首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Industrial ethanol fermentation is subject to bacterial contamination that causes significant economic losses in ethanol fuel plants. Chronic contamination has been associated with biofilms that are normally more resistant to antimicrobials and cleaning efforts than planktonic cells. In this study, contaminant species of Lactobacillus isolated from biofilms (source of sessile cells) and wine (source of planktonic cells) from industrial and pilot-scale fermentations were compared regarding their ability to form biofilms and their sensitivity to different antimicrobials. Fifty lactobacilli were isolated and the most abundant species were Lactobacillus casei, Lactobacillus fermentum and Lactobacillus plantarum. The majority of the isolates (87.8%) were able to produce biofilms in pure culture. The capability to form biofilms and sensitivity to virginiamycin, monensin and beta-acids from hops, showed inter- and intra-specific variability. In the pilot-scale fermentation, Lactobacillus brevis, L. casei and the majority of L. plantarum isolates were less sensitive to beta-acids than their counterparts from wine; L. brevis isolates from biofilms were also less sensitive to monensin when compared to the wine isolates. Biofilm formation and sensitivity to beta-acids showed a positive and negative correlation for L. casei and L. plantarum, respectively.  相似文献   

3.
The microbiota of lactic acid bacteria (LAB) in thirty-five samples of Miang, a traditional fermented tea leaf product, collected from twenty-two different regions of eight provinces in upper northern Thailand was revealed through the culture-dependent technique. A total of 311 presumptive LAB strains were isolated and subjected to clustering analysis based on repetitive genomic element-PCR (rep-PCR) fingerprinting profiles. The majority of the strains belonged to the Lactobacillus genera with an overwhelming predominance of the Lb. plantarum group. Further studies of species-specific PCR showed that 201 of 252 isolates in the Lb. plantarum group were Lb. plantarum which were thus considered as the predominant LAB in Miang, while the other 51 isolates belonged to Lb. pentosus. In contrast to Lb. plantarum, there is a lack of information on the tannase gene and the tea tannin-tolerant ability of Lb. pentosus. Of the 51 Lb. pentosus isolates, 33 were found to harbor the genes encoding tannase and shared 93-99% amino acid identity with tannase obtained from Lb. pentosus ATCC 8041T. Among 33 tannase gene-positive isolates, 23 isolates exhibited high tannin- tolerant capabilities when cultivated on de Man Rogosa and Sharpe agar-containing bromocresol purple (0.02 g/L, MRS-BCP) supplemented with 20% (v/v) crude tea extract, which corresponded to 2.5% (w/v) tannins. These Lb. pentosus isolates with high tannin-tolerant capacity are expected to be the high potential strains for functional tannase production involved in Miang fermentation as they will bring about certain benefits and could be used to improve the fermentation of tea products.  相似文献   

4.
Lactocepins or CEPs are large cell wall bound extracellular proteinases of lactic acid bacteria, involved in protein breakdown and utilization. They are responsible for many health-promoting traits of food products fermented with these organisms, but also essential for probiotic effects of certain strains. Different mesophilic strains selected within the species Lactobacillus zeae, Lb. casei, Lb. rhamnosus, and Lb. plantarum were analyzed for their proteolytic activity towards main fractions of milk proteins—caseins and whey proteins. The strains showing excellent proteolytic features were further examined for presence of corresponding proteinase gene(s). It was found that Lb. zeae LMG17315 possessed catalytic domains of three distinct proteinase genes, unique feature in Lb. casei group, which are similar but not identical to previously characterized prtP and prtR genes. Lb. casei neotype strain ATCC393 was also analysed and based on obtained results its reclassification in taxon Lb. zeae is supported. In addition, we report catalytic domain of prtR-type gene in Lb. plantarum LMG9208, which is first such report in this species, and it is first time that this gene is reported outside Lb. casei group.  相似文献   

5.
In the present study, a Lactobacillus plantarum FPL strain exhibiting fructophilic behavior has been isolated for the first time from honeydew. It is a probably syntrophic bacterium inhabiting the gastrointestinal tract of Coccus hesperidum L. and taking part in sugar metabolism. The promising growth characteristics and biochemical properties of Lb. plantarum FPL indicate that this may be a facultatively fructophilic species, whose properties are not associated with the loss of the alcohol/acetaldehyde dehydrogenase gene. The article attempts to classify the peculiar behavior of this strain by means of tests that are characteristic for FLAB as well as through a classic identification approach. In this study, we used a reference strain Lb. plantarum NRRL B-4496, which showed no fructophilic properties. With the FLAB group, the new strain shares the habit, such as a fructose-rich environment, the preference of this sugar for growth, and similar growth curves. However, it exceeds FLAB in terms of osmotolerance to high sugar content. The fructophilic Lb. plantarum FPL strain can proliferate and grow on a medium wherein the sugar concentration is 45 and 50% (w/v). Our findings indicate that honeydew can be a promising source of new fructophilic lactic acid bacteria.  相似文献   

6.
Gundruk is a fermented leafy vegetable and khalpi is a fermented cucumber product, prepared and consumed in the Himalayas. In situ fermentation dynamics during production of gundruk and khalpi was studied. Significant increase in population of lactic acid bacteria (LAB) was found during first few days of gundruk and khlapi fermentation, respectively. Gundruk fermentation was initiated by Lactobacillus brevis, Pediococcus pentosaceus and finally dominated by Lb. plantarum. Similarly in khalpi fermentation, heterofermentative LAB such as Leuconostoc fallax, Lb. brevis and P. pentosaceus initiated the fermentation and finally completed by Lb. plantarum. Attempts were made to produce gundruk and khalpi using mixed starter culture of LAB previously isolated from respective products. Both the products prepared under lab condition had scored higher sensory-rankings comparable to market products.  相似文献   

7.
Fermentation of capers (the fruits of Capparis sp.) was studied by molecular and culture-independent methods. A lactic acid fermentation occurred following immersion of caper berries in water, resulting in fast acidification and development of the organoleptic properties typical of this fermented food. A collection of 133 isolates obtained at different times of fermentation was reduced to 75 after randomly amplified polymorphic DNA (RAPD)-PCR analysis. Isolates were identified by PCR or 16S rRNA gene sequencing as Lactobacillus plantarum (37 isolates), Lactobacillus paraplantarum (1 isolate), Lactobacillus pentosus (5 isolates), Lactobacillus brevis (9 isolates), Lactobacillus fermentum (6 isolates), Pediococcus pentosaceus (14 isolates), Pediococcus acidilactici (1 isolate), and Enterococcus faecium (2 isolates). Cluster analysis of RAPD-PCR patterns revealed a high degree of diversity among lactobacilli (with four major groups and five subgroups), while pediococci clustered in two closely related groups. A culture-independent analysis of fermentation samples by temporal temperature gradient electrophoresis (TTGE) also indicated that L. plantarum is the predominant species in this fermentation, in agreement with culture-dependent results. The distribution of L. brevis and L. fermentum in samples was also determined by TTGE, but identification of Pediococcus at the species level was not possible. TTGE also allowed a more precise estimation of the distribution of E. faecium, and the detection of Enterococcus casseliflavus (which was not revealed by the culture-dependent analysis). Results from this study indicate that complementary data from molecular and culture-dependent analysis provide a more accurate determination of the microbial community dynamics during caper fermentation.  相似文献   

8.
The structure and stability of the dominant lactic acid bacterium population were assessed during wheat flour sourdough type I propagation by using singly nine strains of Lactobacillus sanfranciscensis. Under back-slopping propagation with wheat flour type 0 F114, cell numbers of presumptive lactic acid bacteria varied slightly between and within starters. As determined by randomly amplified polymorphic DNA-PCR and restriction endonuclease analysis-pulsed-field gel electrophoresis analyses, only three (LS8, LS14, and LS44) starters dominated throughout 10 days of propagation. The others progressively decreased to less than 3 log CFU g−1. Partial sequence analysis of the 16S rRNA and recA genes and PCR-denaturating gradient gel electrophoresis analysis using the rpoB gene allowed identification of Weissella confusa, Lactobacillus sanfranciscensis, Lactobacillus plantarum, Lactobacillus rossiae, Lactobacillus brevis, Lactococcus lactis subsp. lactis, Pediococcus pentosaceus, and Lactobacillus spp. as the dominant species of the raw wheat flour. At the end of propagation, one autochthonous strain of L. sanfranciscensis was found in all the sourdoughs. Except for L. brevis, strains of the above species were variously found in the mature sourdoughs. Persistent starters were found in association with other biotypes of L. sanfranciscensis and with W. confusa or L. plantarum. Sourdoughs were characterized for acidification, quotient of fermentation, free amino acids, and community-level catabolic profiles by USING Biolog 96-well Eco microplates. In particular, catabolic profiles of sourdoughs containing persistent starters behaved similarly and were clearly differentiated from the others. The three persistent starters were further used for the production of sourdoughs and propagated by using another wheat flour whose lactic acid bacterium population in part differed from the previous one. Also, in this case all three starter strains persisted during propagation.  相似文献   

9.
The production of malolactic starter cultures requires the obtention of suitably large biomass at low-cost. In this work it was possible to obtain a good amount of biomass, at laboratory scale, of two enological strains of Lb. plantarum, by formulating a culture medium based on whey permeate (WP), a by-product of the cheese industry usually disposed as waste, when this was supplemented with yeast extract (Y), salts (S) and Tween 80 (T) (WPYST). Bacteria grown in WPYST medium exhibited good tolerance to stress conditions of synthetic wine (pH 3.5, ethanol 13% vol/vol). However, when WPYST was added with 8% vol/vol ethanol, cultures inoculated in synthetic wine, showed a lower viability and capacity to consume L-malic acid than when they were cultured in WPYST without ethanol. Subsequently, strains grown in WPYST were inoculated in sterile wine samples (final stage of alcoholic fermentation) of the red varietals Merlot and Pinot noir, and incubated at laboratory scale. Cultures from WPYST, inoculated in Pinot noir wine, showed a better performance than bacteria grown in MRS broth, and exhibited a consumption of L-malic acid higher than 90%. However, cultures from WPYST or from MRS broth, inoculated in sterile Merlot wine, showed a lower survival. This study allowed the formulation of a low-cost culture medium, based on a by-product of the food industry, which showed to be adequate for the growth of two enological strains of Lb. plantarum, suggesting their potentiality for application in the elaboration of malolactic starter cultures.  相似文献   

10.
The number of studies claiming probiotic health effects of Lactobacillus plantarum is escalating. Lb. plantarum is a lactic acid bacterium found in diverse ecological niches, highlighting its particular capabilities of adaptation and genome plasticity. Another function that needs to be underlined is the capabilities of Lb. plantarum to produce diverse and potent bacteriocins, which are antimicrobial peptides with possible applications as food preservative or antibiotic complementary agents. Taken together, all these characteristics design Lb. plantarum as a genuine model for academic research and viable biological agent with promising applications. The present review aims at shedding light on the safety of Lb. plantarum and run through the main studies underpinning its beneficial claims. The mechanisms explaining probiotic-related features are discussed.  相似文献   

11.
Lactobacillus plantarum ST8Sh, isolated from Bulgarian salami “shpek” and previously characterized as bacteriocin producer, was evaluated for its beneficial properties. Based on the PCR analysis, Lb. plantarum ST8Sh was shown to host a gene related to the production of adhesion proteins such as Mab, Mub, EF, and PrgB. Genetic and physiological tests suggest Lb. plantarum ST8Sh to represent a potential probiotic candidate, including survival in the presence of low levels of pH and high levels of ox bile, production of β-galactosidase, bile salt deconjugation, high level of hydrophobicity, functional auto- and co-aggregation properties, and adhesion to cell lines. Application of semi-purified bacteriocin produced by Lb. plantarum ST8Sh in combination with ciprofloxacin presented synergistic effect on inhibition of Listeria monocytogenes Scott A. Based on observed properties, Lb. plantarum ST8Sh can be considered as a potential probiotic candidate with additional bacteriocinogenic properties.  相似文献   

12.
Total DNA extracted from Lb. plantarum ST8Sh was screened for the presence of more than 50 genes related to production of biogenic amines (histidine decarboxylase, tyrosine decarboxylase, and ornithine decarboxylase), virulence factors (sex pheromones, gelatinase, cytolysin, hyaluronidase, aggregation substance, enterococcal surface protein, endocarditis antigen, adhesion of collagen, integration factors), and antibiotic resistance (vancomycin, tetracycline, erythromycin, gentamicin, chloramphenicol, bacitracin). Lb. plantarum ST8Sh showed a low presence of virulence genes. Only 13 genes were detected (related to sex pheromones, aggregation substance, adhesion of collagen, tetracycline, gentamicin, chloramphenicol, erythromycin, but not to vancomycin, and bacitracin) and may be considered as indication of safety for application in fermented food products. In addition, interaction between Lb. plantarum ST8Sh and drugs from different groups were determined in order to establish possible application of the strain in combination with commercial drugs. Cytotoxicity of the semi-purified bacteriocins produced by Lb. plantarum ST8Sh was depended on applied concentration—highly cytotoxic when applied at 25 μg/mL and no cytotoxicity at 5 μg/mL.  相似文献   

13.
A total of 41 strains of lactic acid bacteria (LAB) isolated from durum wheat sourdoughs used to produce Cornetto di Matera bread, were identified by SDS-PAGE of whole cell proteins (WCP) and screened for acid production ability, antimicrobial activity and exopolysaccharide (EPS) production. The isolates were identified as Lactobacillus plantarum (49%), Leuconostoc mesenteroides (17%), Lactobacillus curvatus (15%), Lactobacillus paraplantarum (12%), Weissella cibaria (5%) and Lactobacillus pentosus (2%). Several strains of Lb. plantarum and Leuc. mesenteroides showed a high acid production ability. The antagonistic activity was tested using an agar-spot deferred antagonism assay against a set of five indicators. The species had different profiles of inhibition. Lb. plantarum had the largest spectrum of inhibition, while no isolates of W. cibaria and Leuc. mesenteroides showed antimicrobial activity. No strains had antimicrobial activity against Bacillus cereus. The inhibitory activity of five strains was confirmed to be sensitive to proteolytic enzymes and thus potentially due to bacteriocin production. All Leuc. mesenteroides and W. cibaria strains produced EPS from sucrose. Some Lb. plantarum and Lb. paraplantarum strains produced EPS from different sugars in solid media. EPS production in liquid media was different within the species, with the highest production in liquid media containing glucose and maltose. A defined strain starter culture (W. cibaria DBPZ1006, Lb. plantarum DBPZ1015 and S. cerevisiae MTG10) was selected on the basis of technological properties and tested in model sourdough fermentations.  相似文献   

14.
Pure culture fermentation of green olives   总被引:12,自引:9,他引:3       下载免费PDF全文
The method previously developed by us for the pure-culture fermentation of brined cucumbers and other vegetables has been applied successfully to Manzanillo variety olives. Field-run grade fruit was processed first by conventional procedures to remove most of the bitterness. Then the relative abilities of Lactobacillus plantarum, L. brevis, Pediococcus cerevisiae, and Leuconostoc mesenteroides to become established and produce acid in both heat-shocked (74 C for 3 min) and unheated olives, brined at 4.7 to 5.9% NaCl (w/v basis), were evaluated. The heat-shock treatment not only proved effective in ridding the fruit of naturally occurring, interfering, and competitive microbial groups prior to brining and inoculation, but also made the olives highly fermentable with respect to growth and acid production by the introduced culture, particularly L. plantarum. Of the four species used as inocula, L. plantarum was by far the most vigorous in fermentation ability. It consistently produced the highest levels of brine acidity (1.0 to 1.2% calculated as lactic acid) and the lowest pH values (3.8 to 3.9) during the fermentation of heat-shocked olives. Also, L. plantarum completely dominated fermentations when used in two-species (with P. cerevisiae) and three-species (with P. cerevisiae and L. brevis) combinations as inocula. In contrast, when L. plantarum was inoculated into the brines of unheated olives it failed to become properly established; the same was true for the other species tested, but even to a more pronounced degree. L. brevis was the only species used that failed to develop in brines of both heat-shocked and unheated olives. Modification of the curing brine by the addition of lactic acid at the outset, either with or without dextrose, led to a much earlier onset of fermentation with accompanying acid development, as compared to treatments with dextrose alone or nonadditive controls. Reasons for the marked improvement of the fermentability of Manzanillo olives receiving the prebrining heat-shock treatment are discussed.  相似文献   

15.
Lactic acid bacteria (LAB) as starter culture in food industry must be suitable for large-scale industrial production and possess the ability to survive in unfavorable processes and storage conditions. Approaches taken to address these problems include the selection of stress-resistant strains. In food industry, LAB are often exposed to metal ions induced stress. The interactions between LAB and metal ions are very poorly investigated. Because of that, the influence of non-toxic, toxic and antioxidant metal ions (Zn, Cu, and Mn) on growth, acid production, metal ions binding capacity of wild and adapted species of Leuconostoc mesenteroides L3, Lactobacillus brevis L62 and Lactobacillus plantarum L73 were investigated. The proteomic approach was applied to clarify how the LAB cells, especially the adapted ones, protect themselves and tolerate high concentrations of toxic metal ions. Results have shown that Zn and Mn addition into MRS medium in the investigated concentrations did not have effect on the bacterial growth and acid production, while copper ions were highly toxic, especially in static conditions. Leuc. mesenteroides L3 was the most efficient in Zn binding processes among the chosen LAB species, while L. plantarum L73 accumulated the highest concentration of Mn. L. brevis L62 was the most copper resistant species. Adaptation had a positive effect on growth and acid production of all species in the presence of copper. However, the adapted species incorporated less metal ions than the wild species. The exception was adapted L. brevis L62 that accumulated high concentration of copper ions in static conditions. The obtained results showed that L. brevis L62 is highly tolerant to copper ions, which allows its use as starter culture in fermentative processes in media with high concentration of copper ions.  相似文献   

16.
The probiotic adjunct Lactobacillus plantarum K25 was inoculated into milk to produce probiotic cheese. The effect of Lb. plantarum K25 on cheese composition, microbiological growth and survival during the manufacturing and ripening period, primary and secondary proteolysis during cheese ripening, and the in vivo cholesterol-lowering ability of the probiotic cheese were investigated. The results showed that the use of adjunct Lb. plantarum K25 in Cheddar cheese did not affect the cheese components including moisture, protein, fat, salt content and the pH value of cheese. During the whole ripening period, the probiotic adjunct maintained its viability, suggesting the effectiveness of Cheddar cheese as a vehicle for delivery of probiotic bacteria. No significant differences were observed in water-soluble nitrogen, 70?% ethanol-soluble nitrogen, 5?% phosphotungstic acid-soluble nitrogen, free amino acids and urea-PAGE patterns between the control and probiotic cheeses. Assessment of the in vivo cholesterol-lowering property of cheese with Lb. plantarum K25 showed that the levels of serum total cholesterol, low-density lipoprotein cholesterol and triglycerides decreased significantly, and the level of serum high-density lipoprotein cholesterol increased in mice fed with the probiotic cheese. The results indicated the potential function as a dietary item of the probiotic cheese with Lb. plantarum K25 to reduce the risk of cardiovascular diseases.  相似文献   

17.
Lactic acid bacteria (LAB) are generally accepted as beneficial to the host and their presence is directly influenced by ingestion of fermented food or probiotics. While the intestinal lactic microbiota is well-described knowledge on its routes of inoculation and competitiveness towards selective pressure shaping the intestinal microbiota is limited. In this study, LAB were isolated from faecal samples of breast feeding mothers living in Syria, from faeces of their infants, from breast milk as well as from fermented food, typically consumed in Syria. A total of 700 isolates were characterized by genetic fingerprinting with random amplified polymorphic DNA (RAPD) and identified by comparative 16S rDNA sequencing and Matrix Assisted Laser Desorption Ionization-Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS) analyses. Thirty six different species of Lactobacillus, Enterococcus, Streptococcus, Weissella and Pediococcus were identified. RAPD and MALDI-TOF-MS patterns allowed comparison of the lactic microbiota on species and strain level. Whereas some species were unique for one source, Lactobacillus plantarum, Lactobacillus fermentum, Pediococcus pentosaceus and Lactobacillus brevis were found in all sources. Interestingly, identical RAPD genotypes of L. plantarum, L. fermentum, L. brevis, Enterococcus faecium, Enterococcus faecalis and P. pentosaceus were found in the faeces of mothers, her milk and in faeces of her babies. Diversity of RAPD types found in food versus human samples suggests the importance of host factors in colonization and individual host specificity, and support the hypothesis that there is a vertical transfer of intestinal LAB from the mother's gut to her milk and through the milk to the infant's gut.  相似文献   

18.
The aim of this article was to analyze the ability of wine Lactobacillus plantarum strains to form tyramine. Preliminary identification of L. plantarum strains was performed by amplification of the recA gene. Primers pREV and PlanF, ParaF and PentF were used respectively as reverse and forward primers in the polymerase chain reaction tests as previously reported. Furthermore, the gene encoding for the tyrosine decarboxylase (TDC) was partially cloned from one strain identified as L. plantarum. The strain was further analyzed by 16S rDNA sequence and confirmed as belonging to L. plantarum species. The tyrosine decarboxylase activity was investigated and tyramine was determined by the high-performance liquid chromatography method. Moreover, a negative effect of sugars such as glucose and fructose and L-malic acid on tyrosine decarboxylase activity was observed. The results suggest that, occasionally, L. plantarum is able to produce tyramine in wine and this ability is apparently confined only to L. plantarum strains harboring the tdc gene.  相似文献   

19.
Due to their potential prebiotic properties, arabinoxylan-derived oligosaccharides [(A)XOS] are of great interest as functional food and feed ingredients. While the (A)XOS metabolism of Bifidobacteriaceae has been extensively studied, information regarding lactic acid bacteria (LAB) is still limited in this context. The aim of the present study was to fill this important gap by characterizing candidate (A)XOS hydrolyzing glycoside hydrolases (GHs) identified in the genome of Lactobacillus brevis DSM 20054. Two putative GH family 43 xylosidases (XynB1 and XynB2) and a GH family 43 arabinofuranosidase (Abf3) were heterologously expressed and characterized. While the function of XynB1 remains unclear, XynB2 could efficiently hydrolyze xylooligosaccharides. Abf3 displayed high specific activity for arabinobiose but could not release arabinose from an (A)XOS preparation. However, two previously reported GH 51 arabinofuranosidases from Lb. brevis were able to specifically remove α-1,3-linked arabinofuranosyl residues from arabino-xylooligosaccharides (AXHm3 specificity). These results imply that Lb. brevis is at least genetically equipped with functional enzymes in order to hydrolyze the depolymerization products of (arabino)xylans and arabinans. The distribution of related genes in Lactobacillales genomes indicates that GH 43 and, especially, GH 51 glycosidase genes are rare among LAB and mainly occur in obligately heterofermentative Lactobacillus spp., Pediococcus spp., members of the Leuconostoc/Weissella branch, and Enterococcus spp. Apart from the prebiotic viewpoint, this information also adds new perspectives on the carbohydrate (i.e., pentose-oligomer) metabolism of LAB species involved in the fermentation of hemicellulose-containing substrates.  相似文献   

20.
The formation of “bloaters” (hollow stock) in cucumbers brined for salt-stock purposes at 5 to 10% salt has been associated with gaseous fermentation caused chiefly by yeasts. Recently, serious early bloater damage, not attributable to yeasts, has been observed in commercial-scale experiments on control of bloaters in overnight dill pickles brined in 50-gal barrels at 3.0 to 4.5% salt. Growth of fermentative species of yeasts was effectively controlled by the addition of 0.025, 0.05, and 0.1% sorbic acid or its sodium salt. In contrast to this, the fermenting brines showed extremely high populations of acid-forming bacteria, identified as Lactobacillus plantarum, L. brevis, and Pediococcus cerevisiae. The gas-forming species (i.e., L. brevis) constituted a high proportion of the total populations. Representative isolates from 36 barrels of overnight dill pickles were tested for their ability to produce bloaters in 1-quart jars of pasteurized cucumbers equilibrated at 4 to 5% salt, 0.25% lactic acid, and pH 4.0. Bloaters, identical with those made by yeast cultures, were produced in all jars inoculated with L. brevis. No bloaters were produced by L. plantarum and P. cerevisiae. These results suggest that the control of bloater damage in cucumber fermentations, particularly at low salt concentrations, may necessitate inhibition of gas-forming lactic acid bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号