首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The Chihuahuan desert of New Mexico, USA, has changed in historical times from semiarid grassland to desert shrublands dominated by Larrea tridentata and Prosopis glandulosa. Similar displacement of perennial grasslands by shrubs typifies desertification in many regions. Such structural vegetation change could alter average values of net primary productivity, as well as spatial and temporal patterns of production. We investigated patterns of aboveground plant biomass and net primary production in five ecosystem types of the Jornada Basin Long‐Term Ecological Research (LTER) site. Comparisons of shrub‐dominated desertified systems and remnant grass‐dominated systems allowed us to test the prediction that shrublands are more heterogeneous spatially, but less variable over time, than grasslands. We measured aboveground plant biomass and aboveground net primary productivity (ANPP) by species, three times per year for 10 years, in 15 sites of five ecosystem types (three each in Larrea shrubland, Bouteloua eriopoda grassland, Prosopis dune systems, Flourensia cernua alluvial flats, and grass‐dominated dry lakes or playas). Spatial heterogeneity of biomass at the scale of our measurements was significantly greater in shrub‐dominated systems than in grass‐dominated vegetation. ANPP was homogeneous across space in grass‐dominated systems, and in most growing seasons was significantly more patchy in shrub vegetation. Substantial interannual variability in ANPP complicates comparison of mean values across ecosystem types, but grasslands tended to support higher ANPP values than did shrub‐dominated systems. There were significant interactions between ecosystem type and season. Grasslands demonstrated higher interannual variation than did shrub systems. Desertification has apparently altered the seasonality of productivity in these systems; grasslands were dominated by summer growth, while sites dominated by Larrea or Prosopis tended to have higher spring ANPP. Production was frequently uncorrelated across sites of an ecosystem type, suggesting that factors other than season, regional climate, or dominant vegetation may be significant determinants of actual NPP.  相似文献   

2.
增温对青藏高原高寒草原生态系统碳交换的影响   总被引:1,自引:0,他引:1  
碳交换是影响草地生态系统碳汇功能的关键过程,对气候变暖极为敏感。青藏高原分布着大面积的高寒草原,其碳汇功能对气候变暖的响应对区域碳循环过程具有重要的影响。为探究高寒草原生态系统碳交换过程对增温的响应,2012—2014年,在青藏高原班戈县进行了模拟增温对高寒草原生态系统碳交换过程影响的研究。结果表明,增温对高寒草原碳交换各组分的影响存在年际差异,但总体上对碳交换存在负面影响。3年平均结果显示,增温显著降低了高寒草原地上生物量、总生态系统生产力(GEP)、生态系统呼吸(ER)和净生态系统碳交换量(NEE)(P0.05),平均降幅分别为15.1%、36.8%、19.2%和51.5%。增温条件下3年平均土壤呼吸(SR)较对照无显著变化(P0.05),但2013年增温显著降低了SR(P0.05),降幅达18.1%。增温对SR与ER的比值具有一定的促进作用,最高增幅达到40.0%。GEP、ER、SR和NEE与土壤温度和土壤水分无显著相关(P0.05),而GEP、ER和NEE与空气温度呈显著的负相关关系(P0.05)。增温引起的干旱胁迫以及地上生物量降低是导致高寒草原NEE降低的主要原因。研究表明,全球变暖会一定程度降低青藏高原高寒草原的碳汇功能。  相似文献   

3.
Grazing influences the morphology and growth rate of shrubs, and consequently, their population dynamics. It has been shown that grazing directly affects the growth of shrubs. On the other hand, the reduction of grass biomass by herbivores reduces soil–water competition between grasses and shrubs, and indirectly, could enhance the growth of shrubs. However, the assessment of the long-term effects of grazing on the growth of shrubs in the arid Patagonia has been hampered by the lack of long and homogeneous records of plant population dynamics and primary production. In this study, we combined growth-ring and allometric analyses to assess the long-term effect of grazing on individuals of Anarthrophyllum rigidum, a leguminous shrub widely distributed across the Patagonian steppe. A. rigidum has evergreen leaves rich in proteins that constitute an important complement to the diet of sheep, particularly in winter when the abundance of grasses is reduced. Our observations indicate that individuals of A. rigidum nearby the water source used by livestock were smaller in size (35.5 cm vs. 67.39 cm), presented a larger number of basal branches (23 vs. 12), and showed slower rates of growth (8.2 mm year?1 vs. 14.3 mm year?1) than individuals located far from the water source. This first quantification of the long-term effects of grazing on A. rigidum in the dry Patagonian steppe suggests that beneficial effects of grazing through the reduction of grasses that compete with shrubs for soil–water should be more obvious for livestock non-preferred than preferred shrubs  相似文献   

4.
Question: What are the long‐term effects of grazing exclusion on the population structure and dynamics of, and interactions among, three dominant shrub species? Location: Grass‐shrub Patagonian steppe, Chubut, Argentina. Methods: Permanent plots were established in grazed paddocks and paddocks excluded from grazing in representative Patagonian rangelands. Shrub abundance, population size‐structure, short‐term (two 3‐yr periods) and long‐term (matrix models) population dynamics, and neighborhood interactions of three native and codominant shrub species (Mulinum spinosum, Senecio filaginoides and Adesmia volckmanni) were measured and analysed using different statistical approaches. Results: The total density of shrubs was 74% higher in paddocks excluded from grazing, owing mainly to increases in Mulinum (80%) and Senecio (68%) species. However, differences in size structure between ungrazed and grazed paddocks were only detected in Mulinum. Demographic rates differed between shrub species, time‐periods and grazing conditions. In particular, recruitment in the short term (especially in wet years) and population growth rate in the long term (λ) were higher in paddocks excluded from grazing only in Mulinum populations. Senecio populations showed a marginal increase in recruitment and mortality independent of the grazing condition in the wet and dry period. Grazing exclusion modified the balance of neighborhood interactions among the three shrub species. In grazing‐exclusion paddocks, there was a balance between positive and negative interspecific interactions, while in grazed paddocks there were more negative intraspecific and interspecific interactions, resulting in a net negative balance of neighborhood interactions. Conclusions: Our understanding of woody encroachment in arid rangelands can be informed through evaluation of direct and indirect effects of grazing exclusion on the abundance and demography of dominant woody species. In Patagonian arid steppes, the occurrence of woody encroachment in rangelands excluded from grazing can be explained by altered responses in plant‐animal and plant‐plant interactions among shrub species.  相似文献   

5.
丹杨  杜灵通  王乐  马龙龙  乔成龙  吴宏玥  孟晨 《生态学报》2020,40(16):5638-5648
我国西北防沙治沙工程中大量的种植中间锦鸡儿(Caragana intermedia)会导致荒漠草原发生灌丛化现象,研究人工灌丛化对荒漠草原蒸散发的影响,不仅能够揭示半干旱区人为活动对生态系统水循环的影响机理,还可以指导区域生态治理实践。以宁夏盐池县荒漠草原为例,基于植被的生理生态参数和荒漠草原水热条件,采用生物地球化学模型(Biome Bio-Geochemical Cycles,Biome-BGC)和地球呼吸系统模拟模型(Breathing Earth System Simulator,BESS)结合的方法,模拟荒漠草原生态系统人工灌丛引入前后蒸散发及其组分的变化,定量研究荒漠草原人工灌丛化对区域生态水文循环中蒸散发的影响。结果表明,人工灌丛的引入使植被结构及特征发生了变化,叶面积指数(Leaf Area Index,LAI)年最大值由0.20增加为0.67,改变了植被年内与年际变化特征。荒漠草原人工灌丛化后,生态系统年均蒸散发由251.74 mm增加到了281.42 mm;人工灌丛化对生长季的蒸散发增强明显,8月蒸散发峰值时,日均蒸散发由1.27 mm/d增加到1.56 mm/d。灌丛化过程使生态系统蒸腾量平均增加了1.35倍,蒸发量增加了1.06倍,改变了生态系统蒸散发的组分结构,导致蒸发比例降低、蒸腾比例增高。由此可知,荒漠草原在防沙治沙和生态治理中大量种植灌木的现象,加大了区域生态系统的蒸散发,并改变了水分耗散结构,从而对生态系统地气水汽交换有较大影响,研究结论对荒漠草原生态治理及未来的植被重建有一定的借鉴意义。  相似文献   

6.
荒漠草原是陆地生态系统中最为脆弱且受人类干扰较为严重的生态类型之一,精准模拟其碳水通量及对人为干扰的响应,不仅能够揭示其复杂的生态学过程,而且还可为人为生态修复和保护提供决策依据。生态模型能够有效地模拟陆地生态系统的碳水循环过程,但模型众多的参数及其取值的合理性限制了其普遍应用,故探索参数优化是提升生态模型应用的有效途径。利用PEST参数优化方法和涡度相关观测数据对Biome-BGC模型的生理生态参数进行优化,在评估参数优化效果的基础上模拟了1986-2018年宁夏盐池荒漠草原区人工灌丛生态系统的总初级生产力(Gross primary productivity,GPP)和蒸散(Evapotranspiration,ET)。结果表明:(1)参数优化可以改善Biome-BGC模型对荒漠草原区人工灌丛生态系统GPP和ET的模拟效果,参数优化后模拟的GPP和ET均更接近于观测值,其中月尺度的模拟效果更佳;(2)基于PEST的Biome-BGC模型参数优化方法具有较强的普适性,优化后的参数可推广应用于荒漠草原区人工灌丛生态系统长时间序列的GPP和ET模拟;(3)宁夏盐池荒漠草原区人工灌丛生态系统的GPP在1986-2018年呈缓慢上升趋势,增幅为1.47 g C m-2 a-1,但ET的年际变化率较大,且无显著变化趋势。  相似文献   

7.
Questions

How do fire frequency and fire size affect the long-term population dynamics of Mulinum spinosum? Which demographic parameters contribute most to the overall effect of fire on population growth? What is the relative importance of resprouting in sustaining population increase?

Location

Grass-shrub northwestern Patagonian steppe, Argentina.

Methods

We monitored five permanent plots excluded from grazing for 6 years. We measured shrub abundance, dimensions, reproductive status, seedling emergence, and the size structure of M. spinosum, a resprouting native shrub inhabiting the northwest Patagonian steppe. Data were used to parametrize a stochastic matrix model developed to explore the influence of fire frequency and fire size on long-term population dynamics. We analyzed hypothetical scenarios that included fire frequencies ranging from one per year up to exclusion.

Results

Except for annual fires, projections show growing populations regardless of fire frequency. For fire return intervals greater than 50 years, the population becomes independent of fires, with an annual population growth rate of 5.6%. The results suggest two relevant aspects of the population dynamics of this species: M. spinosum is well adapted to the current fire frequency and its resprouting capability will allow M. spinosum to survive and persist in the community, even under frequent fires.

Conclusions

Climate change models forecast an increase in summer temperature in NW Patagonia and, consequently, an enhanced fire frequency. Fire is a driver of M. spinosum encroachment that gets worse in overgrazed grasslands. Mulinum spinosum encroachment derivate in a relative replacement of palatable grasses by shrubs changes the ecosystem functionality and reduces productivity. Controlling this process is highly difficult and we suggest a change in the land use for the areas already deteriorated.

  相似文献   

8.
Question: Will a non‐indigenous, invasive, understorey shrub, such as Lonicera maackii (Amur honeysuckle) have an impact on the productivity of overstorey trees in hardwood forests? Location: Trees from 12 invaded and four non‐invaded sites were sampled in hardwood forests of southwestern Ohio, US. Methods: Changes in radial and basal area tree growth in the ten years prior to L. maackii invasion vs. ten years after invasion were examined using dendrochronological techniques. Intervention analysis was used to detect growth changes 25 years prior to and 25 years following invasion, and estimates of load impacts for L. maackii population and biomass were also calculated. Results: We found that the rate of radial and basal area growth of overstorey trees was reduced significantly in eleven out of twelve invaded sites. Non‐invaded sites did not exhibit this consistent pattern of reduced growth. For invaded vs. non‐invaded sites, the mean basal area growth was reduced by 15.8%, and the overall rate of basal area growth was reduced by 53.1%. Intervention analysis revealed that the first significant growth reductions were 6.25 ± 1.24 (mean ± SE) years after invasion with the greatest frequency of negative growth changes occurring 20 years after invasion. In invaded stands, 41% of trees experienced negative growth changes. In terms of invasive load estimates per 1000 L. maackii individuals, radial tree growth was reduced by 0.56 mm.a?1, and basal area growth was reduced by 0.74 cm2.a?1, Given these findings, significant economic losses could occur in hardwood forests of Ohio. Conclusions: To our knowledge, this is the first study using dendrochronological techniques to investigate the impact of a non‐indigenous, understorey plant on overstorey tree growth. Active management will likely be needed to maintain forest productivity in L. maackii impacted landscapes.  相似文献   

9.
Precipitation pulses play an important role in regulating ecosystem carbon exchange and balance of semiarid steppe ecosystems. It has been predicted that the frequency of extreme rain events will increase in the future, especially in the arid and semiarid regions. We hypothesize that large rain pulses favor carbon sequestration, while small ones cause more carbon release in the semiarid steppes. To understand the potential response in carbon sequestration capacity of semiarid steppes to the changes in rain pulse size, we conducted a manipulative experiment with five simulated rain pulse sizes (0, 5, 10, 25, and 75 mm) in Inner Mongolia steppe. Our results showed that both gross ecosystem productivity (GEP) and ecosystem respiration (Re) responded rapidly (within 24 h) to rain pulses and the initial response time was independent of pulse size. However, the time of peak GEP was 1–3 days later than that of Re, which depended on pulse size. Larger pulses caused greater magnitude and longer duration of variations in GEP and Re. Differences in the response time of microbes and plants to wetting events constrained the response pattern of heterotrophic (Rh) and autotrophic (Ra) components of Re following a rain event. Rh contributed more to the increase of Re in the early stage of rain pulse response, while Ra played an more important role later, and determined the duration of pulse response, especially for large rain events of >10 mm. The distinct responses of ecosystem photosynthesis and respiration to increasing pulse sizes led to a threshold in rain pulse size between 10 and 25 mm, above which post wetting responses favored carbon sequestration. The disproportionate increase of the primary productivity of higher plants, compared with those in the activities of microbial decomposers to larger pulse events suggests that the carbon sequestration capacity of Inner Mongolia steppes will be sensitive to changes in precipitation size distribution rather than just precipitation amount.  相似文献   

10.
The Dahra field site in Senegal, West Africa, was established in 2002 to monitor ecosystem properties of semiarid savanna grassland and their responses to climatic and environmental change. This article describes the environment and the ecosystem properties of the site using a unique set of in situ data. The studied variables include hydroclimatic variables, species composition, albedo, normalized difference vegetation index (NDVI), hyperspectral characteristics (350–1800 nm), surface reflectance anisotropy, brightness temperature, fraction of absorbed photosynthetic active radiation (FAPAR), biomass, vegetation water content, and land‐atmosphere exchanges of carbon (NEE) and energy. The Dahra field site experiences a typical Sahelian climate and is covered by coexisting trees (~3% canopy cover) and grass species, characterizing large parts of the Sahel. This makes the site suitable for investigating relationships between ecosystem properties and hydroclimatic variables for semiarid savanna ecosystems of the region. There were strong interannual, seasonal and diurnal dynamics in NEE, with high values of ~?7.5 g C m?2 day?1 during the peak of the growing season. We found neither browning nor greening NDVI trends from 2002 to 2012. Interannual variation in species composition was strongly related to rainfall distribution. NDVI and FAPAR were strongly related to species composition, especially for years dominated by the species Zornia glochidiata. This influence was not observed in interannual variation in biomass and vegetation productivity, thus challenging dryland productivity models based on remote sensing. Surface reflectance anisotropy (350–1800 nm) at the peak of the growing season varied strongly depending on wavelength and viewing angle thereby having implications for the design of remotely sensed spectral vegetation indices covering different wavelength regions. The presented time series of in situ data have great potential for dryland dynamics studies, global climate change related research and evaluation and parameterization of remote sensing products and dynamic vegetation models.  相似文献   

11.
Habitat preferences of lesser rheas in Argentine Patagonia   总被引:1,自引:0,他引:1  
This work reports the first results of a 3-year study (1998–2001) on habitat use and preferences by wild lesser rheas (Rhea pennata pennata) in the ecotone Monte–Patagonian steppe of Argentina. Ponds and four different habitat alternatives for lesser rheas were determined using satellite images and different structural vegetation characteristics: steppe, shrubland, shrub steppe, and mallines. Lesser rheas (adults, juveniles and chicks) used all habitats available to feed, although they showed preference for mallines, open areas that offer good visibility and abundant food resource. Rheas used shrub steppe and steppe for nesting, but they did not show preference for either habitat type. Nest site had a higher percentage of vegetation cover than control sites. Lesser rheas apparently preferred concealed sites for nesting since they offer protection from severe climate conditions and from predators. Our results suggest that habitat preference by lesser rheas counterbalances profitability of feeding to the corresponding cost of predation.  相似文献   

12.
朱湾湾  许艺馨  余海龙  王攀  黄菊莹 《生态学报》2021,41(16):6679-6691
为深入了解降水格局改变和氮沉降增加对荒漠草原生态系统碳交换的影响机制,于2017年在宁夏荒漠草原设立了降水量变化(减少50%、减少30%、自然降水量、增加30%以及增加50%)和氮添加(0和5 g m-2 a-1)的野外试验,研究了2019年生长季(5-10月份)净生态系统碳交换(Net ecosystem carbon exchange,NEE)、生态系统呼吸(Ecosystem respiration,ER)和总生态系统生产力(Gross ecosystem productivity,GEP)的时间动态,分析了三者与植被组成以及土壤属性的关系。NEE、ER和GEP日动态和月动态均呈先增加后降低,NEE在整个生长季表现为净生态系统碳吸收。0和5 g m-2 a-1氮添加下,减少降水量显著降低了NEE、ER和GEP (P<0.05),增加30%降水量显著提高了三者(P<0.05)。相同降水量条件下,氮添加不同程度地提高了NEE、ER和GEP,且其效应在增加50%降水量时较为明显。净生态系统碳吸收(-NEE)、ER和GEP与群落生物量、牛枝子(Lespedeza potaninii)以及草木樨状黄芪(Astragalus melilotoides)生物量正相关。三者亦随Patrick丰富度指数和Shannon-Wiener多样性指数的增加而增加。本文结果意味着,减少降水量降低了土壤水分和养分有效性、抑制了植物生长,从而降低了生态系统碳交换。适量增加降水量则可能通过提高土壤含水量、刺激土壤酶活性、调节土壤C : N : P平衡特征等途径,促进了植物生长和物种多样性,从而提高了生态系统碳汇功能;氮添加亦促进了生态系统碳交换,但其与降水的交互作用尚不明显,需通过长期观测进行深入探讨。  相似文献   

13.
王乐  杜灵通  马龙龙  丹杨 《生态学报》2022,42(1):246-254
宁夏盐池县从20世纪70年代开始在荒漠草原上人工种植柠条灌木用以防风固沙和生态恢复,这一人为措施极大地改变了区域生态系统的植被结构和碳循环,而定量评估人工灌丛化对荒漠草原生态系统碳储量的影响,不仅能够揭示人类活动的碳循环反馈机制,而且可为地方政府生态治理提供理论指导。结合Biome-BGC模型和Logistics生长模型模拟了1958—2017年间荒漠草原人工灌丛化前后的碳储量变化,定量分析了人工灌丛化对生态系统碳储量和组分的影响。结果表明:(1)结合Biome-BGC模型和Logistics生长模型可以较准确地模拟出荒漠草原人工灌丛化过程中生态系统碳储量的变化。(2)人工灌丛化会快速改变荒漠草原的碳储量累积特征,柠条灌木种植后的快速生长阶段极大增强了生态系统的总碳储量,导致生态系统的碳储量特征由草地型向灌木型转变。(3)人工灌丛化改变了生态系统各类型碳储量的组分结构,其对地上植被和枯落物碳储量的影响非常明显,灌丛化后生态系统的植被和枯落物碳分别增加了6倍和1.76倍;因植被碳向土壤碳转化过程较慢,故人工灌丛化对地下土壤碳储量的影响在短期内较为微弱。以上结果显示,荒漠草原人工灌丛化能显...  相似文献   

14.
Question: Is the vegetation of meadow and mountain steppes distinct from the ground vegetation of light taiga forests in the transitional zone between these biomes? Location: Western Khentey Mountains, northern Mongolia. Methods: Vegetation was recorded from 100‐m2 plots from all dominant types of light taiga forest and dry grassland. Distinctness of ground vegetation was studied with Detrended Correspondence Analysis (DCA). Results: Ground vegetation in the light taiga was significantly different from the herbal vegetation of meadow and mountain steppes. Clear separation was only absent for the Car ex amgunensis meadow steppes that occur in a narrow strip along the forest edge and are partly shaded by trees. Forest and steppe communities followed a moisture gradient according to the DCA ordination with light taiga forests at the moistest sites and steppe communities at the driest sites. Ulmus pumila open woodlands diverged from this pattern, because of their close spatial and phytosociological relationship to mountain steppes. Conclusions: The present results do not support the assumption that grasslands in Mongolia's transitional zone between forest and steppe would generally resemble the ground vegetation of light taiga forests. This contradicts a published hypothesis stating that the vegetation of meadow and mountain steppes would not clearly differ from ground vegetation of light taiga forests in the forest‐steppe transitional zone of Mongolia.  相似文献   

15.
围封是退化草原生态系统恢复的有效措施之一,已在中国北方草原地区实施多年并取得良好的效果。由于不同退化草原生态系统具有完全不同的植被和土壤条件,围封对不同退化草原植物群落和土壤的恢复是否具有一致的影响,目前仍不清楚。对内蒙古地区轻度、中度和重度退化荒漠草原分别设置6年围封后,对植物群落特征和土壤理化性质进行了调查和测定。研究结果发现,围封显著提高了3种退化荒漠草原短花针茅(Stipa breviflora)和无芒隐子草(Cleistogenes songorica)种群以及群落的高度、盖度和地上生物量(P<0.05),表明围封从多组织层次使退化草原植物群落得到有效的恢复。围封总体提高了轻度和中度退化荒漠草原植物多样性,但降低重度退化荒漠草原的植物多样性。重度退化荒漠草原在围封后群落高度、盖度和地上生物量恢复效率显著高于轻度和中度退化的(P<0.05),表明围封对重度退化荒漠草原植被恢复更加有效。除轻度退化外,围封显著降低中度和重度退化荒漠草原土壤全碳、全氮、全磷、有效氮和速效磷含量(P<0.05),但对3种退化荒漠草原的土壤水分含量无显著影响,表明围封对不同退化荒漠草原土壤的影响具有滞后性。研究为荒漠草原围封成效评估提供理论指导和退化荒漠草原生态系统科学合理实施围封政策提供科学依据。  相似文献   

16.
“Mallín” (plural mallines) is a particular kind of wetland occurring in Patagonian steppe and forests. In Northwest Patagonia, mallines are humid meadows with high net primary production. It was previously found that a mallín soil in the steppe devoid of actinorhizal plants had a higher Frankia nodulation capacity in Ochetophila trinervis (sin. Discaria trinervis) than other soils in the region. Under the hypothesis that mallín wetland meadows are reservoir of infective Frankia, we studied the Frankia nodulation capacity in O. trinervis of 12 mallín and their neighbouring steppe soils, by using plant bioassays. A qualitative plant bioassay showed that infective Frankia was present in most soils. The number of nodules per plant in seedlings inoculated with mallín soils was negatively correlated with soil water content while the opposite was true for plants inoculated with soils from neighbouring steppe. A quantitative bioassay was performed with eight representative soils, selected according to the number of nodules per plant produced in the qualitative assay and to the presence or not of different actinorhizal plants at the sites. Frankia nodulation units per cm3 of soil (NU) in mallín soils were higher than those in steppe. Water and organic matter content of soils were correlated with the higher nodulation capacity of mallines, which may account for the saprotrophic growth of Frankia in soils. The symbiosis was effective in plants inoculated with all soil samples. These results suggest that Northwestern Patagonian mallín wetland meadows are reservoirs of infective and effective Frankia propagules in O. trinervis.  相似文献   

17.
Assessing the spatial variability of ecosystem structure and functioning is an important step towards developing monitoring systems to detect changes in ecosystem attributes that could be linked to desertification processes in drylands. Methods based on ground-collected soil and plant indicators are being increasingly used for this aim, but they have limitations regarding the extent of the area that can be measured using them. Approaches based on remote sensing data can successfully assess large areas, but it is largely unknown how the different indices that can be derived from such data relate to ground-based indicators of ecosystem health. We tested whether we can predict ecosystem structure and functioning, as measured with a field methodology based on indicators of ecosystem functioning (the landscape function analysis, LFA), over a large area using spectral vegetation indices (VIs), and evaluated which VIs are the best predictors of these ecosystem attributes. For doing this, we assessed the relationship between vegetation attributes (cover and species richness), LFA indices (stability, infiltration and nutrient cycling) and nine VIs obtained from satellite images of the MODIS sensor in 194 sites located across the Patagonian steppe. We found that NDVI was the VI best predictor of ecosystem attributes. This VI showed a significant positive linear relationship with both vegetation basal cover (R2 = 0.39) and plant species richness (R2 = 0.31). NDVI was also significantly and linearly related to the infiltration and nutrient cycling indices (R2 = 0.36 and 0.49, respectively), but the relationship with the stability index was weak (R2 = 0.13). Our results indicate that VIs obtained from MODIS, and NDVI in particular, are a suitable tool for estimate the spatial variability of functional and structural ecosystem attributes in the Patagonian steppe at the regional scale.  相似文献   

18.
Overgrazing‐induced degradation of temperate semiarid steppes may affect the soil sink for atmospheric methane (CH4). However, previous studies have primarily focused on the growing season and on single grazing patterns. Thus, the response of annual CH4 uptake by steppes compared with various grazing practices is uncertain. In this study, we investigated the effects of grazing on the annual CH4 uptake by two typical Eurasian semiarid steppes (the Stipa grandis steppe and the Leymus chinensis steppe) located in Inner Mongolia, China. The CH4 fluxes were measured year‐round using static chambers and gas chromatography at 12 field sites that differed primarily in grazing intensities. Our results indicated that steppe soils were CH4 sinks throughout the year. The annual CH4 uptake correlated with stocking rates, whereas the seasonality of CH4 uptake was primarily dominated by temperature. The annual CH4 uptake at all sites averaged 3.7±0.7 kg C ha?1 yr?1 (range: 2.3–4.5), where approximately 35% (range: 23–40%) occurred during the nongrowing season. Light‐to‐moderate grazing (stocking rate≤1 sheep ha?1 yr?1) did not significantly change the annual CH4 uptake compared with ungrazed steppes, but heavy grazing reduced annual CH4 uptake significantly (by 24–31%, P<0.05). These findings imply that easing the pressure of heavily grazed steppes (e.g. moving to light or moderate stocking rates) would help restore steppe soil sinks for atmospheric CH4. The empirical equations based on the significant relationships between annual CH4 uptake and stocking rates, aboveground plant biomass and topsoil air permeability (P<0.01) could provide simple approaches for the estimation of regional CH4 uptake by temperate semiarid steppes.  相似文献   

19.
Aim We perform a phylogeographical study of an endemic Patagonian herbaceous plant to assess whether geographical patterns of genetic variation correspond to in situ Pleistocene survival or to glacial retreat and post‐glacial expansion. We also seek to determine the locations of potential glacial refugia and post‐glacial colonization routes. Location Southern Andes and Patagonian steppe. Methods We used Calceolaria polyrhiza, a widely distributed Patagonian herbaceous plant that occurs mainly in the understorey of Nothofagus rain forests and in the arid Patagonian steppe, as our model system. The chloroplast intergenic spacer trnH–psbA was sequenced for 590 individuals from 68 populations. Sequence data were analysed using phylogenetic (maximum parsimony, maximum likelihood and Bayesian inference) and population genetic (spatial analyses of molecular variance, mismatch distributions and neutrality tests) methods. Nested clade phylogeographic analyses, and divergence time estimates using a calibrated molecular clock, were also conducted. Results A total of 27 haplotypes identified in the present study clustered into four primary genealogical lineages, revealing three significant latitudinal phylogeographical breaks. The two high Andean lineages probably split first, during the late Miocene, and the Patagonian lineage split around 4 Ma, coincident with the establishment of the Patagonian steppe. Within each haplogroup, major diversification occurred in the Pleistocene. The Patagonian groups show a pattern consistent with a rapid post‐glacial expansion and colonization of the Andean flanks, achieved independently by four lineages. The highest haplotype diversity was found along a longitudinal transect that is remarkably congruent with the limit of the ice‐sheet extension during the Greatest Patagonian Glaciation. A north‐east expansion is evident, which is probably associated with the ‘Arid Diagonal’ fluctuations. Main conclusions Glacial climate fluctuations had a substantial impact on the diversification, distribution and demography of the study species. A scenario of multiple periglacial Pleistocene refugia and subsequent multiple recolonization routes, from eastern Patagonia to the Andean flanks, may explain the phylogeographical patterns observed. However, current genetic structure also preserves the imprints of older events that probably occurred in the Miocene and Pliocene, providing evidence that multiple processes, operating at different spatial and temporal scales, have moulded biodiversity in Patagonia.  相似文献   

20.
Question: (1) Which factors regulate post‐fire recruitment and spread of the shrub Senecio bracteolatus in Patagonian grasslands? (2) What is the role of the grass Stipa speciosa on S. bracteolatus establishment in the post‐fire succession? Location: Northwest Patagonia, Argentina. Methods: We studied the effect of fire on S. bracteolatus recruitment and density by comparing these variables between burned and unburned grasslands. In burned areas, we compared abiotic characteristics and seedling establishment under the canopy of grasses (S. speciosa) and in gaps (inter‐tussock areas). Post‐fire interactions between S. bracteolatus seedlings and S. speciosa were studied using field and greenhouse experiments. Results: Density of S. bracteolatus was higher in burned than in unburned areas. In burned sites, seedlings were more abundant under tussock grasses, whereas juveniles were more abundant in gaps. Tussocks generated more attenuated micro‐environmental conditions than gaps during stressful summers. Gaps were more abundant in burned sites, while “under tussock” microsites were more frequent in unburned sites. In burned areas, tussocks allowed higher establishment of seedlings (facilitation), but gaps allowed more seedling growth and higher persistence of juveniles. Conclusions: Fire promoted S. bracteolatus recruitment in Patagonian grasslands by increasing the availability of favourable gap microsites. Grass protection for shrub seedlings became negative with time, probably due to competition with grasses. Gaps led to better performance and persistence of shrub plants. Six years after fire, higher shrub recruitment and adult density (observed as a trend) in burned grassland provides an opportunity for potential S. bracteolatus invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号