首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human S100A2 is an EF-hand calcium-binding S100 protein that is localized mainly in the nucleus and functions as tumor suppressor. In addition to Ca2+ S100A2 binds Zn2+ with a high affinity. Studies have been carried out to investigate whether Zn2+ acts as a regulatory ion for S100A2, as in the case of Ca2+. Using the method of competition with the Zn2+ chelator 4-(2-pyridylazo)-resorcinol, an apparent Kd of 25 nM has been determined for Zn2+ binding to S100A2. The affinity lies close to the range of intracellular free Zn2+ concentrations, suggesting that S100A2 is able to bind Zn2+ in the nucleus. Two Zn2+-binding sites have been identified using site directed mutagenesis and several spectroscopic techniques with Cd2+ and Co2+ as probes. In site 1 Zn2+ is bound by Cys21 and most likely by His 17. The binding of Zn2+ in site 2 induces the formation of a tetramer, whereby the Zn(2+) is coordinated by Cys2 from each subunit. Remarkably, only binding of Zn2+ to site 2 substantially weakens the affinity of S100A2 for Ca2+. Analysis of the individual Ca2+-binding constants revealed that the Ca2+ affinity of one EF-hand is decreased about 3-fold, whereas the other EF-hand exhibits a 300-fold decrease in affinity. These findings imply that S100A2 is regulated by both Zn2+ and Ca2+, and suggest that Zn2+ might deactivate S100A2 by inhibiting response to intracellular Ca2+ signals.  相似文献   

2.
The binding of zinc ion (Zn2+) to rhodanese at two pH values was studied by microcalorimetry and the free energy, enthalpy, and entropy changes determined. Binding exhibited rather large endothermic enthalpy changes quite similar to those observed for zinc-model compound interactions. The large positive entropy changes which accompany binding appear to be a feature common to Zn2+-apocarbonic anhydrase systems as well. The correlations between Zn2+ interaction with model compounds resembling protein side chains and the thermodynamic values obtained for Zn2+-protein interactions suggest that endothermic enthalpies of binding should commonly be observed under slightly acidic to basic conditions. It is found that commercial rhodanese binds Zn2+ with moderate to weak affinity by a process that is entropy driven much like that of other Zn2+-protein interactions.  相似文献   

3.
A previous study reported that the uptake and release kinetics of ouabain by human erythrocytes in suspension could well be explained by a physical model which involves the slow Langmuir binding of the drug to the erythrocyte membrane. The purpose of the present investigation was to assess quantitatively the thermodynamics of this drug-membrane receptor interaction in order to evaluate the consistency of these parameters with the proposed kinetics model.Cellular drug uptake and release experiments were conducted at 20, 30 and 40°C, and the Langmuir adsorption and desorption rate constants as well as the Langmuir adsorption isotherms determined from the rate data. With the knowledge of these Langmuir parameters, it was possible to estimate the magnitude of all relevant thermodynamic properties by the use of established physicochemical theories.The activation energies and entropies for the ouabain adsorption and desorption processes were computed as 105 kJ/mol, 231 J/K per mol, 180 kJ/mol and 245 J/K per mol, respectively. The kinetic and isosteric heats of adsorption were found to be ?75.0 and ?72.4 kJ/mol, respectively. These findings suggest that the ouabain-erythrocyte membrane interaction represents a case of activated chemisorption which follows the Langmuir isotherm, thus, further underscoring the appropriateness of the Langmuir binding kinetics model.  相似文献   

4.
S100A2 level changes are related to human periodontitis   总被引:1,自引:0,他引:1  
Periodontitis is an inflammatory disease, which, when severe, can result in tooth loss, that affects the quality of life. S100A2 was previously identified as a component of gingival crevicular fluid (GCF) via proteome analysis, but it has not been investigated whether S100A2 plays a role in periodontitis. In this study, we analyzed mRNA expression of S100A2 in gingival tissues from normal and classified periodontal disease patients and compared it to that of S100A8 and S100A9. Quantitative real time-PCR revealed that the mRNA expression levels of S100A2, S100A8, and S100A9 were significantly upregulated in gingival tissues with gingivitis, moderate periodontitis, and severe periodontitis compared to normal tissues. In addition, S100A2 proteins in GCF and the conditioned media of lipopolysaccharide (LPS)-treated Jurkat cells were confirmed by ELISA. S100A2 protein levels were significantly higher in GCF in gingivitis and moderate periodontitis groups than in normal groups. S100A2 mRNA expression and protein secretion were also increased by LPS stimulation. Based on the up-regulation of S100A2 in LPS-stimulated immune cells, gingival tissues and GCF from periodontal disease groups, we conclude that S100A2 is a functional component in the immune response during periodontitis and may serve as a potential biomarker for periodontitis.  相似文献   

5.
S100 family proteins are characterized by short individual N and C termini and a conserved central part, harboring two Ca(2+)-binding EF-hands, one of them highly conserved among EF-hand family proteins and the other characteristic for S100 proteins. In addition to Ca(2+), several members of the S100 protein family, including S100A2, bind Zn(2+). Two regions in the amino acid sequences of S100 proteins, namely the helices of the N-terminal EF-hand motif and the very C-terminal loop are believed to be involved in Zn(2+)-binding due to the presence of histidine and/or cysteine residues. Human S100A2 contains four cysteine residues, each of them located at positions that may be important for Zn(2+) binding. We have now constructed and purified 10 cysteine-deficient mutants of human S100A2 by site-directed mutagenesis and investigated the contribution of the individual cysteine residues to Zn(2+) binding. Here we show that Cys(1(3)) (the number in parentheses indicating the position in the sequence of S100A2) is the crucial determinant for Zn(2+) binding in association with conformational changes as determined by internal tyrosine fluorescence. Solid phase Zn(2+) binding assays also revealed that the C-terminal residues Cys(3(87)) and Cys(4(94)) mediated a second type of Zn(2+) binding, not associated with detectable conformational changes in the molecule. Cys(2(22)), by contrast, which is located within the first EF hand motif affected neither Ca(2+) nor Zn(2+) binding, and a Cys "null" mutant was entirely incapable of ligating Zn(2+). These results provide new information about the mechanism and the site(s) of zinc binding in S100A2.  相似文献   

6.
The hepatitis C virus (HCV) nonstructural protein 3 (NS3) protease is responsible for the processing of the non‐structural region of the viral precursor polyprotein in infected hepatic cells. HCV NS3 is a zinc‐dependent serine protease. The zinc ion, which is bound far away from the active site and considered to have a structural role, is essential for the structural integrity of the protein; furthermore, the ion is required for the hydrolytic activity. Consequently, the NS3 zinc binding site has been considered for a long time as a possible target for drug discovery. As a first step towards this goal, the energetics of the NS3‐zinc interaction and its effect on the NS3 conformation must be established and discussed. The thermodynamic characterization of zinc binding to NS3 protease by isothermal titration calorimetry and spectroscopy is presented here. Spectroscopic and calorimetric results suggest that a considerable conformational change in the protein is coupled to zinc binding. The energetics of the conformational change is comparable to that of the folding of a protein of similar size. Therefore, zinc binding to NS3 protease can be considered as a “folding by binding” event. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
The design of specific inhibitors against the Hsp90 chaperone and other enzyme relies on the detailed and correct understanding of both the thermodynamics of inhibitor binding and the structural features of the protein-inhibitor complex. Here we present a detailed thermodynamic study of binding of aryl-dihydroxyphenyl-thiadiazole inhibitor series to recombinant human Hsp90 alpha isozyme. The inhibitors are highly potent, with the intrinsic K(d) approximately equal to 1 nM as determined by isothermal titration calorimetry (ITC) and thermal shift assay (TSA). Dissection of protonation contributions yielded the intrinsic thermodynamic parameters of binding, such as enthalpy, entropy, Gibbs free energy, and the heat capacity. The differences in binding thermodynamic parameters between the series of inhibitors revealed contributions of the functional groups, thus providing insight into molecular reasons for improved or diminished binding efficiency. The inhibitor binding to Hsp90 alpha primarily depended on a large favorable enthalpic contribution combined with the smaller favorable entropic contribution, thus suggesting that their binding was both enthalpically and entropically optimized. The enthalpy-entropy compensation phenomenon was highly evident when comparing the inhibitor binding enthalpies and entropies. This study illustrates how detailed thermodynamic analysis helps to understand energetic reasons for the binding efficiency and develop more potent inhibitors that could be applied for therapeutic use as Hsp90 inhibitors.  相似文献   

8.
Thermodynamics of anion binding to human serum transferrin   总被引:1,自引:0,他引:1  
W R Harris 《Biochemistry》1985,24(25):7412-7418
The binding of phosphate, bicarbonate, sulfate, and vanadate to human serum transferrin has been evaluated by two difference ultraviolet spectroscopic techniques. Direct titration of apotransferrin with bicarbonate, phosphate, and sulfate produces a strong negative absorbance near 245 nm, while titration with vanadate produces a positive absorbance in this region. Least-squares refinement of the absorbance data indicates that two anions of sulfate, phosphate, and vanadate bind to each transferrin molecule but that there is detectable binding of only a single bicarbonate anion. A second method used to study the thermodynamics of anion binding was competition equilibrium between anions for binding to the transferrin. The equilibrium constant for binding of the first equivalent of vanadate was determined by competition vs. phosphate and sulfate, while the equilibrium constant for binding of the second equivalent of bicarbonate was determined by competition vs. vanadate. Anion binding was described by two equilibrium constants for the successive binding of two anions per transferrin molecule: K1 = [A-Tr]/[A][Tr] and K2 = [A-Tr-A]/[A][A-Tr] where [A] represents the free anion concentration, [Tr] represents apotransferrin concentration, and [A-Tr] and [A-Tr-A] represent the concentrations of 1:1 and 2:1 anion-transferrin complexes, respectively. The results were the following: for phosphate, log K1 = 4.19 +/- 0.03 and log K2 = 3.25 +/- 0.21; for sulfate, log K1 = 3.62 +/- 0.07 and log K2 = 2.79 +/- 0.20; for vanadate, log K1 = 7.45 +/- 0.10 and log K2 = 6.6 +/- 0.30; for bicarbonate, log K1 = 2.66 +/- 0.07 and log K2 = 1.8 +/- 0.3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.

Background

S100 proteins are a large family of calcium binding proteins present only in vertebrates. They function intra- and extracellularly both as regulators of homeostatic processes and as potent effectors during inflammation. Among these, S100A8 and S100A9 are two major constituents of neutrophils that can assemble into homodimers, heterodimers and higher oligomeric species, including fibrillary structures found in the ageing prostate. Each of these forms assumes specific functions and their formation is dependent on divalent cations, notably calcium and zinc. In particular, zinc appears as a major regulator of S100 protein function in a disease context. Despite this central role, no structural information on how zinc bind to S100A8/S100A9 and regulates their quaternary structure is yet available.

Results

Here we report two crystallographic structures of calcium and zinc-loaded human S100A8. S100A8 binds two zinc ions per homodimer, through two symmetrical, all-His tetracoordination sites, revealing a classical His-Zn binding mode for the protein. Furthermore, the presence of a (Zn)2-cacodylate complex in our second crystal form induces ligand swapping within the canonical His4 zinc binding motif, thereby creating two new Zn-sites, one of which involves residues from symmetry-related molecules. Finally, we describe the calcium-induced S100A8 tetramer and reveal how zinc stabilizes this tetramer by tightening the dimer-dimer interface.

Conclusions

Our structures of Zn2+/Ca2+-bound hS100A8 demonstrate that S100A8 is a genuine His-Zn S100 protein. Furthermore, they show how zinc stabilizes S100A8 tetramerization and potentially mediates the formation of novel interdimer interactions. We propose that these zinc-mediated interactions may serve as a basis for the generation of larger oligomers in vivo.
  相似文献   

10.
Recombinant murine MRP14 (mMRP14) was produced in Escherichia coli using the pGEX expression system. The mass of fusion protein, by electrospray ionization-mass spectrometry (ESI/MS), was 39,213 Da which compares well with the theoretical mass (39,210.4 Da). Thrombin digestion of fusion protein was expected at a cloned thrombin consensus sequence (. LVPRGS. ) located between glutathione S-transferase and mMRP14. Analysis of products of digestion by C4 reverse-phase HPLC and SDS-PAGE/Western blotting revealed two immunoreactive cleavage products with molecular weights around 13, 000. Masses of the two proteins determined by ESI/MS were 13,062 and 11,919 Da. The larger product corresponded to the expected mass of recombinant mMRP14 (13,061.9 Da). Analysis of the protein sequence of recombinant mMRP14 revealed a thrombin-like consensus sequence (. NNPRGH. ) located close to the C-terminus. The smaller protein corresponded to a truncated form of rec mMRP14 (rec MRP141-102) with a calculated mass of 11,918.6 Da. Optimization of the cleavage conditions resulted in >95% full-length rec mMRP14. Native mMRP14 contains one intramolecular disulfide bond between Cys79 and Cys90. The full-length recombinant protein was renatured and oxidized in ammonium acetate (pH approximately 7) for 96 h and formed >95% of the native intramolecular disulfide-bonded form. MRP141-102 bound substantially less 65Zn2+ compared to native mMRP14 or rec mMRP14 after transfer to polyvinylidene difluoride and incubation with 65ZnCl2, implicating the His residues located within the C-terminal domain in Zn2+ binding.  相似文献   

11.
Comparative studies have been performed on the binding properties of zinc ions to human brain calmodulin and S100b protein. Calmodulin is characterized by two sets of Zn2+ binding sites, with KD ranging from 8.10?5M to 3.10?4M. The S100b protein also exhibited two sets of zinc binding sites, with a much higher affinity. KD = 10?7 ? 10?6M. We suggest that S100b protein should no longer be considered only as a “calcium binding protein” but also as a “zinc binding protein”, and that Zn2+ ions are involved in the functions of the S100 proteins.  相似文献   

12.
S100P is a member of the S100 subfamily of calcium-binding proteins that are believed to be associated with various diseases, and in particular deregulation of S100P expression has been documented for prostate and breast cancer. Previously, we characterized the effects of metal binding on the conformational properties of S100P and proposed that S100P could function as a Ca2+ conformational switch. In this study we used fluorescence and CD spectroscopies and isothermal titration calorimetry to characterize the target-recognition properties of S100P using a model peptide, melittin. Based on these experimental data we show that S100P and melittin can interact in a Ca2+-dependent and -independent manner. Ca2+-independent binding occurs with low affinity (Kd approximately 0.2 mM), has a stoichiometry of four melittin molecules per S100P dimer and is presumably driven by favorable electrostatic interactions between the acidic protein and the basic peptide. In contrast, Ca2+-dependent binding of melittin to S100P occurs with high affinity (Kd approximately 5 microM) has a stoichiometry of two molecules of melittin per S100P dimer, appears to have positive cooperativity, and is driven by hydrophobic interactions. Furthermore, Ca2+-dependent S100P-melittin complex formation is accompanied by significant conformational changes: Melittin, otherwise unstructured in solution, adopts a helical conformation upon interaction with Ca2+-S100P. These results support a model for the Ca2+-dependent conformational switch in S100P for functional target recognition.  相似文献   

13.
The interaction of human serum apolipoprotein A-I with dimyristoylphosphatidylglycerol was analyzed by isothermal titration calorimetry. Binding of the apolipoprotein A-I to large unilamellar vesicles of dimyristoylphosphatidylglycerol, a negatively charged phospholipid, is characterized by thermodynamic parameters which are invariant over the 30-40 degrees C temperature range. The enthalpy change resulting from the first additions of lipid are positive and decline in magnitude with subsequent additions of lipid. After several additions of lipid, the sign of the enthalpy changes to negative and then reaches a constant value/injection. This exothermic process is larger and opposite in sign to the heat of dilution. Similar behavior is also observed when the lipid is in the form of a dispersion in distilled water. Only a non-saturable exothermic process is observed at 30 degrees C with large unilamellar vesicles of the zwitterionic lipid, dimyristoylphosphatidylcholine. The beginning of an exothermic process can also be observed prior to the larger endotherm in the first injections of large unilamellar vesicles of dimyristoylphosphatidylglycerol into the protein. We analyze the enthalpy changes for the reaction of dimyristoylphosphatidylglycerol with the protein as arising from two distinct processes, one endothermic and the other exothermic. The binding isotherms for the high affinity binding of the apolipoprotein A-I to large unilammelar vesicles of dimyristoylphosphatidylglycerol, over the temperature range 30-40 degrees C, gave an enthalpy change of 1.43 +/- 0.07 kcal/mol of protein and a free energy change of -5.91 +/- 0.04 kcal/mol of protein for the binding of the protein to a cluster of 25 +/- 2 lipid molecules. Thus this reaction is entropically driven.  相似文献   

14.
The binding of Ca2+ to porcine pancreatic phospholipase A2 was studied by batch microcalorimetry. Enthalpies of binding at 25 degrees C were determined as a function of Ca2+ concentration in buffered solutions at pH 8.0 using both the Tris-HCl and Hepes-NaOH buffer systems. The calorimetric results indicate that protons are released on calcium binding and that in addition to the binding of the active-site calcium, there appears to be weak binding of a second Ca2+. Results from potentiometric titrations indicate that this proton release on binding Ca2+ arises from a change in pK of a histidine(s) functional group. The thermodynamic functions delta G0, delta H0 and delta S0 for calcium binding to phospholipase A2 have been determined. These results are compared with literature data for Ca2+ complex formation with some small molecules and also the protein troponin-C.  相似文献   

15.
The thermodynamics of the interaction of glucocorticoids with their receptor were studied in cytosol from human lymphoblastoid cells. The rate and affinity constants of dexamethasone and cortisol between 0 degree and 25 degrees C were calculated by curve-fitting from time-course and equilibrium kinetics. The data were consistent with a simple reversible bimolecular interaction. Arrhenius and Van't Hoff plots were curvilinear for both steroids. At equilibrium, the solution for the equation delta G = delta H - T X delta S (eqn. 1) was (in kJ X mol-1) -47 = 36 - 83 (dexamethasone) and -42 = -9 - 33 (cortisol) at 0 degree C. Enthalpy and entropy changes decreased quasi-linearly with temperature such that, at 25 degrees C, the respective values were -50 = -75 + 25 and -43 = -48 + 5. Thus, for both steroids, the interaction was entropy-driven at low temperature and became entirely enthalpy-driven at 20 degrees C. Thermodynamic values for the transition state were calculated from the rate constants. For the forward reaction, eqn. (1) gave 45 = 84 - 39 (dexamethasone) and 46 = 60 - 14 (cortisol) at 0 degree C, and 44 = 24 + 20 (dexamethasone) and 46 = 28 + 18 (cortisol) at 25 degrees C. These data fit quite well with a two-step model [Ross & Subramanian (1981) Biochemistry 20, 3096-3102] proposed for ligand-protein interactions, which involves a partial immobilization of the reacting species governed by hydrophobic forces, followed by stabilization of the complex by short-range interactions. On the basis of this model, an analysis of the transition-state thermodynamics led to the conclusion that no more than half of the steroid molecular area is engaged in the binding process.  相似文献   

16.
17.
18.
Flow dialysis measurements of calcium binding to bovine brain S100 alpha alpha, S100a (alpha beta), and S100b (beta beta) proteins in 20 mM Tris-HCl buffer at pH 7.5 and 8.3 revealed that S100 proteins bind specifically 4 Ca2+ eq/mol of protein dimer. The specific calcium-binding sites had, therefore, been assigned to typical amino acid sequences on the alpha and beta subunit. The protein affinity for calcium is much lower in the presence of magnesium and potassium. Potassium strongly antagonizes calcium binding on two calcium-binding sites responsible for most of the Ca2+-induced conformational changes on S100 proteins (probably site II alpha and site II beta). Zinc-binding studies in the absence of divalent cations revealed eight zinc-binding sites/mol of S100b protein dimer that we assumed to correspond to 4 zinc-binding sites/beta subunit. Zinc binding to S100b studied with UV spectroscopy methods showed that the occupation of the four higher affinity sites and the four lower affinity sites on the protein dimer were responsible for different conformational changes in S100b structure. Zinc binding on the higher affinity sites regulates calcium binding to S100b by increasing the protein affinity for calcium and decreasing the antagonistic effect of potassium on calcium binding. Zinc-binding studies on S100a and S100 alpha alpha protein showed that the Trp-containing S100 proteins bind zinc more weakly than S100b protein. Calcium-binding studies on zinc-bound S100a proved that calcium- and zinc-binding sites were distinct although there was no increase in zinc-bound S100a affinity for calcium, as in S100b protein. Finally we provide evidence that discrepancies between previously published results on the optical properties of S100b protein probably result from oxidation of the sulfhydryl groups in the protein.  相似文献   

19.
20.
The S100 family belongs to the EF-hand calcium-binding proteins regulating a wide range of important cellular processes via protein–protein interactions. Most S100 proteins adopt a conformation of non-covalent homodimer for their functions. Calcium binding to the EF-hand motifs of S100 proteins is essential for triggering the structural changes, promoting exposure of hydrophobic regions necessary for target protein interactions. S100A11 is a protein found in diverse tissues and possesses multiple functions upon binding to different target proteins. RAGE is a multiligand receptor binding to S100A11 and the interactions at molecular level have not been reported. However, the three-dimensional structure of human S100A11 containing 105 amino acids is still not available for further interaction studies. To determine the solution structure, for the first time we report the 1H, 15N and 13C resonance assignments and protein secondary structure prediction of human S100A11 dimer in complex with calcium using a variety of triple resonance NMR experiments and the chemical shift index (CSI) method, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号