首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 387 毫秒
1.
Embryonic loss is a major problem in mammals, but there are few effective ways to prevent it. Using a porcine model, we determined effects of dietary l-arginine supplementation between days 14 and 25 of gestation on embryonic growth and survival. Gilts were checked daily for estrus with boars in the morning and bred at onset of the second estrus and 12 h later (the time of breeding = day 0 of gestation). Between days 14 and 25 of gestation, 15 gilts/treatment were housed individually and fed twice daily 1 kg of a corn- and soybean meal-based diet supplemented with 0.0, 0.4, or 0.8 % l-arginine. All diets were made isonitrogenous by addition of l-alanine. On day 25 of gestation, gilts were hysterectomized to obtain conceptuses. Compared with controls, dietary supplementation with 0.4 or 0.8 % l-arginine increased (P ≤ 0.05) arginine concentrations in maternal plasma, total volume of amniotic fluid; total amounts of arginine in allantoic and amniotic fluids; total amounts of fructose and most amino acids in amniotic fluid; placental growth; and the number of viable fetuses per litter by 2. The numbers of total fetuses, fetal weight, corpora lutea, volume of allantoic fluid, maternal circulating levels of progesterone and estrogen, or total amounts of hormones in allantoic fluid did not differ among the three treatment groups. Reproductive performance of gilts did not differ between the 0.4 and 0.8 % l-arginine groups. Thus, dietary supplementation with 0.4 or 0.8 % l-arginine between days 14 and 25 of gestation enhances embryonic/fetal survival in swine.  相似文献   

2.
Porcine circovirus type 2 (PCV2) causes reproductive failure in swine. As glutamine can enhance immune function in animals, this study was conducted with mice to test the hypothesis that dietary glutamine supplementation will improve pregnancy outcome in PCV2-infected dams. Beginning on day 0 of gestation, mice were fed a standard diet supplemented with 1.0% l-glutamine or 1.22% l-alanine (isonitrogenous control). All mice were infected with PCV2 (2000 TCID50) on day 10 of gestation. On day 17 of gestation, six mice from each group were euthanized to obtain maternal tissues and fetuses for hematology and histopathology tests. The remaining mice continued to receive their respective diets supplemented with 1.0% l-glutamine or 1.22% l-alanine through lactation. The PCV2 virus was present in maternal samples (serum and lung) of most mice in the control group but was not detected in the glutamine-supplemented mice. Dietary glutamine supplementation reduced abortion, decreased fetal deaths, and enhanced neonatal survival. The glutamine treatment also reduced concentrations of interleukin-6, while increasing concentrations of tumor necrosis factor-α and C-reactive protein, in the maternal serum of mice. Furthermore, glutamine supplementation attenuated microscopic lesions in maternal tissues (lung, spleen, and liver). Collectively, these results indicate that dietary glutamine supplementation is beneficial for ameliorating reproductive failure in virus-infected mice. The findings support the notion that gestating dams require adequate amounts of dietary glutamine for the optimal survival and growth of embryos, fetuses, and neonates, and have important implications for nutritional support of mammals (including swine and humans) during gestation and lactation.  相似文献   

3.
The aim of this study was to evaluate effects of dietary zinc and l-arginine supplementation on blood total antioxidant capacity (TAC), malondialdehyde (MDA), nitric oxide (NO), some blood chemistry parameters, and egg weights of laying quails. Three groups of Japanese quails were fed with a diet containing l-arginine (5 mg/kg), zinc (60 mg/kg), and normal basal diet (control) for 30 days. TAC, lipid peroxidation, and biochemical analysis were performed in the blood of animals. l-Arginine and zinc supplementation improved TAC and reduced MDA concentrations compared to the control (P?<?0.05). In comparison to the control, blood NO concentrations were increased by l-arginine (P?<?0.01) and zinc treatment (P?<?0.05). Both zinc (P?<?0.001) and l-arginine (P?<?0.01) supplementation significantly increased egg weight in laying quails. Some of the blood chemistry parameters were also altered by the treatment of l-arginine and zinc supplementation. No difference was found in blood albumin and creatinine levels among the groups. Blood glucose (P?=?0.833) and total protein (P?=?0.264) levels in control and l-arginine-treated groups were found to be similar. Glucose and total protein levels were decreased in zinc-supplemented animals compared to the control and l-arginine groups (P?<?0.05). No difference was found in triglyceride levels between control and zinc-applied groups (P?=?0.197). However, l-arginine treatment reduced the blood triglyceride levels compared to the control (P?<?0.05). In conclusion, l-arginine and zinc supplementation could be beneficial and effective for decreasing oxidative stress, boosting antioxidant capacity, and improving egg weight in the blood of the animals.  相似文献   

4.
Lactation is associated with elevated catabolism of branched-chain amino acids (BCAA) in mammary glands to produce glutamate, glutamine, alanine, aspartate, and asparagine. This study determined effects of metabolic fuels on the catabolism of leucine (a representative BCAA) in bovine mammary epithelial cells. Cells were incubated at 37 °C for 2 h in Krebs buffer containing 0.5 mM l-leucine and either l-[1-14C]leucine or l-[U-14C]leucine. The medium also contained 0–5 mM d-glucose, 0–2 mM l-glutamine, 0–4 mM dl-β-hydroxybutyrate, or 0–2 mM oleic acid. Rates of leucine decarboxylation were 60 % lower, but rates of α-ketoisocaproate production were 34 % higher, in the presence of 2 mM glucose than in its absence. All variables of leucine catabolism did not differ between 2 and 5 mM glucose or between 0 and 4 mM dl-β-hydroxybutyrate. Compared with 0–0.25 mM glutamine, 0.5 and 2 mM l-glutamine reduced leucine transport, transamination, and decarboxylation. In contrast, increasing the concentration of oleic acid from 0 to 2 mM dose-dependently stimulated leucine transamination, decarboxylation, and oxidation of carbons 2–6. Oleic acid also enhanced the abundance of cytosolic BCAA transaminase, while reducing the phosphorylated level (inactive state) of the E1α subunit of the mitochondrial branched-chain α-ketoacid dehydrogenase complex. Thus, hypoglycemia or ketosis in early lactation does not likely affect BCAA metabolism in mammary epithelial cells. Increasing circulating levels of BCAA and oleic acid may have great potential to increase the syntheses of glutamate, glutamine, aspartate, alanine, and asparagine by lactating mammary glands, thereby leading to enhanced production of milk for suckling neonates.  相似文献   

5.
l-asparaginase from Cladosporium sp. grown on wheat bran by SSF was purified. Enzyme appeared to be a trimer with homodimer of 37 kDa and another 47 kDa amounting to total mass of 121 kDa as estimated by SDS-PAGE and 120 kDa on gel filtration column. The optimum temperature and pH of the enzyme were 30 °C and 6.3, respectively with Vmax of 4.44 μmol/mL/min and Km of 0.1 M. Substrate specificity studies indicated that, l-asparaginase has greater affinity towards l-asparagine with substrate hydrolysis efficiency (Vmax/Km ratio) eightfold higher than that of l-glutamine. l-asparaginase activity in presence of thiols studied showed decrease in Vmax and increase in Km, indicating nonessential mode of inactivation. Among the thiols tested, β-mercaptomethanol, exerted inhibitory effect, suggesting a critical role of disulphide linkages in maintaining a suitable conformation of the enzyme. Metal ions such as Ca2+, Co2+, Cu2+, Mg2+, Na+, K+ and Zn2+ significantly affected enzyme activity whereas presence of Fe3+, Pb2+ and KI stimulated the activity. Detergents studied also enhanced l-asparaginase activity. In-vitro half-life of purified l-asparaginase in mammalian blood serum was 93.69 h. The enzyme inhibited acrylamide formation in potato chips by 96 % making it a potential candidate for food industry to reduce acrylamide content in starchy fried food commodities.  相似文献   

6.
Mutations in the tyrosine aminotransferase gene have been identified to cause tyrosinemia type II which is inherited in an autosomal recessive manner. Studies have demonstrated that an excessive production of ROS can lead to reactions with macromolecules, such as DNA, lipids, and proteins. Considering that the l-tyrosine may promote oxidative stress, the main objective of this study was to investigate the in vivo effects of l-tyrosine on DNA damage determined by the alkaline comet assay, in brain and blood of rats. In our acute protocol, Wistar rats (30 days old) were killed 1 h after a single intraperitoneal l-tyrosine injection (500 mg/kg) or saline. For chronic administration, the animals received two subcutaneous injections of l-tyrosine (500 mg/kg, 12-h intervals) or saline administered for 24 days starting at postnatal day (PD) 7 (last injection at PD 31), 12 h after the last injection, the animals were killed by decapitation. We observed that acute administration of l-tyrosine increased DNA damage frequency and damage index in cerebral cortex and blood when compared to control group. Moreover, we observed that chronic administration of l-tyrosine increased DNA damage frequency and damage index in hippocampus, striatum, cerebral cortex and blood when compared to control group. In conclusion, the present work demonstrated that DNA damage can be encountered in brain from animal models of hypertyrosinemia, DNA alterations may represent a further means to explain neurological dysfunction in this inherited metabolic disorder and to reinforce the role of oxidative stress in the pathophysiology of tyrosinemia type II.  相似文献   

7.
Yumi Takemoto 《Amino acids》2014,46(4):863-872
The endogenous sulfur-containing amino acid l-cysteine injected into the cerebrospinal fluid space of the cisterna magna increases arterial blood pressure (ABP) and heart rate (HR) in the freely moving rat. The present study examined (1) cardiovascular responses to l-cysteine microinjected into the rostral ventrolateral medulla (RVLM), where a group of neurons regulate activities of cardiovascular sympathetic neurons and (2) involvement of ionotropic excitatory amino acid (iEAA) receptors in response. In the RVLM of urethane-anesthetized rats accessed ventrally and identified with pressor responses to l-glutamate (10 mM, 34 nl), microinjections of l-cysteine increased ABP and HR dose dependently (3–100 mM, 34 nl). The cardiovascular responses to l-cysteine (30 mM) were not attenuated by a prior injection of either antagonist alone, MK801 (20 mM, 68 nl) for the NMDA type of iEAA receptors, or CNQX (2 mM) for the non-NMDA type. However, inhibition of both NMDA and non-NMDA receptors with additional prior injection of either antagonist completely blocked those responses to l-cysteine. The results indicate that l-cysteine has functional cardiovascular action in the RVLM of the anesthetized rat, and the responses to l-cysteine involve both NMDA and non-NMDA receptors albeit in a mutually exclusive parallel fashion. The findings may suggest endogenous roles of l-cysteine indirectly via iEAA receptors in the neuronal network of the RVLM for cardiovascular regulation in physiological and pathological situations.  相似文献   

8.
A linear sweep voltammetric method is used for direct simultaneous determination of l-cysteine and l-cysteine disulfide (cystine) based on carbon ionic liquid electrode. With carbon ionic liquid electrode as a high performance electrode, two oxidation peaks for l-cysteine (0.62 V) and l-cysteine disulfide (1.3 V) were observed with a significant separation of about 680 mV (vs. Ag/AgCl) in phosphate buffer solution (pH 6.0). The linear ranges were obtained as 1.0–450 and 5.0–700 μM and detection limits were estimated to be 0.298 and 4.258 μM for l-cysteine and l-cysteine disulfide, respectively. This composite electrode was applied for simultaneous determination of l-cysteine and l-cysteine disulfide in two real samples, artificial urine and nutrient broth. Satisfactory results were obtained which clearly indicate the applicability of the proposed electrode for simultaneous determination of these compounds in complex matrices.  相似文献   

9.
l-Theanine is a unique amino acid present in green tea. It elicits umami taste and has a considerable effect on tea taste and quality. We investigated l-theanine activity on the T1R1 + T1R3 umami taste receptor. l-Theanine activated T1R1 + T1R3-expressing cells and showed a synergistic response with inosine 5′-monophosphate. The site-directed mutagenesis analysis revealed that l-theanine binds to l-amino acid binding site in the Venus flytrap domain of T1R1. This study shows that l-theanine elicits an umami taste via T1R1 + T1R3.  相似文献   

10.
l-DOPA (3,4-dihydroxyphenyl-l-alanine) is the most widely used drug for treatment of Parkinson’s disease. In this study Yarrowia lipolytica-NCIM 3472 biomass was used for transformation of l-tyrosine to l-DOPA. The process parameters were optimized using response surface methodology (RSM). The optimum values of the tested variables for the production of l-DOPA were: pH 7.31, temperature 42.9 °C, 2.31 g l?1 cell mass and 1.488 g l?1 l-tyrosine. The highest yield obtained with these optimum parameters along with recycling of the cells was 4.091 g l?1. This optimization of process parameters using RSM resulted in 4.609-fold increase in the l-DOPA production. The statistical analysis showed that the model was significant. Also coefficient of determination (R2) was 0.9758, indicating a good agreement between the experimental and predicted values of l-DOPA production. The highest tyrosinase activity observed was 7,028 U mg?1 tyrosine. l-DOPA production was confirmed by HPTLC and HPLC analysis. Thus, RSM approach effectively enhanced the potential of Y. lipolytica-NCIM 3472 as an alternative source to produce l-DOPA.  相似文献   

11.
A recombinant l-fucose isomerase from Caldicellulosiruptor saccharolyticus was purified as a single 68 kDa band with an activity of 76 U mg?1. The molecular mass of the native enzyme was 204 kDa as a trimer. The maximum activity for l-fucose isomerization was at pH 7 and 75°C in the presence of 1 mM Mn2+. Its half-life at 70°C was 6.1 h. For aldose substrates, the enzyme displayed activity in decreasing order for l-fucose, with a k cat of 11,910 min?1 and a K m of 140 mM, d-arabinose, d-altrose, and l-galactose. These aldoses were converted to the ketoses l-fuculose, d-ribulose, d-psicose, and l-tagatose, respectively, with 24, 24, 85, 55% conversion yields after 3 h.  相似文献   

12.
Reduced nitric oxide availability and a heterogeneous pattern of nitric oxide synthase activity in some tissues have been reported in hypothyroidism. This study aimed at determining the effects of oral nitrate and l-arginine administration on serum, heart, and aorta nitric oxide metabolite concentrations in fetal hypothyroid rats. In an experimental study, pregnant Wistar rats were administrated tap water or 0.02 % of 6-propyl-2-thiouracil in drinking water during pregnancy and their male pups were followed (n?=?8/group). In adult progeny, serum, heart, and aorta nitric oxide metabolite concentrations were measured by the Griess method after 1-week administration of sodium nitrate (500 mg/L) or l-arginine (2 %) in drinking water. Serum thyroid hormone and thyroid-stimulating hormone levels were also measured. Compared to controls, fetal hypothyroid progeny had significantly lower nitric oxide metabolite concentrations in heart (0.32?±?0.07 vs. 0.90?±?0.14 nmol/mg protein, p?=?0.004) and aorta (2.98±0.56 vs. 6.15±0.74 nmol/mg protein, p?=?0.011) tissues. Nitrate therapy restored heart nitric oxide metabolite levels decreased by fetal hypothyroidism, while l-arginine administration further decreased aorta nitric oxide metabolite levels. Sodium nitrate increased and l-arginine decreased serum nitric oxide metabolite levels in both control and fetal hypothyroid animals. In conclusion, nitrate therapy restores decreased heart nitric oxide metabolite levels, whereas l-arginine decreases aorta nitric oxide metabolite levels even further in fetal hypothyroid rats, findings relevant to the cardiovascular consequences of congenital hypothyroidism in adulthood.  相似文献   

13.
Cystinuria is an autosomal recessive disease that causes l-cystine precipitation in urine and nephrolithiasis. Disease severity is highly variable; it is known, however, that cystinuria has a more severe course in males. The aim of this study was to compare l-cystine metastability in first-morning urine collected from 24 normal female and 24 normal male subjects. Samples were buffered at pH 5 and loaded with l-cystine (0.4 and 4 mM final concentration) to calculate the amount remaining in solution after overnight incubation at 4 °C; results were expressed as Z scores reflecting the l-cystine solubility in each sample. In addition, metabolomic analyses were performed to identify candidate compounds that influence l-cystine solubility. l-cystine solubility Z score was +0.44 ± 1.1 and ?0.44 ± 0.70 in female and male samples, respectively (p < 0.001). Further analyses showed that the l-cystine solubility was independent from urine concentration but was significantly associated with low urinary excretion of inosine (p = 0.010), vanillylmandelic acid (VMA) (p = 0.015), adenosine (p = 0.029), and guanosine (p = 0.032). In vitro l-cystine precipitation assays confirmed that these molecules induce higher rates of l-cystine precipitation in comparison with their corresponding dideoxy molecules, used as controls. In silico computational and modeling analyses confirmed higher binding energy of these compounds. These data indicate that urinary excretion of nucleosides and VMA may represent important factors that modulate l-cystine solubility and may represent new targets for therapy in cystinuria.  相似文献   

14.
The d,d-transpeptidase activity of Penicillin Binding Proteins (PBPs) is essential to maintain cell wall integrity. PBPs catalyze the final step of the peptidoglycan synthesis by forming 4 → 3 cross-links between two peptide stems. Recently, a novel β-lactam resistance mechanism involving l,d-transpeptidases has been identified in Enterococcus faecium and Mycobacterium tuberculosis. In this resistance pathway, the classical 4 → 3 cross-links are replaced by 3 → 3 cross-links, whose formation are catalyzed by the l,d-transpeptidases. To date, only one class of the entire β-lactam family, the carbapenems, is able to inhibit the l,d-transpeptidase activity. Nevertheless, the specificity of this inactivation is still not understood. Hence, the study of this new transpeptidase family is of considerable interest in order to understand the mechanism of the l,d-transpeptidases inhibition by carbapenems. In this context, we present herein the backbone and side-chain 1H, 15N and 13C NMR assignment of the l,d-transpeptidase from Bacillus subtilis (LdtBs) in the apo and in the acylated form with a carbapenem, the imipenem.  相似文献   

15.
Nickel sulfate stimulates inducible nitric oxide synthase (i-NOS) and increases serum nitric oxide concentration by overproduction of reactive nitrogen species due to nitrosative stress. The present study was undertaken to assess possible protective role of l-ascorbic acid as an antioxidant against nickel induced pulmonary nitrosative stress in male albino rats. We studied the effect of the simultaneous treatment with l-ascorbic acid (50 mg/100 g b. wt.; orally) and nickel sulfate (2.0 mg/100 g b. wt.; i.p.) on nitric oxide synthesis by quantitative evaluation of serum i-NOS activities, serum and lung nitric oxide, l-ascorbic acid and protein concentrations of Wister strain male albino rats. We have further studied histopathological changes in lung tissue after nickel sulfate treatment along with simultaneous exposure of l-ascorbic acid. Nickel sulfate treatment significantly increased the serum i-NOS activity, serum and pulmonary nitric oxide concentration and decreased body weight, pulmonary somatic index, serum and lung l-ascorbic acid and protein concentration as compared to their respective controls. Histopathological changes induced by nickel sulfate showed loss of normal alveolar architecture, inflammation of bronchioles, infiltration of inflammatory cells and patchy congestion of alveolar blood vessels. The simultaneous administration of l-ascorbic acid and nickel sulfate significantly improved all the above biochemical parameters along with histopathology of lung tissues of rats receiving nickel sulfate alone. The study clearly showed a protective role of l-ascorbic acid against nickel induced nitrosative stress in lung tissues.  相似文献   

16.
A recombinant arginase was generated for a whole-cell biotransformation system to convert l-arginine to l-ornithine in Escherichia coli. The gene ARG1 coding arginase from Bos taurus liver was synthesized and expressed in E. coli BL21 (DE3) via pETDuet-1. The recombinant arginase was used to catalyze l-arginine to l-ornithine and urea. The reaction was optimal at pH 9.5 and 37 °C. Manganese (10?5 M) and Emulsifier OP-10 [0.033 % (v/v)] could promote arginase activity. In a scale up study, l-arginine conversion rate reached 98 % with a final concentration of 111.52 g l-ornithine/l.  相似文献   

17.
During l-glutamate production, phosphoenolpyruvate carboxylase and pyruvate carboxylase (PCx) play important roles in supplying oxaloacetate to the tricarboxylic acid cycle. To explore the significance of PCx for l-glutamate overproduction, the pyc gene encoding PCx was amplified in Corynebacterium glutamicum GDK-9 triggered by biotin limitation and CN1021 triggered by a temperature shock, respectively. In the fed-batch cultures, GDK-9pXMJ19pyc exhibited 7.4 % lower l-alanine excretion and no improved l-glutamate production. In contrast, CN1021pXMJ19pyc finally exhibited 13 % lower l-alanine excretion and identical l-glutamate production, however, 8.5 % higher l-glutamate production was detected during a short period of the fermentation. It was indicated that pyc overexpression in l-glutamate producer strains, especially CN1021, increased the supply of oxaloacetate for l-glutamate synthesis and decreased byproduct excretion at the pyruvate node.  相似文献   

18.
l-Carnitine is a naturally occurring substance required in mammalian energy metabolism that functions by facilitating long-chain fatty acid entry into cellular mitochondria, thereby delivering substrate for oxidation and subsequent energy production. It has been purposed that l-carnitine may improve and preserve cognitive performance, and may lead to better cognitive aging through the life span, and several controlled human clinical trials with l-carnitine support the hypothesis that this substance has the ability to improve cognitive function. We further hypothesized that, since l-carnitine is an important co-factor of mammalian mitochondrial energy metabolism, acute administration of l-carnitine to human tissue culture cells should result in detectable increases in mitochondrial function. Cultures of SH-SY-5Y human neuroblastoma and 1321N1 human astrocytoma cells grown in 96-well cell culture plates were acutely administered l-carnitine hydrochloride, and then, mitochondrial function was assayed using the colorimetric 2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxyanilide inner salt cell assay kit in a VERSAmax tunable microplate reader. Significant increases in mitochondrial function were observed when human neuroblastoma or human astrocytoma cells were exposed to 100 nM (20 μg l-carnitine hydrochloride/L) to 100 μM (20 mg l-carnitine hydrochloride/L) concentrations of l-carnitine hydrochloride in comparison to unexposed cells, whereas no significant positive effects were observed at lower or higher concentrations of l-carnitine hydrochloride. The results of the present study provide insights for how l-carnitine therapy may significantly improve human neuronal function, but we recommend that future studies further explore different derivatives of l-carnitine compounds in different in vitro cell-based systems using different markers of mitochondrial function.  相似文献   

19.
Four potential dehydrogenases identified through literature and bioinformatic searches were tested for l-arabonate production from l-arabinose in the yeast Saccharomyces cerevisiae. The most efficient enzyme, annotated as a d-galactose 1-dehydrogenase from the pea root nodule bacterium Rhizobium leguminosarum bv. trifolii, was purified from S. cerevisiae as a homodimeric protein and characterised. We named the enzyme as a l-arabinose/d-galactose 1-dehydrogenase (EC 1.1.1.-), Rl AraDH. It belongs to the Gfo/Idh/MocA protein family, prefers NADP+ but uses also NAD+ as a cofactor, and showed highest catalytic efficiency (k cat/K m) towards l-arabinose, d-galactose and d-fucose. Based on nuclear magnetic resonance (NMR) and modelling studies, the enzyme prefers the α-pyranose form of l-arabinose, and the stable oxidation product detected is l-arabino-1,4-lactone which can, however, open slowly at neutral pH to a linear l-arabonate form. The pH optimum for the enzyme was pH 9, but use of a yeast-in-vivo-like buffer at pH 6.8 indicated that good catalytic efficiency could still be expected in vivo. Expression of the Rl AraDH dehydrogenase in S. cerevisiae, together with the galactose permease Gal2 for l-arabinose uptake, resulted in production of 18 g of l-arabonate per litre, at a rate of 248 mg of l-arabonate per litre per hour, with 86 % of the provided l-arabinose converted to l-arabonate. Expression of a lactonase-encoding gene from Caulobacter crescentus was not necessary for l-arabonate production in yeast.  相似文献   

20.
Enantiomerically pure l-homophenylalanine (l-HPA) is a key building block for the synthesis of angiotensin-converting enzyme inhibitors and other chiral pharmaceuticals. Among the processes developed for the l-HPA production, biocatalytic synthesis employing phenylalanine dehydrogenase has been proven as the most promising route. However, similar to other dehydrogenase-catalyzed reactions, the viability of this process is markedly affected by insufficient substrate loading and high costs of the indispensable cofactors. In the present work, a highly efficient and economic biocatalytic process for l-HPA was established by coupling genetically modified phenylalanine dehydrogenase and formate dehydrogenase. Combination of fed-batch substrate addition and a continuous product removal greatly increased substrate loading and cofactor utilization. After systemic optimization, 40 g (0.22 mol) of keto acid substrate was transformed to l-HPA within 24 h and a total of 0.2 mM NAD+ was reused effectively in eight cycles of fed-batch operation, consequently giving an average substrate concentration of 510 mM and a productivity of 84.1 g l?1 day?1 for l-HPA. The present study provides an efficient and feasible enzymatic process for the production of l-HPA and a general solution for the increase of substrate loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号