共查询到20条相似文献,搜索用时 15 毫秒
1.
E-selectin is the inducible adhesion protein on the surface of endothelial cells which has a crucial role in the initial stages of recruitment of leucocytes to sites of inflammation. In addition, it is almost certainly involved in tumor cell adhesion and metastasis. This report is concerned with identification of a new class of oligosaccharide ligand--sulfate-containing--for the human E-selectin molecule from among oligosaccharides on an ovarian cystadenoma glycoprotein. This has been achieved by application of the neoglycolipid technology to oligosaccharides released from the glycoprotein by mild alkaline beta-elimination. Oligosaccharides were conjugated to lipid, resolved by thin-layer chromatography, and tested for binding by Chinese hamster ovary cells which had been transfected to express the full-length E-selectin molecule. Several components with strong E-selectin binding activity were revealed among acidic oligosaccharides. The smallest among these was identified by liquid secondary ion mass spectrometric analysis of the neoglycolipid, in conjunction with methylation analysis of the purified oligosaccharide preparation as an equimolar mixture of the Le(a)- and Le(x)/SSEA-1-type fucotetrasaccharides sulfated at position 3 of outer galactose: [formula: see text] To our knowledge this is the first report of a sulfofucooligosaccharide ligand for E-selectin. The binding activity is substantially greater than those of lipid-linked Le(a) and Le(x)/SSEA-1 sequences and is at least equal to that of the 3'-sialyl-Le(x)/SSEA-1 glycolipid analogue. 相似文献
2.
Glycoproteins on the cell surface of Trypanosoma cruzi are known to play important roles in the interaction of the parasite with the host cells. We previously determined the structures of the O-glycan chains from the sialoglycoproteins (mucin-like molecules) of the G- and Y-strains and observed significant differences between them. We now report the structures of the sialylated and nonsialylated O-linked oligosaccharides isolated from the cell surface glycoproteins of the myotropic CL-Brener strain grown in the presence of fetal calf serum. The structures of the O-linked oligosaccharide alditols obtained by reductive beta-elimination of the sialoglycoprotein were determined by a combination of methylation analysis, fast atom bombardment-mass spectrometry and nuclear magnetic resonance spectroscopy. The presence of a beta-galactopyranose substituent on the N-acetylglucosamine O-4 position shows that these O-linked oligosaccharides from CL-Brener strain belong to the same family as those isolated from mucins expressed by T. cruzi Y strain, a reticulotropic strain. In addition, novel O-glycans, including alpha2-3 mono-sialylated species are described. 相似文献
3.
Ion exchange chromatography at high pH with pulsed amperometric detection of the eluted glycans permitted resolution of the eight major components in the mixture of asparagine-linked glycans derived from the single glycosylation site of ovalbumin. The individual glycans were first partially separated according to size, and were characterized by fast atom bombardment-mass spectrometry and specific enzymatic degradation with beta-galactosidase and endoglycosidase H; subnanomolar quantities of all eight components could subsequently be unequivocally identified in the elution diagram. To ascertain that the chromatographic separation of the ovalbumin glycan mixture was not restricted to the asparagine-linked glycans, it was established that the corresponding mixture of reducing oligosaccharides (asparagine removed) or Asn-oligosaccharides blocked at the alpha-amino group with biotin gave very similar resolution of the eight glycans. In the absence of pure reference compounds, the quantification of the different glycans by the amperometric detection system was evaluated by comparing the electrochemical signal to the molecular ion peak intensity in the mass spectrometer. With one exception, the two methods were in good agreement, which suggests that the amperometric detection system yields a valid quantitative estimate for most of these chemically related compounds. 相似文献
4.
This report describes the structural analyses of the O- and N-linked oligosaccharides contained in glycoproteins synthesized by 48-hr-old Schistosoma mansoni schistosomula. Schistosomula were prepared by mechanical transformation of cercariae and were then incubated in media containing either [2-3H] mannose, [6-3H]glucosamine, or [6-3H]galactose to metabolically radiolabel the oligosaccharide moieties of newly synthesized glycoproteins. Analysis by SDS-polyacrylamide gel electrophoresis and fluorography demonstrated that many glycoproteins were metabolically radiolabeled with the radioactive mannose and glucosamine precursors, whereas few glycoproteins were labeled by the radioactive galactose precursor. Glycopeptide were prepared from the radiolabeled glycoproteins by digestion with pronase and fractionated by chromatography on columns of concanavalin A-Sepharose and pea lectin-agarose. The structures of the oligosaccharide chains in the glycopeptides were analyzed by a variety of techniques. The major O-linked sugars were not bound by concanavalin A-Sepharose and consisted of simple O-linked monosaccharides that were terminal O-linked N-acetylgalactosamine, the minor type, and terminal O-linked N-acetylglucosamine, the major type. The N-linked oligosaccharides were found to consist of high mannose- and complex-type chains. The high mannose-type N-linked chains, which were bound with high affinity by concanavalin A-Sepharose, ranged in size from Man6GlcNAc2 to Man9GlcNAc2. The complex-type chains contained mannose, fucose, N-acetylglucosamine, and N-acetylgalactosamine. No sialic acid was present in any metabolically radiolabeled glycoproteins from schistosomula. 相似文献
5.
The recent finding that the E1 glycoproteins of murine coronaviruses contain only O-linked oligosaccharides suggested that this unusual modification might be a distinguishing feature of coronaviruses and might play an essential role in the life cycle of this family of viruses. To examine these possibilities, we analyzed the oligosaccharide moieties of the membrane proteins of the avian coronavirus infectious bronchitis virus. In addition, we determined the effect of inhibiting the glycosylation of these proteins on viral maturation and infectivity. Infectious bronchitis virus virions contain nine proteins. Four of these proteins, GP36, GP31, GP28, and P23, are closely related structurally and appear to be homologous to the E1 proteins of murine coronaviruses. We found that the oligosaccharides of GP31 and GP28 could be removed with endoglycosidase H and that neither of these glycoproteins was detectable in tunicamycin-treated cells. These two results indicated that GP31 and GP28 contain N-linked oligosaccharides. Therefore, O-linked oligosaccharides are not a universal feature of the small coronavirus membrane glycoproteins. Tunicamycin inhibited glycosylation of all of the viral glycoproteins but did not inhibit production of virions by infectious bronchitis virus-infected cells. The virions released by these cells contained only the three non-glycosylated viral proteins P51, P23, and P14. These particles were not infectious. Therefore, it appears that glycosylated infectious bronchitis virus polypeptides are not required for particle formation. However, the viral glycoproteins are apparently indispensible for viral infectivity. 相似文献
6.
The effect of carbohydrate on the conformation and chain dimensions of mucous glycoproteins was investigated by using light-scattering and circular dichroism studies of native, asialo, and deglycosylated (apo) ovine submaxillary gland mucin (OSM). OSM is a large glycoprotein that is extensively O-glycosylated by the disaccharide alpha-NeuNAc(2-6)alpha-GalNAc-O-Ser/Thr. Measurements of root mean square radius of gyration, (Rg2)1/2, and hydrodynamic radius, Rh, for OSM and its derivatives were carried out as a function of molecular weight by using static and dynamic light-scattering techniques. The results were fit to the wormlike chain model for describing the dimensions of extended polymer chains. By use of this model, values of h, the length per amino acid residue, and q, the persistence length, which is a measure of chain stiffness, were obtained. These values were then used to assess the conformation and degree of chain extension of intact OSM and its partially and totally deglycosylated derivatives. Native and asialo mucin are found to be highly extended random coils, with asialo mucin having a somewhat less extended structure than intact mucin. Upon the complete removal of the carbohydrate side chains, the extended structure characteristic of intact and asialo mucin collapses to chain dimensions typical of denatured globular proteins. Conformational analyses based on the rotational isomeric state model were also performed by using the probability maps of N-acetyl-O-(GalNAc)-Thr-N-methylamide as starting conformations for native and asialo mucin. The results suggest that both the glycosylated and nonglycosylated residues in native mucin may occupy a small region of conformational space having -90 degrees less than phi less than -60 degrees and 60 degrees less than psi less than 180 degrees, while a slightly broader range is found to fit asialo mucin. The proposed conformations obtained for these mucins are consistent with their circular dichroism spectra. Significantly larger ranges of phi and psi values were obtained for apo mucin, as would be expected from its circular dichroism spectra and increased flexibility. These results indicate the expanded mucin structure is the direct result of peptide core glycosylation. These observations together with the results of earlier studies indicate that steric interactions of the O-linked GalNAc residue with the peptide core are primarily responsible for the expanded mucin structure and that these perturbations extend to the nonglycosylated amino acid residues. This expanded mucin conformation must be a significant determinant of the viscoelastic properties of these molecules in solution. 相似文献
7.
Carbon-13 NMR spectroscopic studies of native and sequentially deglycosylated ovine submaxillary mucin (OSM) have been performed to examine the effects of glycosylation on the conformation and dynamics of the peptide core of O-linked glycoproteins. OSM is a large nonglobular glycoprotein in which nearly one-third of the amino acid residues are Ser and Thr which are glycosylated by the alpha-Neu-NAc(2-6)alpha-GalNAc- disaccharide. The beta-carbon resonances of glycosylated Ser and Thr residues in intact and asialo mucin display considerable chemical shift heterogeneity which, upon the complete removal of carbohydrate, coalesces to single sharp resonances. This chemical shift heterogeneity is due to peptide sequence variability and is proposed to reflect the presence of sequence-dependent conformations of the peptide core. These different conformations are thought to be determined by steric interactions of the GalNAc residue with adjacent peptide residues. The absence of chemical shift heterogeneity in apo mucin is taken to indicate a loss in the peptide-carbohydrate steric interactions, consistent with a more relaxed random coiled structure. On the basis of the 13C relaxation behavior (T1 and NOE) the dynamics of the alpha-carbons appear to be unique to each amino acid type and glycosylation state, with alpha-carbon mobilities decreasing in the order Gly greater than Ala = Ser greater than Thr much greater than monoglycosylated Ser/Thr approximately greater than disaccharide linked Ser/Thr.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
8.
Sugar specificity of the Machaerocereus eruca isolectins, MeA I and MeA II, has been determined by comparing the capacity of glycans with well defined structures to inhibit their haemagglutinating activity. Both are galactose-specific isolectins with high affinity for O-glycans. However, the two M. eruca isolectins recognize different oligosaccharidic sequences belonging to O-glycosidically linked glycans from porcine stomach mucin. The minimal structure recognized by MeA I on the porcine mucin glycans is the O-glycan core Gal1, 3GalNAc-ol, whereas MeA II has a more extended site and interacts with a biantennary O-glycan possessing the terminal trisaccharide Fuc1,2 (GalNAc1,3) Gal1,4. 相似文献
9.
Prompted by previous observations which suggested that the release of polymannose oligosaccharides shortly after the cotranslational N-glycosylation of proteins is a function of the ER-associated quality control system (Moore and Spiro (1994) J. Biol. Chem., 269, 12715-12721), we evaluated the effect which proteasome inhibitors have on the appearance of these free saccharide components. Employing as a model system castanospermine-treated BW5147 mouse T-lymphoma cells in which accelerated degradation of the T-cell receptor (TCR) alpha subunit takes place (Kearse et al. (1994) EMBO J., 13, 3678-3686), we noted that both lactacystin and N-acetyl-L-leucyl-L-leucyl-L-norleucinal, but not leupeptin, brought about a rapid and substantial reduction in the release of free polymannose oligosaccharides into the cytosol during pulse-chase studies, while the oligosaccharides in the intravesicular compartment remained unchanged, as measured by streptolysin O permeabilization. This inhibition was furthermore selective in that it affected solely the components terminating in a single N-acetylglucosamine residue (OS-GlcNAc(1)) and not the oligosaccharides terminating in a di-N-acetylchitobiose sequence (OS-GlcNAc(2)), which reside primarily in the intravesicular compartment. Despite the quantitative effect of the proteasome inhibitors on the cytosolic oligosaccharides, the molar distribution of the triglucosyl OS-GlcNAc(1) species was unaffected. The decrease in cytosolic oligosaccharides brought about by proteasome inhibition was reflected in a pronounced increase in the stability of the TCRalpha subunit. Our findings suggest that the N-deglycosylation and proteasome mediated degradation are coupled events. On the basis of our data and those of others we propose that the quality control mechanism involves proteasomes associated with the cytosolic side of the endoplasmic reticulum acting in concert with a membrane situated N-glycanase. Such a complex by removing the carbohydrate units could facilitate the retrograde ER to cytosol translocation of glycoproteins. 相似文献
10.
This report describes a convenient method for the rapid and efficient
release of N-linked oligosaccharides from low microgram amounts of
glycoproteins. A 96-well MultiScreen assay system containing a
polyvinylidene difluoride (PVDF) membrane is employed to immobilize
glycoproteins for subsequent enzymatic deglycosylation. Recombinant
tissue-type plasminogen activator (rt-PA) is used to demonstrate the
deglycosylation of 0.1-50 micrograms of a glycoprotein. This method enabled
the recovery of a sufficient amount of N-linked oligosaccharides released
enzymatically with peptide N-glycosidase F (PNGaseF) from as little as 0.5
microgram rt-PA for subsequent analysis by matrix-assisted laser
desorption/ionization time-of-flight (MALDI- TOF) mass spectrometry. The
immobilization of rt-PA to the PVDF membrane did not sterically inhibit the
PNGaseF-mediated release of oligosaccharides from rt-PA as determined by
tryptic mapping experiments. Comparison of the oligosaccharides released
from 50 micrograms of rt-PA by either the 96-well plate method or by a
standard solution digestion procedure showed no significant differences in
the profiles obtained by high-pH anion-exchange chromatography with pulsed
amperometric detection (HPAEC-PAD). Both neutral and sialylated
oligosaccharide standards spiked into wells were recovered equally as
determined by HPAEC-PAD. One advantage of this approach is that reduction
and alkylation can be performed on submicrogram amounts of glycoproteins
with easy removal of reagents prior to PNGaseF digestion. In addition, this
method allows 60 glycoprotein samples to be deglycosylated in 1 day with
MALDI-TOF or HPAEC-PAD analysis being performed on the following day.
相似文献
11.
Conditions have been established for the rapid and efficient conjugation of reducing oligosaccharides (di- to deca-saccharides) to dipalmitoyl phosphatidylethanolamine. The resulting neoglycolipids derived from several naturally occurring oligosaccharides and a series of N-linked high-mannose-type oligosaccharides released by hydrazinolysis from RNAase B showed specific and potent reactivities, as appropriate, with monoclonal antibodies to blood group Lewis(b), blood group A or a stage-specific embryonic (SSEA-1) antigen, or the lectin concanavalin A. 相似文献
12.
Sialoglycoprotein from Trypanosoma cruzi strains participates in important biological functions in which the O-linked glycans play a pivotal role, and their structural diversity may be related to the parasite's virulence pattern. To provide supporting evidence for this idea, we have determined the structure of novel linear and branched alpha-O-GlcNAc-linked oligosaccharides present on the mucins of the T. cruzi Tulahuen strain. The O-glycans were isolated as oligosaccharide alditols by reductive beta-elimination, purified, and characterized by nuclear magnetic resonance spectroscopy and methylation analysis. Two core families were synthesized by the parasite: the Galfbeta1-->4GlcNAc and Galpbeta1-->4GlcNAc. The Galfbeta1-->4GlcNAc core yields three series of O-chain structures. In the first, the Galf residue is nonsubstituted, while in the other series it is elongated by the activity of galactopyranosyl or galactofuranosyl transferases giving rise to Galp-beta-(1-->2)-Galf-beta-(1-->4) or Galf-beta-(1-->2)-Galf-beta-(1-->4) substructures not previously observed. The three series can arise by further galactopyranosylation of the GlcNAc O-6 arm. Sialylation was the only observed elaboration of the Galpbeta1-->4GlcNAc core family. Thus the determination of the structures of the O-glycans from T. cruzi Tulahuen mucins confirms the strain specificity of the glycosylation and predicts a relationship between it and parasite pathogenicity and the epidemiology of Chagas' disease. 相似文献
13.
In this review, the modern data on the polypeptide and carbohydrate structures of human corticosteroid-binding globulin (CBG) and sex hormone-binding globulin (SHBG) as well as on the biochemical properties and biological functions of these steroid-binding glycoproteins are discussed. 相似文献
15.
Previous workers have shown that oligosaccharides and glycopeptides can be separated by electrophoresis in buffers containing borate ions. However, normal fluorography of tritium-labeled structures cannot be performed because the glycans are soluble and can diffuse during equilibration with scintillants. This problem has been circumvented by equilibration of the gel with 2,5-diphenyloxazole (PPO) prior to electrophoresis. The presence of PPO in the gel during electrophoresis does not alter mobility of the glycopeptides and oligosaccharides. After electrophoresis, the gel is simply dried and fluorography performed. This allows sensitive and precise comparisons of labeled samples in parallel lanes of a slab gel and, since mobilities are highly reproducible, between different gels. The procedure is preparative in that after fluorography the gel bands can be quantitatively eluted for further study, without any apparent modification by the procedure. In this report, the procedure is illustrated by fractionation of both neutral and anionic glycopeptides produced by the cellular slime mold Dictyostelium discoideum. 相似文献
16.
Rat androgen-binding protein (rABP), human testosterone-binding globulin (hTeBG) and rabbit (rb) TeBG are heterodimeric proteins. The source of the heterogeneity arises from the differential glycosylation of a common protein core. This glycosylation results in a heavy subunit (more glycosylation) and a light subunit (less glycosylation). Glycosylation is one factor responsible for multiple charged species seen when rABP, hTeBG, and rbTeBG are analyzed by two-dimensional gel electrophoresis. Enzymatic digestion with the endoglycosidase, peptide: N-glycosidase F indicated that all three proteins have asparagine (Asn)-linked oligosaccharides as their major glycan substituent. Treatment with exoglycosidases provided evidence for terminal sialic acid, galactose and mannose and N-acetylglucosamine residues. About 16–22% of the mass of the heavy subunit and about 8–14% of the mass of the light subunit is contributed by carbohydrate. Serial lectin chromatography indicated that rABP is glycosylated differently from hTeBG and rbTeBG. About 40% of the rABP contains tri and tetraantennary complex oligosaccharides, while only about 20% of the hTeBG and TeBG from pregnant rabbits contains these types of glycans. About 9% of the TeBG from male rabbits bears these types of oligosaccharides. All of the biantennary complex oligosaccharides on rABP are fucosylated on the chitobiose core, but only 8% of those on hTeBG and none of those on rbTeBG are fucosylated in this manner. All three proteins are glycosylated at more than one site. The data indicate that the proteins may have more than one type of oligosaccharide on them. It is likely that differences in glycosylation are responsible for different physiological roles of the proteins. 相似文献
17.
We report full 1H and 13C NMR assignments for 13 gluco- or galacto-pyranosylated derivatives of GlcNAc-ol, GalNAc-ol or ManNAc-ol, many of which have been prepared by enzymatic methods. These spectra are reference data to aid the structural analysis by NMR spectroscopy of glycosylated alditols derived from the mucin of the protozoan parasite Trypanosoma cruzi. A series of structural reporter groups for the derivatives from this unusual series of O-glycans are described. 相似文献
19.
We have devised a method for the determination of the long-term (days) uptake of radiolabeled surfactants by intact mammalian cells in monolayer culture. We have utilized the method to investigate several characteristics of the uptakes of three highly purified synthetic zwitterionic surfactants by confluent hamster embryo fibroblasts in culture medium containing serum. The uptakes reach a steady state after several hours and appear to be nonsaturable at sublytic concentrations. Surfactant structure was found to greatly influence the rate and extent of cellular uptake as well as the extent of the in vitro surfactant biotransformation. 相似文献
20.
Nonhistone proteins were extracted in 0.4 M NaCl from membrane-depleted nuclei of HeLa cells grown in the presence or the absence of [5,6-3H]fucose. Control experiments strongly suggest that most extracted proteins were indeed nuclear components. Several proteins, present in the 0.4 M NaCl nuclear extract, with M(r) ranging from 35,000 to 115,000 were identified on Western blots as fucosylated glycoproteins owing to their binding to the fucose-specific lectin, Ulex europeus agglutinin I. Results of experiments involving mild alkaline treatment and peptide N-glycosidase F digestion showed that the carbohydrate moieties of these fucosylated nuclear glycoproteins were N-linked to the polypeptide backbone. Analysis of the N-glycans revealed the presence of two populations of sialylated oligosaccharides on the basis of their relative molecular masses. The sensitivity of the high-M(r) oligosaccharides to endo-beta-galactosidase and their incorporation of [3H]glucosamine suggest that they could contain repeating N-acetyllactosamine units. [3H]Fucose incorporated into nuclei was confined to the nucleoli, as judged by autoradiography of sections cut through cells grown in the presence of [3H]fucose. Electron microscopy autoradiography showed that the fibrillar centers were never labeled, while silver grains were observed on the dense and the granular components of nucleoli. Taking into account of these data most nuclear fucosylated glycoproteins extracted in 0.4 M NaCl might be nucleolar ribonucleoproteins. 相似文献
|