首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To examine the mechanisms of earlier reported alleviation of fluoride injury in ectomycorrhizal plants by NaCl, jack pine (Pinus banksiana) and white spruce (Picea glauca) seedlings were subjected to 1 mM and 5 mM KF in the presence of either 60 mM NaCl or 10% polyethylene glycol 3350 (PEG) for 2 weeks. Before the treatments, seedlings had either been inoculated with the ectomycorrhizal fungus Suillus tomentosus or remained non-inoculated. The inoculation with S. tomentosus reduced Na uptake by shoots and roots of jack pine seedling and by roots of white spruce that were treated with 60 mM NaCl. Mycorrhizal associations also drastically decreased fluoride uptake by jack pine seedlings, but did not affect shoot fluoride concentrations in white spruce. When NaCl was replaced by PEG in the 5 mM KF treatment solution, shoot fluoride concentrations were reduced by more than twofold without corresponding reductions in transpiration rates in mycorrhizal and non-mycorrhizal white spruce seedlings. When fluoride was present in the treatment solution, Na concentrations were lower in shoots and roots of both jack pine and white spruce mycorrhizal and non-mycorrhizal seedlings. The results suggest that Suillus tomentosus may help alleviate the effects of soil fluoride and salinity in jack pine and that fluoride uptake in white spruce is sensitive to osmotic stress.  相似文献   

2.
The main objective of the study was to compare the effects of short-duration pH treatments on root hydraulic properties in trembling aspen (Populus tremuloides) seedlings that were either inoculated with the ectomycorrhizal fungus Hebeloma crustuliniforme or remained non-inoculated (control). Inoculated and non-inoculated plants were exposed in solution culture to the root zone pH ranging from 4 to 9 and their root hydraulic conductivity was examined using the hydrostatic method and after subjecting the plants to treatments with 100 ??M HgCl2 (aquaporin blocker) and 0.02% trisodium 3-hydroxy-5,8,10-pyrenetrisulfonic acid (apoplastic transport tracer). In a separate experiment, pure cultures of H. crustuliniforme were also grown on a slid medium with the pH ranging from 4 to 9 to determine their pH growth optimum and changes in medium pH over time in the presence and absence of 8 mM NH4NO3. When grown in pure culture, H. crustuliniforme demonstrated maximum growth at pH 7?C8 and was capable of modifying the pH of its growth media, especially in the presence of NH4NO3. The plants that were inoculated with H. crustuliniforme had a maximum root hydraulic conductivity at pH 7. At this pH, root hydraulic conductivity was significantly higher compared with non-inoculated plants and showed greater sensitivity of root water transport to pH changes relative to non-inoculated seedlings. Relative apoplastic flux was largely unaffected by pH in inoculated seedlings. Fungal inoculation modified the response of root hydraulic conductivity to pH. The increased root hydraulic conductivity in inoculated seedlings was likely due to an increase in aquaporin-mediated cell-to-cell water transport, particularly at the higher pH. A possible role of fungal aquaporins in the root hydraulic conductivity responses of mycorrhizzal plants should be examined.  相似文献   

3.
Abstract: Black spruce (Picea mariana), white spruce (Picea glauca), and jack pine (Pinus banksiana) seedlings were inoculated with Hebeloma crustuliniforme or Laccaria bicolor and subjected to NaCl and Na2SO4 treatments. The effects of ectomycorrhizas on salt uptake, growth, gas exchange, and needle necrosis varied depending on the tree and fungal species. In jack pine seedlings, ectomycorrhizal (ECM) fungi reduced shoot and root dry weights and in the ECM white spruce, there was a small increase in dry weights. Sodium chloride treatment reduced net photosynthesis and transpiration rates in the three studied tree species. However, NaCl-treated black spruce and jack pine colonized by H. crustuliniforme maintained relatively high photosynthetic and transpiration rates and needle necrosis of NaCl-treated black spruce seedlings was reduced by the ECM fungi. Higher concentrations of Na+ were found in shoots compared with roots of the three examined conifer species. ECM fungi reduced the concentrations of Na+ mainly in the shoots and this reduction was greater in plants treated with NaCl compared with Na2SO4. Shoots contained generally higher concentrations of Cl- compared with roots. In the NaCl-treated black spruce and white spruce, both ECM species significantly reduced Cl- concentrations. Our results point to overall greater phytotoxicity of NaCl compared with Na2SO4 and support our earlier findings which demonstrated beneficial effects of ECM fungi for woody plants exposed to NaCl stress.  相似文献   

4.
American elm (Ulmus americana) seedlings were either non-inoculated or inoculated with Hebeloma crustuliniforme, Laccaria bicolor and a mixture of the two fungi to study the effects of ectomycorrhizal associations on seedling responses to soil compaction and salinity. The seedlings were grown in the greenhouse in pots containing non-compacted (0.4 g cm?3 bulk density) and compacted (0.6 g cm?3 bulk density) soil and subjected to 60 mM NaCl or 0 mM NaCl (control) treatments for 3 weeks. All three fungal inocula had similar effects on the responses of elm seedlings to soil compaction and salt treatment. In non-compacted soil, ectomycorrhizal fungi reduced plant dry weights, root hydraulic conductance, but did not affect leaf hydraulic conductance and net photosynthesis. When treated with 60 mM NaCl, ectomycorrhizal seedlings had several-fold lower leaf concentrations of Na+ compared with the non-inoculated plants. Soil compaction reduced Na+ leaf concentrations in non-ectomycorrhizal plants and decreased dry weights, gas exchange and root hydraulic conductance. However, in ectomycorrhizal plants, soil compaction had little effect on the leaf Na+ concentrations and on other measured growth and physiological parameters. Our results demonstrated that ECM associations could be highly beneficial to plants growing in sites with compacted soil such as urban areas.  相似文献   

5.
Mycorrhizal inoculation of conifer roots is a key strategy to optimize establishment and performance of forest tree species under both natural and cultivated conditions and also to mitigate transplantation shock. However, despite being a common practice, inoculation in outdoor nursery conditions has been poorly studied. Here, we have evaluated effectiveness of four fungal species (Lactarius deliciosus, Lactarius quieticolor, Pisolithus arhizus, and Suillus luteus) in the production of mycorrhizal Pinus pinaster seedlings in an outdoor commercial nursery and their ability to improve seedling physiology and field performance. All inoculated seedlings showed a significant increase in growth at the end of the nursery stage and these differences remained after 3 years of growth in the field. Differences observed in the content of malondialdehyde, total chlorophyll, carotenoids, anthocyanins, and phenolic compounds from needles of mycorrhizal and control seedlings may reflect a different sensitivity to photo-oxidative damage. We conclude that ectomycorrhizal inoculation improves adaptability to changeable growing conditions of an outdoor nursery and produces a higher quality nursery stock, thereby enhancing seedling performance after planting.  相似文献   

6.
In the present study, we investigated the effects of pH treatments on NaCl tolerance in mycorrhizal and non-mycorrhizal American elm. American elm (Ulmus americana) seedlings were inoculated with Hebeloma crustuliniforme, Laccaria bicolor or with both mycorrhizal fungi and subsequently subjected to different pH solutions (pH 3, 6 and 9) containing 0 mM (control) and 60 mM NaCl for 4 weeks. Inoculation with the mycorrhizal fungi did not have a large effect on seedling dry weights when the pH and NaCl treatments were considered independently. However, when the inoculated seedlings were treated with 60 mM NaCl at pH 3 or 6, shoot to root ratios and root hydraulic conductivity were higher compared with non-inoculated plants, likely reflecting changes in seedling water flow properties. At pH 6, transpiration rates were about twofold lower in non-inoculated plants treated with NaCl compared with non-treated controls. For NaCl-treated H. crustuliniforme- and L. bicolor-inoculated plants, the greatest reduction of transpiration rates was at pH 9. Treatment with 60 mM NaCl reduced leaf chlorophyll concentrations more in non-inoculated compared with inoculated plants, with the greatest, twofold, decrease occurring at pH 6. At pH 3, root Na concentrations were higher in inoculated than non-inoculated seedlings; however, there was no effect of inoculation on root Na concentrations at pH 6 and 9. Contrary to the roots, the leaves of inoculated plants had lower Na concentrations at pH 6 and 9, but not at pH 3. The results point to an interaction between ECM fungi and root zone pH for salt tolerance of American elm.  相似文献   

7.
The activities of the enzymes responsible for cell-wall strengthening and salicylic acid (SA) content in Norway spruce seedlings were investigated after inoculation with the ectomycorrhizal fungus Pisolithus tinctorius or the pathogen Heterobasidion annosum, and after treatment with elicitors from both of these fungi. Inoculation with both fungi increased guaiacol peroxidase (POD) activity in the roots of the pathogen-inoculated seedlings during the earliest phases of colonisation, and induced the activities of several POD isoforms. Two of these were only seen in pathogen-inoculated seedlings and corresponded with increased POD activity against ferulic acid. Colonisation with H. annosum triggered an increase in phenylalanine ammonia lyase (PAL) activity in the roots of the spruce seedlings, which was followed by an accumulation of free SA. One month after inoculation levels of free SA were increased also in the shoots of H. annosum-inoculated seedlings. In contrast increase in free SA content in the roots of P. tinctorius-inoculated seedlings was only transient. Similarly to inoculation, treatment with elicitors of H. annosum increased the PAL and POD activity, as well as SA content in the roots of spruce seedlings. A positive correlation between PAL activity and SA content in the H. annosum-inoculated seedlings and accumulation of SA precursors in the phenylpropanoid pathway indicate that the plant defence mechanisms, during which SA is synthesised through the PAL pathway, are exploited by H. annosum for facilitation of colonisation.  相似文献   

8.
  • 1 Weevil larvae of the genus Otiorhynchus are a serious problem in agriculture and forestry, causing damage to a wide range of plant species, primarily by larval feeding on roots. Otiorhynchus larvae are a serious pest in forest plantations in Iceland, causing 10–20% mortality of newly‐planted seedlings.
  • 2 We studied the effects of soil fungi on the survival of Otiorhynchus sulcatus larvae. The larvae were introduced into pots with birch seedlings grown in: (i) nursery peat; (ii) nursery peat inoculated with three different species of ectomycorrhizal fungi; (iii) nursery peat inoculated with insect pathogenic fungi; (iv) nursery peat inoculated with ectomycorrhizal fungi and insect pathogenic fungi; and (v) nursery peat inoculated with natural forest soil from Icelandic birch woodland.
  • 3 Larval survival was negatively affected by inoculation of: (i) the ectomycorrhizal fungus Laccaria laccata; (ii) the ectomycorrhizal fungus Cenococcum geophylum; (iii) the insect pathogenic fungus Metarhizium anisopliae; and (iv) forest soil. Inoculation with the ectomycorrhizal fungus Phialophora finlandia did not have any significant effect on larval survival. No significant synergistic effect was found between insect pathogenic and ectomycorrhizal fungi.
  • 4 It is concluded that ectomycorrhizal and insect pathogenic fungi have a significant potential in biological control of Otiorhynchus larvae in afforestation areas in Iceland. Further studies are needed to establish the effect of these fungi in the field and to analyse how mycorrhizal fungi affect root‐feeding larvae.
  相似文献   

9.
Ectomycorrhizal fungi (ECMF) are an important biotic factor in the survival of conifer seedlings under stressful conditions and therefore have the potential to facilitate conifer establishment into alpine and tundra habitats. In order to assess patterns of ectomycorrhizal availability and community structure above treeline, we conducted soil bioassays in which Picea mariana (black spruce) seedlings were grown in field-collected soils under controlled conditions. Soils were collected from distinct alpine habitats, each dominated by a different ectomycorrhizal host shrub: Betula glandulosa, Arctostaphylos alpina or Salix herbacaea. Within each habitat, half of the soils collected contained roots of ectomycorrhizal shrubs (host+) and the other half were free of host plants (host). Forest and glacial moraine soils were also included for comparison. Fungi forming ectomycorrhizae during the bioassays were identified by DNA sequencing. Our results indicate that ECMF capable of colonizing black spruce are widespread above the current tree line in Eastern Labrador and that the level of available inoculum has a significant influence on the growth of seedlings under controlled conditions. Many of the host soils possessed appreciable levels of ectomycorrhizal inoculum, likely in the form of spore banks. Inoculum levels in these soils may be influenced by spore production from neighboring soils where ectomycorrhizal shrubs are present. Under predicted temperature increases, ectomycorrhizal inoculum in soils with host shrubs as well as in nearby soils without host shrubs have the potential to facilitate conifer establishment above the present tree line.  相似文献   

10.
We tested if root colonisation by ectomycorrhizal fungi (EMF) could alter the susceptibility of Norway spruce (Picea abies) seedlings to root rot infection or necrotic foliar pathogens. Firstly, spruce seedlings were inoculated by various EMF and challenged with Heterobasidion isolates in triaxenix tubes. The ascomycete EMF Meliniomyces bicolor, that had showed strong antagonistic properties towards root rot causing Heterobasidion in vitro, protected spruce seedlings effectively against root rot. Secondly, spruce seedlings, inoculated with M. bicolor or the forest humus, were subjected to necrotrophic foliar pathogens in conventional forest nursery conditions on peat substrates. Botrytis cinerea infection after winter was mild and the level of needle damage was independent of substrate and EMF colonisation. Needle damage severity caused by Gremminiella abietina was high in seedlings grown in substrates with high nutrient availability as well as in seedlings with well-established EMF communities. These results show that albeit M. bicolor is able to protect spruce seedlings against Heterobasidion root rot in axenic cultures it fails to induce systemic protection against foliar pathogens. We also point out that unsterile inoculum sources, such as the forest humus, should not be considered for use in greenhouse conditions as they might predispose seedlings to unintended needle damages.  相似文献   

11.
Fungal communities associated with plant tissues were compared between two bryophyte species dominating decaying logs (Scapania bolanderi and Pleurozium schreberi), and roots of spruce seedlings growing on the bryophytes and in the ground soil, to evaluate the contribution of fungal communities to seedling regeneration. Using high-throughput DNA sequencing, a total of 1233 fungal operational taxonomic units (OTUs) were detected. Saprotrophic Ascomycota were dominant in bryophytes, whereas ectomycorrhizal (ECM) Basidiomycota were dominant in spruce roots. Fungal communities were significantly different between the two bryophyte species. In addition, fungal communities of spruce seedlings were significantly affected by the substrates on which they were growing. Some ECM fungi were detected from both of the bryophytes and the spruce seedlings growing on them; however, the dominant OTU identities differed between the two bryophyte systems. The possible effects of functional differences between dominant fungal OTUs on spruce seedling regeneration are discussed.  相似文献   

12.
Most of the temperate conifers associate with ectomycorrhizal fungi, but their roots also harbour a wide range of endophytes. We focused on ascomycetes associating with basidiomycetous ectomycorrhizas of Norway spruce in a temperate montane forest in central Europe and found that the majority of the co-associated fungi belonged to the Rhizoscyphus ericae aggregate (REA), being dominated by Meliniomyces variabilis. We further tested the ability of representative isolates to colonize spruce root tips and European blueberry (Vaccinium myrtillus) hair roots in an agar system as well as their effect on blueberry growth in a peat-agar system. M. variabilis intracellularly colonized spruce (Picea abies) root tip cortex, formed ericoid mycorrhizas in blueberry and enhanced blueberry shoot and root growth in comparison with non-inoculated plants. Our findings suggest that spruce ectomycorrhizas may represent selective niches for ericoid mycorrhizal fungi in habitats lacking suitable ericaceous hosts.  相似文献   

13.
The aim of a 3-year study was to investigate whether inoculation of Pinus sylvestris L. and Picea abies (L.) Karst. seedlings with mycorrhizas of Cenococcum geophilum Fr., Piceirhiza bicolorata, and Hebeloma crustuliniforme (Bull.) Quel. has any impact on: 1) survival and growth of outplanted seedlings on abandoned agricultural land, and 2) subsequent mycorrhizal community development. For inoculation, the root system of each plant was wrapped in a filter paper containing mycelium, overlaid with damp peat–sand mixture and wrapped in a paper towel. In total, 8,000 pine and 8,000 spruce seedlings were planted on 4-ha of poor sandy soil in randomized blocks. Already after the first year natural mycorrhizal infections prevailed in the inoculated root systems, and introduced mycorrhizas were seldom found. Yet, the seedlings that had been pre-inoculated with C. geophilum and the P. bicolorata during the whole 3-year period showed significantly higher survival and growth as compared to controls. Moreover, the independent colonization of roots by C. geophilum and the P. bicolorata from natural sources was also observed. A diverse mycorrhizal community was detected over two growing seasons in all treatments, showing low impact of inoculation on subsequent fungal community development. A total of 19 additional ectomycorrhizal morphotypes was observed, which clustered into two well-separated groups, according to host tree species (pine and spruce). In conclusion, the results showed limited ability to increase tree survival and growth, and to manipulate the mycorrhizal community even by extensive pre-inoculations, indicating that fungal community formation in root systems is governed mainly by environmental factors.  相似文献   

14.
 The growth and mineral nutrition responses of seedlings of two provenances of Afzelia africana Sm. from Senegal and Burkina Faso, inoculated with four ectomycorrhizal (ECM) fungi (Scleroderma spp. and an unidentified isolate) from the same regions were assessed in a pot experiment in a savanna ECM-propagule-free soil deficient in NPK. There was little variation in the ability of the different fungal species to colonize roots of either provenance of A. africana or to produce external hyphal in soil. Root colonization by ECM fungi and their hyphal development were not related to mineral nutrition or ECM dependency. Differences in P, N, Mg and Ca concentrations in the leaves of inoculated and non-inoculated Afzelia seedlings were not always associated with production of biomass. Only leaf K concentration increased in both provenances after ECM inoculation. However, the Burkina Faso provenance responded better to inoculation with the two fungal isolates than the Senegal provenance in terms of biomass production. This was due to stimulation of root dry weight of the Burkina Faso provenance. Therefore, the hypothesis arises that non-nutritional rather than nutritional effects explain the contribution of ECM inoculation to the growth of A. africana seedlings. Accepted: 27 April 1999  相似文献   

15.
 As many eucalypts in commercial plantations are poorly ectomycorrhizal there is a need to develop inoculation programs for forest nurseries. The use of fungal spores as inoculum is a viable proposition for low technology nurseries currently producing eucalypts for outplanting in developing countries. Forty-three collections of ectomycorrhizal fungi from southwestern Australia and two from China, representing 18 genera, were tested for their effectiveness as spore inoculum on Eucalyptus globulus Labill. seedlings. Seven-day-old seedlings were inoculated with 25 mg air-dry spores in a water suspension. Ectomycorrhizal development was assessed in soil cores 65 and 110 days after inoculation. By day 65, about 50% of the treatments had formed ectomycorrhizas. By day 110, inoculated seedlings were generally ectomycorrhizal, but in many cases the percentage of roots colonized was low (<10%). Species of Laccaria, Hydnangium, Descolea, Descomyces, Scleroderma and Pisolithus formed more ectomycorrhizas than the other fungi. Species of Russula, Boletus, Lactarius and Hysterangium did not form ectomycorrhizas. The dry weights of inoculated seedlings ranged from 90% to 225% of the uninoculated seedlings by day 110. Although plants with extensively colonized roots generally had increased seedling growth, the overall mycorrhizal colonization levels were poorly correlated to seedling growth. Species of Laccaria, Descolea, Scleroderma and Pisolithus are proposed as potential candidate fungi for nursery inoculation programs for eucalypts. Accepted: 7 May 1998  相似文献   

16.
Roots of trembling aspen (Populus tremuloides Michx.) and paper birch (Betula papyrifera Marsh.) seedlings were inoculated with Hebeloma crustuliniforme or Laccaria bicolor and treated with 25 mM NaCl for 6 weeks. Both tree species appeared to be relatively tolerant of the applied NaCl treatment and did not develop visible leaf symptoms that are characteristic of salt injury. Salt treatment reduced total dry weights in aspen and birch, but did not significantly affect transpiration rates and root hydraulic conductance. Salt-treated ectomycorrhizal aspen maintained higher root hydraulic conductance compared with non-mycorrhizal plants. Na and Cl concentrations increased in shoots and roots of mycorrhizal and non-mycorrhizal aspen and birch in response to NaCl treatment. Roots of NaCl-treated aspen inoculated with H. crustuliniforme had over twofold higher concentrations of Na compared with non-mycorrhizal NaCl-treated plants. Similarly to aspen, Na and Cl concentrations increased in roots and shoots of NaCl-treated birch seedlings. However, in birch, there were no significant differences in Na and Cl concentrations between mycorrhizal and non-mycorrhizal plants. The results suggest that salt exclusion by the ectomycorrhizal associations is host-specific or/and that the processes leading to salt exclusion are activated in ectomycorrhizal plants by a threshold salt level which may vary between plant species.  相似文献   

17.
Siemens JA  Zwiazek JJ 《Mycorrhiza》2008,18(8):393-401
The effects of an E-strain fungus (Wilcoxina mikolae var. mikolae) and an ectomycorrhizal fungus (Hebeloma crustuliniforme) on growth and water relations of balsam poplar were examined and compared in the present study. Balsam poplar roots inoculated with W. mikolae var. mikolae (Wm) exhibited structures consistent with ectendomycorrhizal (EEM) associations, including a mantle surrounding the outside of the root and an extensive Hartig net that was located between cortical cells and extended to the vascular cylinder. Roots colonized with H. crustuliniforme (Hc) developed a mantle layer, indicative of an ectomycorrhizal (ECM) association, around the outer part of the root, but no distinct Hartig net was present. Wm-colonized balsam poplar also showed increased shoot growth, stomatal conductance (g s), and root volumes compared with non-inoculated and Hc-inoculated plants. However, Hc-inoculated plants had higher root hydraulic conductivity (L pr) compared with non-inoculated plants and Wm-inoculated plants. These results suggest that L pr was not a growth-limiting factor in balsam poplar and that hyphal penetration of the root cortex in itself may have little influence on root hydraulic properties.  相似文献   

18.
In arid environments, the propagule density of arbuscular mycorrhizal fungi (AMF) may limit the extent of the plant–AMF symbiosis. Inoculation of seedlings with AMF could alleviate this problem, but the success of this practice largely depends on the ability of the inoculum to multiply and colonize the growing root system after transplanting. These phenomena were investigated in Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush) seedlings inoculated with native AMF. Seedlings were first grown in a greenhouse in soil without AMF (non-inoculated seedlings) or with AMF (inoculated seedlings). In spring and fall, 3-month-old seedlings were transplanted outdoors to 24-L pots containing soil from a sagebrush habitat (spring and fall mesocosm experiments) or to a recently burned sagebrush habitat (spring and fall field experiments). Five or 8 months after transplanting, colonization was about twofold higher in inoculated than non-inoculated seedlings, except for the spring field experiment. In the mesocosm experiments, inoculation increased survival during the summer by 24 % (p?=?0.011). In the field experiments, increased AMF colonization was associated with increases in survival during cold and dry periods; 1 year after transplanting, survival of inoculated seedlings was 27 % higher than that of non-inoculated ones (p?<?0.001). To investigate possible mechanisms by which AMF increased survival, we analyzed water use efficiency (WUE) based on foliar 13C/12C isotope ratios (δ 13C). A positive correlation between AMF colonization and δ 13C values was observed in the spring mesocosm experiment. In contrast, inoculation did not affect the δ 13C values of fall transplanted seedlings that were collected the subsequent spring. The effectiveness of AMF inoculation on enhancing colonization and reducing seedling mortality varied among the different experiments, but average effects were estimated by meta-analyses. Several months after transplanting, average AMF colonization was in proportion 84 % higher in inoculated than non-inoculated seedlings (p?=?0.0042), while the average risk of seedling mortality was 42 % lower in inoculated than non-inoculated seedlings (p?=?0.047). These results indicate that inoculation can increase AMF colonization over the background levels occurring in the soil, leading to higher rates of survival.  相似文献   

19.
Bois G  Bertrand A  Piché Y  Fung M  Khasa DP 《Mycorrhiza》2006,16(2):99-109
The oil sand industry in northeastern Alberta produces vast areas of severely disturbed land. The sodicity of these anthropic soils is one of the principal constraints that impede their revegetation. Previous in vitro studies have shown that the ectomycorrhizal fungi Laccaria bicolor (Maire) Orton UAMH 8232 and Hebeloma crustuliniforme (Bull) Quel. UAMH 5247 have certain salt-resistant traits and thus are candidate species for the inoculation of tree seedlings to be outplanted on salt-affected soil. In this study, the in vitro development of these fungi was compared to that of three mycorrhizal fungi [Suillus tomentosus (Kauff.) Sing., Snell and Dick; Hymenoscyphus sp. and Phialocephala sp.] isolated from a sodic site created by Syncrude Canada Ltd. Their growth, osmotica and Na/Cl contents were assessed over a range (0, 50, 100, 200 mM) of NaCl concentrations. After 21 days, the two ascomycetes (Hymenoscyphus sp. and Phialocephala sp.) were shown to be more resistant to the NaCl treatments than the three basidiomycete species. Of the basidiomycetes, L. bicolor was the most sensitive to NaCl stress, while H. crustuliniforme showed greater water stress resistance, and the S. tomentosus isolate exhibited greater Na and Cl filtering capacities and had a better biomass yield over the NaCl gradient tested. Both ascomycetes used mechanisms other than carbohydrate accumulation to palliate NaCl stress. While the Hymenoscyphus isolate accumulated proline in response to NaCl treatments, the darker Phialocephala isolate may have used compounds such as melanin. The basidiomycete species accumulated mainly mannitol and/or proline in response to increasing concentrations of NaCl.  相似文献   

20.
An extensive field trial was established on a fly ash deposit (1) to evaluate whether the inoculation with arbuscular mycorrhizal fungi (AMF) and/or ectomycorrhizal fungi (EcMF) improves growth and survival of 13 planted tree species and (2) to trace the inoculated mycorrhizal fungi in tree roots after one growing season. Molecular methods were applied to characterize AMF and EcMF entering the studied system (inocula, native soil, and roots of nursery seedlings). Biometric parameters and mortality of the trees were recorded and the presence of AMF and EcMF in sampled trees was determined both microscopically and genetically. Mycorrhizal inoculation did not improve survival or growth of any tree species. Most AMF‐host and all EcMF‐host seedlings were highly precolonized already from the nursery. An abundant and diverse AMF community was also found in the field soil. The AMF inoculum taxa partially overlapped with AMF in the native soil and in the precolonized roots. After one season, the only two inoculum‐unique AMF taxa were detected in host species non‐precolonized or only partially precolonized from the nursery. The components of EcMF inoculum were not detected in any sampled tree. After the season, the ectomycorrhizal hosts maintained most of their original EcMF taxa gathered in nursery, some tree species were additionally colonized by EcMF probably originating from the soil. Our results show considerable self‐restoration potential of nature on the target site. Mycorrhizal inoculation thus did not bring any conclusive advantage to the planted trees and seems superfluous for reclamation practice on the fly ash deposit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号