierce competition for the freely available fruit sugars. Three yeast lineages, including baker’s yeast Saccharomyces cerevisiae, have independently developed the metabolic activity to convert simple sugars into ethanol even under fully aerobic conditions. This fermentation capacity, named Crabtree effect, reduces the cell-biomass production but provides in nature a tool to out-compete other microorganisms. Here, we analyzed over forty Saccharomycetaceae yeasts, covering over 200 million years of the evolutionary history, for their carbon metabolism. The experiments were done under strictly controlled and uniform conditions, which has not been done before. We show that the origin of Crabtree effect in Saccharomycetaceae predates the whole genome duplication and became a settled metabolic trait after the split of the S. cerevisiae and Kluyveromyces lineages, and coincided with the origin of modern fruit bearing plants. Our results suggest that ethanol fermentation evolved progressively, involving several successive molecular events that have gradually remodeled the yeast carbon metabolism. While some of the final evolutionary events, like gene duplications of glucose transporters and glycolytic enzymes, have been deduced, the earliest molecular events initiating Crabtree effect are still to be determined.  相似文献   

16.
All livestock animal species harbour complex microbial communities throughout their digestive tract that support vital biochemical processes, thus sustaining health and productivity. In part as a consequence of the strong and ancient alliance between the host and its associated microbes, the gut microbiota is also closely related to productivity traits such as feed efficiency. This phenomenon can help researchers and producers develop new and more effective microbiome-based interventions using probiotics, also known as direct-fed microbials (DFMs), in Animal Science. Here, we focus on one type of such beneficial microorganisms, the yeast Saccharomyces. Saccharomyces is one of the most widely used microorganisms as a DFM in livestock operations. Numerous studies have investigated the effects of dietary supplementation with different species, strains and doses of Saccharomyces (mostly Saccharomyces cerevisiae) on gut microbial ecology, health, nutrition and productivity traits of several livestock species. However, the possible existence of Saccharomyces which are indigenous to the animals’ digestive tract has received little attention and has never been the subject of a review. We for the first time provide a comprehensive review, with the objective of shedding light into the possible existence of indigenous Saccharomyces of the digestive tract of livestock. Saccharomyces cerevisiae is a nomadic yeast able to survive in a broad range of environments including soil, grass and silages. Therefore, it is very likely that cattle and other animals have been in direct contact with this and other types of Saccharomyces throughout their entire existence. However, to date, the majority of animal scientists seem to agree that the presence of Saccharomyces in any section of the gut only reflects dietary contamination; in other words, these are foreign organisms that are only transiently present in the gut. Importantly, this belief (i.e. that Saccharomyces come solely from the diet) is often not well grounded and does not necessarily hold for all the many other groups of microbes in the gut. In addition to summarizing the current body of literature involving Saccharomyces in the digestive tract, we discuss whether the beneficial effects associated with the consumption of Saccharomyces may be related to its foreign origin, though this concept may not necessarily satisfy the theories that have been proposed to explain probiotic efficacy in vivo. This novel review may prove useful for biomedical scientists and others wishing to improve health and productivity using Saccharomyces and other beneficial microorganisms.  相似文献   

17.
Yeast ecology, biogeography and biodiversity are important and interesting topics of research. The population dynamics of yeasts in several cellars of two Spanish wine-producing regions was analysed for three consecutive years (1996 to 1998). No yeast starter cultures had been used in these wineries which therefore provided an ideal winemaking environment to investigate the dynamics of grape-related indigenous yeast populations. Non-Saccharomyces yeast species were identified by RFLPs of their rDNA, while Saccharomyces species and strains were identified by RFLPs of their mtDNA. This study confirmed the findings of other reports that non-Saccharomyces species were limited to the early stages of fermentation whilst Saccharomyces dominated towards the end of the alcoholic fermentation. However, significant differences were found with previous studies, such as the survival of non-Saccharomyces species in stages with high alcohol content and a large variability of Saccharomyces strains (a total of 112, all of them identified as Saccharomyces cerevisiae) with no clear predominance of any strain throughout all the fermentation, probably related to the absence of killer phenotype and lack of previous inoculation with commercial strains.  相似文献   

18.
Flocculation has primarily been studied as an important technological property of Saccharomyces cerevisiae yeast strains in fermentation processes such as brewing and winemaking. These studies have led to the identification of a group of closely related genes, referred to as the FLO gene family, which controls the flocculation phenotype. All naturally occurring S. cerevisiae strains assessed thus far possess at least four independent copies of structurally similar FLO genes, namely FLO1, FLO5, FLO9 and FLO10. The genes appear to differ primarily by the degree of flocculation induced by their expression. However, the reason for the existence of a large family of very similar genes, all involved in the same phenotype, has remained unclear. In natural ecosystems, and in wine production, S. cerevisiae growth together and competes with a large number of other Saccharomyces and many more non-Saccharomyces yeast species. Our data show that many strains of such wine-related non-Saccharomyces species, some of which have recently attracted significant biotechnological interest as they contribute positively to fermentation and wine character, were able to flocculate efficiently. The data also show that both flocculent and non-flocculent S. cerevisiae strains formed mixed species flocs (a process hereafter referred to as co-flocculation) with some of these non-Saccharomyces yeasts. This ability of yeast strains to impact flocculation behaviour of other species in mixed inocula has not been described previously. Further investigation into the genetic regulation of co-flocculation revealed that different FLO genes impact differently on such adhesion phenotypes, favouring adhesion with some species while excluding other species from such mixed flocs. The data therefore strongly suggest that FLO genes govern the selective association of S. cerevisiae with specific species of non-Saccharomyces yeasts, and may therefore be drivers of ecosystem organisational patterns. Our data provide, for the first time, insights into the role of the FLO gene family beyond intraspecies cellular association, and suggest a wider evolutionary role for the FLO genes. Such a role would explain the evolutionary persistence of a large multigene family of genes with apparently similar function.  相似文献   

19.
20.
The aim of this work was to study the biodiversity of yeasts isolated from the autochthonous grape variety called “Uva di Troia”, monitoring the natural diversity from the grape berries to wine during a vintage. Grapes were collected in vineyards from two different geographical areas and spontaneous alcoholic fermentations (AFs) were performed. Different restriction profiles of ITS–5.8S rDNA region, corresponding to Saccharomyces cerevisiae, Issatchenkia orientalis, Metschnikowia pulcherrima, Hanseniaspora uvarum, Candida zemplinina, Issatchenkia terricola, Kluyveromyces thermotolerans, Torulaspora delbrueckii, Metschnikowia chrysoperlae, Pichia fermentans, Hanseniaspora opuntiae and Hanseniaspora guilliermondii, were observed. The yeast occurrences varied significantly from both grape berries and grape juices, depending on the sampling location. Furthermore, samples collected at the end of AF revealed the great predominance of Saccharomyces cerevisiae, with a high intraspecific biodiversity. This is the first report on the population dynamics of ‘cultivable’ microbiota diversity of “Uva di Troia” cultivar from the grape to the corresponding wine (“Nero di Troia”), and more general for Southern Italian oenological productions, allowing us to provide the basis for an improved management of wine yeasts (with both non-Saccharomyces and Saccharomyces) for the production of typical wines with desired unique traits. A certain geographical-dependent variability has been reported, suggesting the need of local based formulation for autochthonous starter cultures, especially in the proportion of the different species/strains in the design of mixed microbial preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号