首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We studied the antioxidative action to evaluate the effect of citrus essential oil components on human LDL in vitro. Among the authentic volatile compounds tested, gamma-terpinene showed the strongest antioxidative effect, and inhibited both the Cu(2+)-induced and AAPH-induced oxidation of LDL. gamma-Terpinene added after 30 min (mid-lag phase) and 60 min (propagation phase) of incubation of LDL with Cu(2+) inhibited LDL oxidation.  相似文献   

2.
Analysis of minor components in olive oil   总被引:3,自引:0,他引:3  
Virgin olive oil is well known for its high content of phenolic substances that are thought to have health-promoting properties. These substances also contribute to the distinctive taste of the oil. In this study, tyrosol, vanillic acid, luteolin, and apigenin were identified and quantified by liquid chromatography mass spectrometry (LC-MS). In the seven samples analysed, tyrosol, the most abundant, was in the range of 1.4-29 mg/kg, vanillic acid was in the range of 0.67-4.0 mg/kg, luteolin was in the range of 0.22-7.0 mg/kg, and apigenin was in the range of 0.68-1.6 mg/kg. It was also shown that in olive oil, squalene can be analysed by using a refractive index detector. In the samples analysed, squalene occurred in the range of 3.9-9.6 g/l.  相似文献   

3.
A new lignan 1-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-6-(3-acetyl-4-hydroxy-5-methoxyphenyl)-3,7-dioxabicyclo[3.3.0]octane, the secoiridoid 2H-pyran-4-acetic acid,3-hydroxymethyl-2,3-dihydro-5-(methoxycarbonyl)-2-methyl-, methyl ester, the phenylglycoside 4-[beta-D-xylopyranosyl-(1-->6)]-beta-D-glucopyranosyl-1,4-dihydroxy-2-methoxybenzene and the lactone 3-[1-(hydroxymethyl)-1-propenyl] delta-glutarolactone were isolated and identified on the basis of spectroscopic data including two-dimensional NMR, as components of olive oil mill waste-waters. The known aromatic compounds catechol, 4-hydroxybenzoic acid, protocatechuic acid, vanillic acid, 4-hydroxy-3,5-dimethoxybenzoic acid, 4-hydroxyphenylacetic acid, 3,4-dihydroxyphenylacetic acid, tyrosol, hydroxytyrosol, 2-(4-hydroxy-3-methoxy)phenylethanol, 2-(3,4-dihydroxy)phenyl-1,2-ethandiol, p-coumaric acid, caffeic acid, ferulic acid, sinapic acid, 1-O-[2-(3,4-dihydroxy)phenylethyl]-(3,4-dihydroxy)phenyl-1,2-ethandiol, 1-O-[2-(4-hydroxy)phenylethyl]-(3,4-dihydroxy)phenyl-1,2-ethandiol, D(+)-erythro-1-(4-hydroxy-3-methoxy)-phenyl-1,2,3-propantriol, p-hydroxyphenethyl-beta-D-glucopyranoside,2(3,4-dihydroxyphenyl)ethanol 3beta-D-glucopyranoside, and 2(3,4-dihydroxyphenyl)ethanol 4beta-D-glucopyranoside were also confirmed as constituents of the waste-waters.  相似文献   

4.
Radioligand and immunoenzymatic techniques were used to characterize the receptor binding properties of apolipoprotein B-containing lipoprotein produced by HepG2 cell line (H-LpB). It was found that compared to plasma low-density lipoprotein (LDL), the interaction of H-LpB nonseparated from conditioned medium with normal fibroblasts was 6-8-times lower and only slightly exceeded the nonspecific binding of LDL modified by malondialdehyde, while the uptake of the indicated lipoproteins by LDL receptor-negative strain of fibroblasts were identical. The uptake of H-LpB by normal fibroblasts increased 1.5-2-times after isolation from the culture medium by immunoaffinity chromatography. The effect of isolation could be explained by the finding that apolipoprotein E-containing lipoprotein secreted by HepG2 cells effectively competed for the binding with LDL-receptors. The obtained results suggest that H-LpB produced by HepG2 cells is poorly recognized by the LDL-receptors.  相似文献   

5.
6.
Mechanisms inwhich p-coumaric acid (CA) acts as an antioxidant are notwell understood. This study investigated whether CA can act as a directscavenger of reactive oxygen species (ROS) and whether it minimizes theoxidation of low-density lipoprotein (LDL). Rats were administered CAin drinking water at low or high doses for 10, 21, and 30 days (uptakeswere 29 and 317 mg/day, respectively). Blood levels of8-epiprostaglandin F2 were monitored as a marker of LDLoxidation. Oral administration of CA (317 mg/day) for 30 dayssignificantly inhibited LDL oxidation. CA also reduced LDL cholesterollevels in serum but had no effect on levels of high-density lipoproteincholesterol. In vitro studies that used electron spin resonance incombination with spin trapping techniques were used to determine theability of CA to scavenge ROS and alter LDL oxidation. CA effectivelyscavenged ·OH in a dose-dependent manner. IC50 andmaximum velocity for CA scavenging of ·OH were 4.72 µM and 1.2 µM/s, respectively, with a rate constant of 1.8 × 1011 M1 · s1. Ourstudies suggest that the antioxidant properties of CA may involve thedirect scavenging of ROS such as ·OH.

  相似文献   

7.
Low-density lipoprotein (LDL) is oxidized by cellular and noncellular mechanisms, both leading to an increased binding to collagen. We have investigated the effect of serum on lipid peroxidation, apoprotein oxidation and the binding of oxidized apoprotein to collagen. During noncellular oxidation, lipoprotein-deficient serum strongly inhibited all three processes. The serum fraction of M(r) > 100,000 was equally inhibitory; this effect was not due to alpha 1 or gamma globulins, alpha 2 macroglobulins, haptoglobins or ceruloplasmin. The serum fraction of M(r) 30,000-100,000 stimulated the binding of oxidized apoprotein but the albumin in this fraction inhibited lipid peroxidation and apoprotein oxidation. Serum ultrafiltrate (M(r) < 1000) inhibited lipid and protein oxidation, and binding; the inhibitory effect was abolished by deionization which removed histidine. The effects of lipoprotein-deficient serum and its fractions on cellular oxidation were similar but weaker than those on noncellular oxidation, HDL inhibited noncellular oxidation as well as binding of oxidized apoprotein. VLDL also inhibited oxidation; this could not be accounted for by its content of apo B. If present in vivo, these inhibitory effects would completely suppress both cellular and noncellular oxidation of LDL and its subsequent binding to collagen.  相似文献   

8.
Health benefits of lycopene from tomato products have been suggested to be related to its antioxidant activity. Dietary fat may influence the absorption and hence the plasma levels and antioxidant activity of lycopene. In the present study, we have compared the effect of consumption of tomato products with extra-virgin olive oil vs. tomato products plus sunflower oil on plasma lycopene and antioxidant levels. Results show that the oil composition does not affect the absorption of lycopene from tomato products because similar levels of plasma lycopene (mean +/- SD) were obtained on feeding tomatoes (providing approximately 46 mg lycopene/d) for 7 d with either olive oil (0.66 +/- 0.26 vs 1.20 +/- 0.20 micromol/l, p <.002) or sunflower oil (0.67 +/- 0.27 vs. 1.14 micromol/l, p <.001). However, consumption of tomato products with olive oil significantly raised the plasma antioxidant activity (FRAP) from 930 +/- 150 to 1118 +/- 184 micromol/l, p <.01) but no effect was observed when the sunflower oil was used. The change (supplementation minus start values) in FRAP following the consumption of tomato products with oil was significantly higher for olive oil (190 +/- 101) than for sunflower oil (-9.6 +/- 99, p <. 005). In conclusion, the results of the study show that consumption of tomato products with olive oil but not with sunflower oil improves the antioxidant activity of the plasma.  相似文献   

9.
A high-affinity heparin subfraction accounting for 8% of whole heparin from bovine lung was isolated by low-density lipoprotein (LDL)-affinity chromatography. When compared to whole heparin, the high-affinity subfraction was relatively higher in molecular weight (11,000 vs. 17,000) and contained more iduronyl sulfate as hexuronic acid (76% vs. 86%), N-sulfate ester (0.75 vs. 0.96 mol/mol hexosamine), and O-sulfate ester (1.51 vs. 1.68 mol/mol hexosamine). Although both heparin preparations formed insoluble complexes with LDL quantitatively in the presence of 30 mM Ca2+, the concentrations of NaCl required for 50% reduction in maximal insoluble complex formation was markedly higher with high-affinity subfraction (0.55 M vs. 0.04 M). When compared to complex of 125I-LDL and whole heparin (H-125I-LDL), complex of 125I-LDL and high-affinity heparin subfraction (HAH-125I-LDL) produced marked increase in the degradation of lipoproteins by macrophages (7-fold vs. 1.4-fold over native LDL, after 5 h incubation) as well as cellular cholesteryl ester synthesis (16.7-fold vs. 2.2-fold over native LDL, after 18 h incubation) and content (36-fold vs. 2.7-fold over native LDL, after 48 h incubation). After a 5 h incubation, macrophages accumulated 2.3-fold more cell-associated radioactivity from HAH-125I-LDL complex than from [125I]acetyl-LDL. While unlabeled HAH-LDL complex produced a dose-dependent inhibition of the degradation of labeled complex, native unlabeled LDL did not elicit any effect even at a 20-fold excess concentration. Unlabeled particulate LDL aggregate competed for 33% of degradation of labeled complex; however, cytochalasin D, known inhibitor of phagocytosis, did not effectively inhibit the degradation of labeled complex. Unlabeled acetyl-LDL produced a partial (33%) inhibition of the degradation of labeled complex. These results indicate that (1) the interaction of high-affinity heparin subfraction with LDL leads to scavenger receptor mediated endocytosis of the lipoprotein, and stimulation of cholesteryl ester synthesis and accumulation in the macrophages; and (2) with respect to macrophage recognition and uptake, HAH-LDL complex was similar but not identical to acetyl-LDL. These observations may have implications for atherogenesis, because both mast cells and endothelial cells can synthesize heparin in the arterial wall.  相似文献   

10.
11.
Current consensus suggests that lysophosphatidylcholine is the major detrimental factor in oxidized low-density lipoprotein that may contribute to the alterations of vasomotor responses associated with atherosclerosis. This study investigated the influences of lysophosphatidylcholine and major lipid components in oxidized low-density lipoprotein on vascular relaxation. We also determine if there was any interaction between these phospholipid components on relaxation. Porcine coronary artery rings were incubated with lysophosphatidylcholine, phosphatidylcholine or sphingomyelin. After contraction by the thromboxane A2 mimetic U46619, rings were relaxed with bradykinin and calcium ionophore A23187. Lysophosphatidylcholine with a higher proportion of stearoyl-lysophosphatidylcholine to palmitoyl-lysophosphatidylcholine ratio caused greater reduction of relaxational responses. While phosphatidylcholine and sphingomyelin had no effect on vascular relaxation, they reduced the ability of lysophosphatidylcholine to impair vascular relaxation. Our results thus suggested that the effectiveness of oxidized low-density lipoprotein at inhibiting vasodilatory responses may be determined by the relative proportion of different types of lysophosphatidylcholine as well as the amount of other phospholipid components: phosphatidylcholine and sphingomyelin.  相似文献   

12.
Incubation of human low-density lipoprotein (LDL) with glucose results in a nonenzymatic formation of a Schiff base between the monosaccharide and lysyl residues of apolipoprotein B. Increasing the percentage of lysyl residues of apolipoprotein B modified by glycosylation decreases the fractional catabolic rate of the glycosylated LDL, and decreases the metabolism of the glycosylated LDL by human skin fibroblasts. The glycosylated LDL, containing 20-40% of total lysyl residues of apoprotein B modified, was metabolized at a slow rate by both human skin fibroblasts and mouse peritoneal macrophages. These results led to the suggestion that glycosylated LDL is primarily catabolized via a receptor-independent process. Assuming LDL catabolism occurs via receptor-dependent and receptor-independent processes, the ratio of (fractional catabolic rate of glycosylated LDL)/(fractional catabolic rate of native LDL) should be an estimate of the percentage of LDL catabolism via the receptor-independent process. From the fractional catabolic rates of glucose-LDL (20-40% of lysyl residues modified) and galactose-LDL (30-60% of lysyl residues modified) 41% and 30% respectively, of LDL catabolism occurred by a receptor-independent process.  相似文献   

13.
Toxicity of enzymically-oxidized low-density lipoprotein   总被引:1,自引:0,他引:1  
Intravenous injection of cholesterol oxidase into hyperlipidemic rabbits in which aortic atheromatous lesions have been induced by dietary means is lethal within hours, whereas injection of the same enzyme into normal rabbits has no visible adverse effect. The lethal effect of the enzyme is explicable by the finding that injection of cholesterol-oxidase treated low-density lipoprotein kills normal rabbits, in contrast to untreated low-density lipoprotein which does not. Enzymically oxidized low-density lipoprotein was also found to be cytotoxic for two human cell lines and for cultured bovine aortic endothelial cells. We suggest that in vivo enzymic conversion of low-density lipoprotein cholesterol to low-density lipoprotein cholestenone may possibly play a role in the initiation of atheromatous lesions in humans.  相似文献   

14.
Interest in the health-promoting effects of virgin olive oil, an important part of the "Mediterranean diet", prompted us to determine the antiinflammatory effects of erythrodiol, beta-sitosterol and squalene, identified as major components of the so-called "unsaponifiable fraction" of virgin olive oil, as well as of the phenolic compounds from the "polar fraction": oleuropein, tyrosol, hydroxytyrosol and caffeic acid. Their activities were compared to those of both, total unsaponifiable and polar fractions. This study was designed to analyse the antiinflammatory effect of these specific compounds from virgin olive oil on edema in mice induced by either arachidonic acid (AA) or 12-O-tetradecanoylphorbol acetate (TPA). The inhibition of the myeloperoxidase (MPO), marker enzyme of the accumulation of neutrophils in the inflamed tissue, was also investigated by the TPA model. The topical application of the olive oil compounds (0.5 mg/ear) produced a variable degree of antiinflammatory effect with both assays. In the auricular edema induced by TPA, beta-sitosterol and erythrodiol from the unsaponifiable fraction of the oil showed a potent antiedematous effect with a 61.4% and 82.1% of inhibition respectively, values not very different to that of the reference indomethacin (85.6%) at 0.5 mg/ear. The four phenolics exerted a similar range of inhibition (33-45%). All compounds strongly inhibited the enzyme myeloperoxidase, indicating a reduction of the neutrophil influx in the inflamed tissues. The strongest inhibitor of AA edema was the total unsaponifiable fraction which inhibition was 34%, similar to that obtained by the reference drug dexamethasone at 0.05 mg/ear. Among the phenolics, oleuropein also produced an inhibition of about 30% with the same dose, but all the other components were found less active in this assay. The anti-inflammatory effects exerted by both unsaponifiable and polar compounds might contribute to the potential biological properties reported for virgin olive oil against different pathological processes.  相似文献   

15.
In this study, the interaction of human serum low-density lipoprotein (LDL) with heparin immobilized on Sepharose was reinvestigated. Binding of isolated LDL (stabilized with human serum albumin (HSA] was compared with that of LDL in full serum. (1) Binding of isolated LDL was slightly decreased by CaCl2 and was not affected by MgCl2. In contrast, with full serum LDL binding was increased by these divalent cations. (2) In both situations, binding of LDL was saturable, but the maximum degree of binding that could be reached was much higher with isolated LDL than with LDL in full serum. This could be ascribed to an inhibitory action of a factor found in the d greater than 1.24 fraction of serum. (3) The effect of this factor was diminished in the presence of CaCl2 or MgCl2, which suggests that the stimulation of LDL binding by these cations in full serum is due to suppression of the inhibitory activity of this factor. (4) The inhibitory factor in the d greater than 1.24 fraction can be partially purified by absorption to heparin-Sepharose, followed by elution with 6 M guanidine chloride. The resulting preparation had a 30- to 50-fold higher specific activity. Attempts to purify the factor further resulted in loss of activity. (5) The activity is decreased upon treatment with trypsin and also upon acetylation or reduction with dithiothreitol, indicating that free amino groups and S-S bridges are essential.  相似文献   

16.
The Mediterranean diet is associated with a lower incidence of chronic degenerative diseases and higher life expectancy. These health benefits have been partially attributed to the dietary consumption of extra virgin olive oil (EVOO) by Mediterranean populations, and more specifically the phenolic compounds naturally present in EVOO. Studies involving humans and animals (in vivo and in vitro) have demonstrated that olive oil phenolic compounds have potentially beneficial biological effects resulting from their antimicrobial, antioxidant and anti-inflammatory activities. This paper summarizes current knowledge on the biological activities of specific olive oil phenolic compounds together with information on their concentration in EVOO, bioavailability and stability over time.  相似文献   

17.
Extra virgin olive oil is characterized by its high content of unsaturated fatty acid residues in triglycerides, mainly oleic acid, and the presence of bioactive and antioxidant compounds. Its consumption is associated with lower risk of suffering chronic diseases and unwanted processes linked to aging, due to the antioxidant capacity and capability of its components to modulate cellular signaling pathways. Consumption of olive oil can alter the physiology of mesenchymal stem cells(MSCs). This may explain part of the healthy effects of olive oil consumption, such as prevention of unwanted aging processes. To date,there are no specific studies on the action of olive oil on MSCs, but effects of many components of such food on cell viability and differentiation have been evaluated. The objective of this article is to review existing literature on how different compounds of extra virgin olive oil, including residues of fatty acids,vitamins, squalene, triterpenes, pigments and phenols, affect MSC maintenance and differentiation, in order to provide a better understanding of the healthy effects of this food. Interestingly, most studies have shown a positive effect of these compounds on MSCs. The collective findings support the hypothesis that at least part of the beneficial effects of extra virgin olive oil consumption on health may be mediated by its effects on MSCs.  相似文献   

18.
Oxidatively modified low-density lipoprotein (LDL), generated as a result of incubation of LDL with specific cells (e.g., endothelial cells, EC) or redox metals like copper, has been suggested to be an atherogenic form of LDL. Epidemiological evidence suggests that higher concentrations of plasma high-density lipoprotein (HDL) are protective against the disease. The effect of HDL on the generation of the oxidatively modified LDL is described in the current study. Incubation of HDL with endothelial cells, or with copper, produced much lower amounts of thiobarbituric acid-reactive products (TBARS) as compared to incubations that contained LDL at equal protein concentrations. Such incubations also did not result in an enhanced degradation of the incubated HDL by macrophages in contrast to similarly incubated LDL. On the other hand, inclusion of HDL in the incubations that contained labeled LDL had a profound inhibitory effect on the subsequent degradation of the incubated LDL by the macrophages while having no effect on the generation of TBARS or the formation of conjugated dienes. This inhibition was not due to the modification of HDL as suggested by the following findings. (A) There was no enhanced macrophage degradation of the HDL incubated with EC or copper alone, together with LDL, despite an increased generation of TBARS. (B) HDL with the lysine groups blocked (acetyl HDL, malondialdehyde (MDA) HDL) was still able to prevent the modification of LDL and (C) acetyl HDL and MDA-HDL competed poorly for the degradation of oxidatively modified LDL. It is suggested that HDL may play a protective role in atherogenesis by preventing the generation of an oxidatively modified LDL. The mechanism of action of HDL may involve exchange of lipid peroxidation products between the lipoproteins.  相似文献   

19.
20.
Nitric oxide (*NO) is a free radical species that diffuses and concentrates in the hydrophobic core of low-density lipoprotein (LDL) to serve as a potent inhibitor of lipid oxidation processes. Peroxynitrite (PN), the product of the diffusion-limited reaction between *NO and superoxide (O2*-) represents a relevant mediator of oxidative modifications in LDL. The focus of this review is the analysis of interactions between *NO and PN and its secondary reactions with oxygen radicals on LDL oxidation, which are relevant in the development of the early steps as well as progression of atherosclerosis. We propose that the balance between rates of PN and *NO production, which greatly depends on oxidative stress processes within the vascular wall, will critically determine the final extent of oxidative LDL modifications leading or not to scavenger receptor-mediated LDL uptake and foam cell formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号