首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Suaeda fruticosa Forssk is a leaf succulent obligate halophyte that produces numerous seeds under saline conditions. Seeds are a good source of high quality edible oil and leaves are capable of removing substantial amount of salt from the saline soil besides many other economic usages. Little is known about the biochemical basis of salt tolerance in this species. We studied some biochemical responses of S. fruticosa to different exogenous treatments under non-saline (0 mM), moderate (300 mM) or high (600 mM) NaCl levels. Eight-week-old seedlings were sprayed twice a week with distilled water, hydrogen peroxide (H2O2, 100 μM), glycine betaine (GB, 10 mM), or ascorbic acid (AsA, 20 mM) for 30 days. At moderate (300 mM) NaCl, leaf Na+, Ca2+ and osmolality increased, along with unchanged ROS and antioxidant enzyme activities, possibly causing a better plant growth. Plants grew slowly at 600 mM NaCl to avoid leaf Na+ buildup relative to those at 300 mM NaCl. Exogenous application of distilled water and H2O2 improved ROS scavenging mechanisms, although growth was unaffected. ASA and GB alleviated salt-induced growth inhibition at 600 mM NaCl through enhancing the antioxidant defense system and osmotic and ion homeostasis, respectively.  相似文献   

2.
The cation‐chloride co‐transporters are important regulators of the cellular Cl homeostasis. Among them the Na+‐K+?2Cl? co‐transporter (NKCC1) is responsible for intracellular chloride accumulation in most immature brain structures, whereas the K+‐Cl? co‐transporter (KCC2) extrudes chloride from mature neurons, ensuring chloride‐mediated inhibitory effects of GABA/glycine. We have shown that both KCC2 and NKCC1 are expressed at early embryonic stages (E11.5) in the ventral spinal cord (SC). The mechanisms by which KCC2 is prematurely expressed are unknown. In this study, we found that chronically blocking glycine receptors (GlyR) by strychnine led to a loss of KCC2 expression, without affecting NKCC1 level. This effect was not dependent on the firing of Na+ action potentials but was mimicked by a Ca2+‐dependent PKC blocker. Blocking the vesicular release of neurotransmitters did not impinge on strychnine effect whereas blocking volume‐sensitive outwardly rectifying (VSOR) chloride channels reproduced the GlyR blockade, suggesting that KCC2 is controlled by a glycine release from progenitor radial cells in immature ventral spinal networks. Finally, we showed that the strychnine treatment prevented the maturation of rhythmic spontaneous activity. Thereby, the GlyR‐activation is a necessary developmental process for the expression of functional spinal motor networks. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 764–779, 2016  相似文献   

3.
Microglia, the resident macrophages of the central nervous system (CNS), are activated by a myriad of signaling molecules including ATP, an excitatory neurotransmitter and neuron-glial signal with both neuroprotective and neurotoxic effects. The “microglial dysfunction hypothesis” of neurodegeneration posits that overactivated microglia have a reduced neuroprotective capacity and instead promote neurotoxicity. The chemokine fractalkine (FKN), one of only two chemokines constitutively expressed in the CNS, is neuroprotective in several in vivo and in vitro models of CNS pathology. It is possible, but not yet demonstrated, that high ATP concentrations induce microglial overactivation and apoptosis while FKN reduces ATP-mediated microglial overactivation and cytotoxicity. In the current study, we examined the effects of FKN on ATP-induced microglial apoptosis and the underlying mechanisms in the BV-2 microglial cell line. Exposure to ATP induced a dose-dependent reduction in BV-2 cell viability. Prolonged exposure to a high ATP concentration (3 mM for 2 h) transformed ramified (quiescent) BV-2 cells to the amoebic state, induced apoptosis, and reduced Akt phosphorylation. Pretreatment with FKN significantly inhibited ATP-induced microglial apoptosis and transformed amoebic microglia to ramified quiescent cells. These protective effects were blocked by chemical inhibition of PI3 K, strongly implicating the PI3 K/Akt signaling pathway in FKN-mediated protection of BV-2 cells from cytotoxic ATP concentrations. Prevention of ATP-induced microglial overactivation and apoptosis may enhance the neuroprotective capacity of these cells against both acute insults and chronic CNS diseases.  相似文献   

4.

Background and aims

Salinity is an increasing problem for agricultural production worldwide. Understanding how Na+ enters plants is important if reducing Na+ influx, a key component of the regulation of Na+ accumulation in plants and improving salt tolerance of crop plants, is to be achieved. Our previous work indicated that two distinct low-affinity Na+ uptake pathways exist in the halophyte Suaeda maritima. Here, we report the external NaCl concentration at which uptake switches from pathway 1 to pathway 2 and the kinetics of the interaction between external K+ concentration and Na+ uptake and accumulation in S. maritima in order to determine the roles of K+ transporters or channels in low-affinity Na+ uptake.

Methods

Na+ influx, Na+ and K+ accumulations in S. maritima exposed to various concentrations of NaCl (0–200 mM) were analyzed in the absence and presence of the inhibitors TEA and Ba+ (5 mM TEA or 3 mM Ba2+) or KCl (0, 10 or 50 mM).

Results

Our earlier proposal was confirmed and extended that there are two distinct low-affinity Na+ uptake pathways in S. maritima: pathway 1 might be mediated by a HKT-type transporter under low salinity conditions and pathway 2 by an AKT1-type channel or a KUP/HAK/KT type transporter under high salinity conditions. The external NaCl concentration at which two distinct low-affinity Na+ uptake switches from pathway 1 to pathway 2, the ‘turning point’, is between 90 and 95 mM. Over a short period (12 h) of Na+ and K+ treatments, a low concentration of K+ (10 mM) facilitated Na+ uptake by S. maritima under high salinity (100–200 mM NaCl), whether or not the plants had been subjected to a longer (3 d) period of K+ starvation. The kinetics suggests that low concentration of K+ (10 mM) might activate AKT1-type channels or KUP/HAK/KT-type transporters under high salinity (100–200 mM NaCl).

Conclusions

The turning-point of external NaCl concentrations for the two low-affinity Na+ uptake pathways in Suaeda maritima is between 90 and 95 mM. A low concentration of K+ (10 mM) might activate AKT1 or KUP/HAK/KT and facilitate Na+ uptake under high salinity (100–200 mM NaCl). The kinetics of K+ on Na+ uptake and accumulation in S maritima are also consistent with there being two low-affinity Na+ uptake pathways.  相似文献   

5.
Salinity tolerance of sugar beet (Beta vulgaris L.) cultivars in terms of growth, proline and soluble sugars concentrations, and Na+/K+ and Na+/Ca2+ ratios were analyzed in this study. Three-week-old seedlings of three sugar beet cultivars, ‘Gantang7’, ‘SD13829’, and ‘ST21916’, differing in salinity tolerance, were treated with 0, 50, 100, and 200 mM NaCl. Plant shoots and roots were harvested at 7 days after treatment and subjected to analysis. Low concentration of NaCl (50 mM) enhanced fresh and dry weights of shoot and root in ‘Gantang7’, whereas high one (200 mM) reduced growth in all cultivars and the less reduction was observed in ‘ST21916’. Shoot proline was strongly induced by salinity stress in both ‘Gantang7’ and ‘SD13829’, while it remained unchanged in ‘ST21916’. The addition of 50 mM NaCl significantly increased shoot soluble sugars concentrations in ‘Gantang7’ while it had no significant effects in the other two cultivars. ‘Gantang7’ also showed a higher level of root soluble sugars concentration as compared to the other two cultivars. At 50 mM NaCl, the lower shoot Na+ concentration, and the higher shoot K+ and root Ca2+ concentration in ‘Gantang7’ resulted in the lower shoot Na+/K+ and root Na+/Ca2+ ratio. However, ‘SD13829’ maintained a lower Na+/K+ ratio in both shoot and root when subjected to 200 mM NaCl treatment. According to comprehensive evaluation on salinity tolerance, it is clear that ‘Gantang7’ is more tolerant to salinity than the other two cultivars. Therefore, it is suggested that ‘Gantang7’ should be more suitable for cultivating in the arid and semi-arid irrigated regions.  相似文献   

6.
Four glutamate residues residing at corresponding positions within the four conserved membrane-spanning repeats of L-type Ca2+ channels are important structural determinants for the passage of Ca2+ across the selectivity filter. Mutation of the critical glutamate in Repeat III in the a1S subunit of the skeletal L-type channel (Cav1.1) to lysine virtually eliminates passage of Ca2+ during step depolarizations. In this study, we examined the ability of this mutant Cav1.1 channel (SkEIIIK) to conduct inward Na+ current. When 150 mM Na+ was present as the sole monovalent cation in the bath solution, dysgenic (Cav1.1 null) myotubes expressing SkEIIIK displayed slowly-activating, non-inactivating, nifedipine-sensitive inward currents with a reversal potential (45.6 ± 2.5 mV) near that expected for Na+. Ca2+ block of SkEIIIK-mediated Na+ current was revealed by the substantial enhancement of Na+ current amplitude after reduction of Ca2+ in the external recording solution from 10 mM to near physiological 1 mM. Inward SkEIIIK-mediated currents were potentiated by either ±Bay K 8644 (10 mM) or 200-ms depolarizing prepulses to +90 mV. In contrast, outward monovalent currents were reduced by ±Bay K 8644 and were unaffected by strong depolarization, indicating a preferential potentiation of inward Na+ currents through the mutant Cav1.1 channel. Taken together, our results show that SkEIIIK functions as a non-inactivating, junctionally-targeted Na+ channel when Na+ is the sole monvalent cation present and urge caution when interpreting the impact of mutations designed to ablate Ca2+ permeability mediated by CaV channels on physiological processes that extend beyond channel gating and permeability.  相似文献   

7.
Betaine uptake is induced by hypertonic stress in a placental trophoblast cell line, and involvement of amino acid transport system A was proposed. Here, we aimed to identify the subtype(s) of system A that mediates hypertonicity-induced betaine uptake. Measurement of [14C]betaine uptake by HEK293 cells transiently transfected with human or rat sodium-coupled neutral amino acid transporters (SNATs), SNAT1, SNAT2 and SNAT4 revealed that only human and rat SNAT2 have betaine uptake activity. The Michaelis constants (Km) of betaine uptake by human and rat SNAT2 were estimated to be 5.3 mM and 4.6 mM, respectively. Betaine exclusively inhibited the uptake activity of SNAT2 among the rat system A subtypes. We found that rat SNAT1, SNAT2 and SNAT4 were expressed at the mRNA level under isotonic conditions, while expression of SNAT2 and SNAT4 was induced by hypertonicity in TR-TBT 18d-1 cells. Western blot analyses revealed that SNAT2 expression on plasma membrane of TR-TBT 18d-1 cells was more potently induced by hypertonicity than that in total cell lysate. Immunocytochemistry confirmed the induction of SNAT2 expression in TR-TBT 18d-1 cells exposed to hypertonic conditions and indicated that SNAT2 was localized on the plasma membrane in these cells. Our results indicate that SNAT2 transports betaine, and that tonicity-sensitive SNAT2 expression may be involved in regulation of betaine concentration in placental trophoblasts.  相似文献   

8.
Ginkgo suspension cells were used to investigate the mechanism that governs the shift between primary and secondary metabolism under NaCl elicitation. The production of three flavonol glycosides, chlorophyll fluorescence, ion content, the antioxidant system, and the cellular ultrastructure in the presence of NaCl doses from 5 to 175 mM were examined. At low salt doses (5–50 mM), cell growth and flavonol glycosides accumulation were stimulated without damaging cell structure or inducing oxidative stress by maintaining high K+ and chlorophyll content. At moderate salt doses (75–125 mM), the cells could withstand the salt stress without an impact on survival by changing internal cellular structure, maintaining high levels of K+ and Ca2+ and increasing anti-oxidative enzyme activities rather than flavonol glycosides to counteract the inhibition of the photosystem II, the accumulation of Na+ and hydrogen peroxide (H2O2) in the cells. This allowed cells to divert their metabolism from growth to defense-related pathways and tolerate NaCl stress. At higher salinity (150–175 mM), the cellular structure was damaged, and the high Na+ and low K+ content led to osmotic stress, and therefore, the stimulation of peroxidase (POD) and catalase (CAT) was not enough to cope with high H2O2 accumulation. The high production of flavonol glycosides may be a response of elicitation stimulation to serious damage at 175 mM NaCl. In conclusion, the use of 175 mM NaCl may be desirable for the induction of flavonol glycoside production in Ginkgo suspension cells.  相似文献   

9.
The divalent cation Zn2+ has been shown to regulate inhibitory neurotransmission in the mammalian CNS by affecting the activation of the strychnine-sensitive glycine receptor (GlyR). In spinal neurons and cells expressing recombinant GlyRs, low micromolar (10 µM) have an inhibitory effect. Mutational studies have localized the Zn2+ binding sites mediating allosteric potentiation and inhibition of GlyRs in distinct regions of the N-terminal extracellular domain of the GlyR α-subunits. Here, we examined the ZZn2+ sensitivity of different mutations within the agonist binding site of the homomeric α1-subunit GlyR upon heterologous expression in Xenopus oocytes. This revealed that 6 substitutions within the ligand-binding pocket result in a total loss of Zn2+ inhibition. Furthermore, substitution of the positively charged residues arginine 65 and arginine 131 by alanine (α1R65A, α1R131A), or of the aromatic residue phenylalanine 207 by histidine (α1F207H), converted the α1 GlyR into a chloride channel that was activated by Zn2+ alone. Dose-response analysis of the α1F207H GlyR disclosed an EC50 value of 1.2 µM for Zn2+ activation; concomitantly the apparent glycine affinity was 1000-fold reduced. Thus, single point mutations within the agonist-binding site of the α1 subunit convert the inhibitory GlyR from a glycine-gated into a selectively Zn2+-activated chloride channel. This might be exploited for the design of metal-specific biosensors by modeling-assisted mutagenesis.  相似文献   

10.
In this study, the effect of glycine receptor (GlyR) α3 alternative RNA splicing on the distribution of receptors in the membrane of human embryonic kidney 293 cells is investigated using optical super-resolution microscopy. Direct stochastic optical reconstruction microscopy is used to image both α3K and α3L splice variants individually and together using single- and dual-color imaging. Pair correlation analysis is used to extract quantitative measures from the resulting images. Autocorrelation analysis of the individually expressed variants reveals clustering of both variants, yet with differing properties. The cluster size is increased for α3L compared to α3K (mean radius 92 ± 4 and 56 ± 3 nm, respectively), yet an even bigger difference is found in the cluster density (9,870 ± 1,433 and 1,747 ± 200 μm?2, respectively). Furthermore, cross-correlation analysis revealed that upon co-expression, clusters colocalize on the same spatial scales as for individually expressed receptors (mean co-cluster radius 94 ± 6 nm). These results demonstrate that RNA splicing determines GlyR α3 membrane distribution, which has consequences for neuronal GlyR physiology and function.  相似文献   

11.
Carthamus tinctorius L., rich in antioxidant compounds, is a herbal medicine. Biochemical mechanisms of adaptation to salinity stress in safflower are still poorly understood at the cellular level. For this purpose, callus cultures of four different genotypes of safflower were used in this study to evaluate changes in their biochemical (ionic content, proline, and glycine betaine), total phenolics content (TPC), total flavonoids content (TFD), antioxidant responses (2,2-diphenyl-1-picrylhydrazyl: DPPH assay and carotenoid content), and lipid peroxidation (malon dialdehyde content: MDA) under salinity stress. The calluses derived from hypocotyls were exposed to in vitro salt stress at different concentrations of sodium chloride (0, 100, 200, and 300 mM). A reducing trend was observed in K+ and carotenoid reserves of the calluses with increasing NaCl concentration while an increasing trend was observed in Na+ content, proline, MDA, TPC, TFD, and DPPH activity under the same conditions. Callus glycine betaine content was found to decrease in the medium containing 100 mM NaCl but increased beyond this concentration up to 300 mM NaCl. Positive and significant correlations were recognized between DPPH and total phenolics as well as DPPH and total flavonoid contents, demonstrating that phenolics are the main contributors to the potential antioxidant activity of safflower at the cellular level. Overall, the salt-tolerant genotypes of Mex.2-137 and Mex.2-138 were found capable of being processed for the production of secondary metabolites via NaCl elicitation.  相似文献   

12.
The purpose of this study was to identify the uptake mechanism of γ-aminobutyric acid (GABA) via taurine transporter (Slc6a6/TauT) and its relationship with GABA transport at the inner BRB. Rat Slc6a6/TauT-transfected HeLa cells exhibited Na+-, Cl-, and concentration-dependent [3H]GABA uptake with a Km of 1.5 mM. Taurine, β-alanine, and GABA markedly inhibited Slc6a6/TauT-mediated uptake of [3H]GABA. The uptake of [3H]GABA by a conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB2) was Na+-, Cl-, and concentration-dependent with a Km of 2.0 mM. This process was more potently inhibited by substrates of Slc6a6/TauT, taurine and β-alanine, than those of GABA transporters, GABA and betaine. In the presence of taurine, there was competitive inhibition with a Ki of 74 μM. [3H]Taurine also exhibited competitive inhibition with a Ki of 1.8 mM in the presence of GABA. In conclusion, rat Slc6a6/TauT has the ability to use GABA as a substrate and Slc6a6/TauT-mediated GABA transport appears to be present at the inner BRB.  相似文献   

13.
Growth, osmotic adjustment, antioxidant enzyme defense and the principle medicinal component bacoside A were studied in the in vitro raised shoot cultures of Bacopa monnieri, a known medicinal plant, under different concentrations of NaCl [0.0 (control), 50, 100, 150 or 200 mM]. A sharp increase in Na+ content was observed at 50 mM NaCl level and it was about 6.4-fold higher when compared with control. While Na+ content increased in the shoots with increasing levels of NaCl in the medium, both K+ and Ca2+ concentrations decreased. Significant reduction was observed in shoot number per culture; shoot length, fresh weight (FW), dry weight (DW) and tissue water content (TWC) when shoots were exposed to increasing NaCl concentrations (50–200 mM) as compared with the control. Decrease in TWC was not significant at higher NaCl level (150 and 200 mM). At 200 mM NaCl, growth of shoots was adversely affected and microshoots died under prolonged stress. Minimum damage to the membrane as assessed by malondialdehyde (MDA) content was noticed in the controls in contrast to sharp increase of it in NaCl-stressed shoots. Higher amounts of free proline, glycinebetaine and total soluble sugars (TSS) accumulated in NaCl-stressed shoots indicating that it is a glycinebetaine accumulator. About 2.11-fold higher H2O2 content was observed at 50 mM NaCl as compared with control and it reached up to 7.1-folds more at 200 mM NaCl. Antioxidant enzyme activities (superoxide dismutase, catalase, ascorbate peroxidase and guaiacol peroxidase) also increased with a rise in NaCl level. Increase in bacoside A, a triterpene saponin content was observed only up to 100 mM NaCl level. Higher salt concentrations inhibited the accumulation of bacoside A. It appears from the data that accumulation of osmolytes, ions and elevated activities of antioxidant enzymes play an important role in osmotic adjustment in shoot cultures of Bacopa under salt stress.  相似文献   

14.
The uptake of glycine in rabbit renal brush border membrane vesicles was shown to consist of glycine transport into an intravesicular space. An Na+ electrochemical gradient (extravesicular>intravesicular) stimulated the initial rate of glycine uptake and effected a transient accumulation of intravesicular glycine above the steady-state value. This stimulation could not be induced by the imposition of a K+, Li+ or choline+ gradient and was enhanced as extravesicular Na+ was increased from 10 mM to 100 mM. Dissipation of the Na+ gradient by the ionophore gramicidin D resulted in diminished Na+-stimulated glycine uptake. Na+-stimulated uptake of glycine was electrogenic. Substrate-velocity analysis of Na+-dependent glycine uptake over the range of amino acid concentrations from 25 μM to 10 mM demonstrated a single saturable transport system with apparent Km = 996 μM and Vmax = 348 pmol glycine/mg protein per min. Inhibition observed when the Na+-dependent uptake of 25 μM glycine was inhibited by 5 mM extravesicular test amino acid segregated dibasic amino acids, which did not inhibit glycine uptake, from all other amino acid groups. The amino acids d-alanine, d-glutamic acid, and d-proline inhibited similarly to their l counterparts. Accelerative exchange of extravesicular [3H]glycine was demonstrated when brush border vesicles were preloaded with glycine, but not when they were preloaded with l-alanine, l-glutamic acid, or with l-proline. It is concluded that a single transport system exists at the level of the rabbit renal brush border membrane that functions to reabsorb glycine independently from other groups of amino acids.  相似文献   

15.
Salinity is a widespread adverse environmental problem globally, and significantly limits crop production. In this study, the possibility of enhancing salinity stress tolerance of Swiss chard (Beta vulgaris L. var. cicla) by 5-aminolevulinic acid (ALA) foliar application was investigated. The Swiss chard plants were grown in hydroponic culture. Twelve-week-old uniform seedlings were treated by 0 and 40 mM saline regimes generated by the mixture of sodium chloride and sodium sulfate (molar ratio NaCl:Na2SO4 = 9:1), and were foliar-sprayed with 0 and 60 μM L?1 ALA (every 3 days) for 6 days; then the plants were treated for another 7 days (every 3 day) with increased concentration of salinity and ALA, 80 mM and 120 μM L?1. Salinity without ALA application significantly decreased plant growth [43 % in shoot dry weight (DW), 21 % in root DW, 24 % in relative growth rate (RGR), 43 % in leaf area (LA)], water uptake [20.8 % in relative water content (RWC), 47.9 % in osmotic potential (OP)], chlorophyll (Chl) a content (10 %), Pn (36 %), Gs (72 %) and Tr (59 %) compared with those in control plants; however, under saline conditions, ALA foliar application improved plant growth (49.7 % in shoot DW, 27 % in root DW, 42.3 % in RGR, 72.1 % in LA) and increased RWC (12 %), Chl a content (10 %) and photosynthetic parameters (27 % in Pn, 28 % in Gs, 14 % in Tr) compared with those in untreated plants. Salinity significantly increased Na+ content, resulting in the reduction of Mg2+ and K+ contents. ALA foliar application alleviated ionic toxicity through the reduction of Na+ content and Na+/K+ ratio. On the other hand, it increased total nitrogen and glycine betaine (GB) content. ALA foliar application slightly reduced malondialdehyde (MDA) content, indicating that ALA has the potential to alleviate oxidative stress in salinity-stressed Swiss chard.  相似文献   

16.
17.
Thermopsis turcica is distributed naturally in saline soils. Interestingly, how T. turcica can live in harsh salt conditions is unknown. To study its defense responses under salinity, T. turcica was grown in a medium containing 100 and 200 mM NaCl for 7 and 14 days. Physiological parameters, ion contents, reactive oxygen species accumulation, activities of antioxidant enzymes/isozymes, NADPH oxidase enzyme/isozyme, lipid peroxidation (TBARS) and osmolyte contents were investigated. Stress caused a rapid decline in relative growth rate, relative water content and chlorophyll fluorescence (F v/F m) under both NaCl treatments. These traits were more suppressed at 200 mM NaCl. The decline in osmotic potential (Ψ Π) with salinity increased the gradient for water flux into the cell and assisted in turgor maintenance. The increased membrane permeability under stress caused the entrance of excess Na+ and K+ into the cell. Stress decreased superoxide dismutase, catalase and peroxidase after 14 days of growth in 200 mM NaCl, whereas glutathione reductase (GR) increased throughout the experiment. While ascorbate peroxidase (APX) increased by 44 % at 7 days, it decreased after 14 days exposure to 200 mM NaCl. 200 mM NaCl caused the highest increase in TBARS at 14 days, indicating a decrease in OH· scavenging activity. Increasing concentrations of salinity caused an increase in glycine betaine (GB) and choline (Cho), though an increase in proline was only observed at 200 mM NaCl for 14 days. Briefly, H2O2 was more efficiently eliminated in 100 mM-treated plants by the ascorbate–glutathione cycle in which APX acts a strong catalyst together with GR. Also, Cho and GB help to maintain osmotic adjustment and cytoplasmic function.  相似文献   

18.
The role of cotyledons in seedling establishment of the euhalophyte Suaeda physophora under non-saline and saline conditions (addition of 1 mM or 400 mM NaCl) was investigated. Survival and fresh and dry weights were greater for seedlings grown in the light (12-h light/12-h dark) than in the dark (24-h dark). The shading of cotyledons tended to decrease shoot height, shoot organic dry weight, number of leaves, and survival of seedlings regardless of NaCl treatment, but the effect of cotyledon shading was greater with 400 mM NaCl. Concentrations of Na+ were higher in cotyledons than in leaves, regardless of NaCl treatment. The K+/Na+ ratio was lower in cotyledons than in leaves for seedlings treated with 1 mM NaCl but not for seedlings treated with 400 mM NaCl. Addition of 400 mM NaCl decreased oxygen production in cotyledons but especially in leaves. These results are consistent with the hypothesis that, by generating oxygen via photosynthesis and by compartmentalizing Na+, cotyledons are crucial for the establishment of S. physophora seedlings in saline environments.  相似文献   

19.
Potential factors influencing sperm survival under hypertonic conditions were evaluated in the Sandhill crane (Grus canadensis) and turkey (Meleagridis gallopavo). Sperm osmotolerance (300-3000 mOsm/kg) was evaluated after: (1) equilibration times of 2, 10, 45 and 60 min at 4 °C versus 21 °C; (2) pre-equilibrating with dimethylacetamide (DMA) or dimethylsulfoxide (Me2SO) at either 4 °C or 21 °C; and (3) inhibition of the Na+/K+ and the Na+/H+ antiporter membrane ionic pumps. Sperm viability was assessed using the eosin-nigrosin live/dead stain. Species-specific differences occurred in response to hypertonic conditions with crane sperm remaining viable under extreme hypertonicity (3000 mOsm/kg), whereas turkey sperm viability was compromised with only slightly hypertonic (500 mOsm/kg) conditions. The timing of spermolysis under hypertonic conditions was also species-specific, with a shorter interval for turkey (2 min) than crane (10 min) sperm. Turkey sperm osmotolerance was slightly improved by lowering the incubation temperature from 21 to 4 °C. Pre-equilibrating sperm with DMA reduced the incidence of hypertonic spermolysis only in the crane, at both room and refrigeration temperature. Inhibiting the Na+/K+ and the Na+/H+ antiporter membrane ion pumps did not impair resistance of crane and turkey spermatozoa to hypertonic stress; pump inhibition actually increased turkey sperm survival compared to control sperm. Results demonstrate marked species specificity in osmotolerance between crane and turkey sperm, as well as in the way temperature and time of exposure affect sperm survival under hypertonic conditions. Differences are independent of the role of osmotic pumps in these species.  相似文献   

20.
NO, as a signaling molecule, is involved in abiotic stresses. Limonium bicolor seedlings were treated with 200 mM NaCl combined with 0.05 mM SNP for 20 days to study the effects of NO on development and salt-secretion rates of salt glands. It was shown that the total number of salt glands on adaxial surfaces under condition of 200 mM NaCl containing 0.05 mM SNP treatment increased significantly compared with that under 200 mM NaCl treatment. Na+ secretion rate per leaf under 200 mM NaCl containing 0.05 mM SNP was significantly higher than that under 200 mM NaCl without SNP. However, there was no significant difference in salt-secretion rate of individual salt glands between 200 mM NaCl containing 0.05 mM SNP treatment and 200 mM NaCl treatment. Although there was no significant difference in salt-secretion rate of individual glands, Na+ concentration in the leaves treated with 200 mM NaCl solution containing SNP was significantly lower than that treated with 200 mM NaCl solution. Treatment with 200 mM NaCl solution containing SNP caused a remarkable increase in Na+ concentration in salt glands. Obviously, the efficiency of the secretion process per gland was enhanced by adding SNP to NaCl. The results showed NO may enhance the salt secretion by inducing more dermatogen cells to develop into salt glands and by enhancing the efficiency of the secretion process per gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号