首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Large-insert bacterial artificial chromosome (BAC) libraries are necessary for advanced genetics and genomics research. To facilitate gene cloning and characterization, genome analysis, and physical mapping of scallop, two BAC libraries were constructed from nuclear DNA of Zhikong scallop, Chlamys farreri Jones et Preston. The libraries were constructed in the BamHI and MboI sites of the vector pECBAC1, respectively. The BamHI library consists of 73,728 clones, and approximately 99% of the clones contain scallop nuclear DNA inserts with an average size of 110 kb, covering 8.0x haploid genome equivalents. Similarly, the MboI library consists of 7680 clones, with an average insert of 145 kb and no insert-empty clones, thus providing a genome coverage of 1.1x. The combined libraries collectively contain a total of 81,408 BAC clones arrayed in 212 384-well microtiter plates, representing 9.1x haploid genome equivalents and having a probability of greater than 99% of discovering at least one positive clone with a single-copy sequence. High-density clone filters prepared from a subset of the two libraries were screened with nine pairs of Overgos designed from the cDNA or DNA sequences of six genes involved in the innate immune system of mollusks. Positive clones were identified for every gene, with an average of 5.3 BAC clones per gene probe. These results suggest that the two scallop BAC libraries provide useful tools for gene cloning, genome physical mapping, and large-scale sequencing in the species.  相似文献   

2.
A bacterial artificial chromosome (BAC) library of Phytophthora infestans was constructed in a derivative of pBELOBACII that had been modified by adding a npt selectable marker gene for transforming P. infestans. A total library of 8 genome equivalents was generated and 16,128 clones with inserts averaging 75 kb (4.9 genome equivalents) were individually picked and stored as an arrayed library in microtiter plates. This coverage was confirmed by screening the library for 11 DNA loci by colony hybridization and by polymerase chain reaction of DNA pools. Transformation of P. infestans with BAC clones containing inserts of 93 to 135 kb was demonstrated. The efficiency of transformation with most BACs was noticeably higher than that with smaller plasmids. Detailed analyses of transformants obtained with a 102-kb BAC indicated that entire inserts were present in about one-quarter of the transformants.  相似文献   

3.
A bacterial artificial chromosome (BAC) library of Phytophthora infestans was constructed in a derivative of pBELOBACII that had been modified by adding a npt selectable marker gene for transforming P. infestans. A total library of 8 genome equivalents was generated and 16,128 clones with inserts averaging 75 kb (4.9 genome equivalents) were individually picked and stored as an arrayed library in microtiter plates. This coverage was confirmed by screening the library for 11 DNA loci by colony hybridization and by polymerase chain reaction of DNA pools. Transformation of P. infestans with BAC clones containing inserts of 93 to 135 kb was demonstrated. The efficiency of transformation with most BACs was noticeably higher than that with smaller plasmids. Detailed analyses of transformants obtained with a 102-kb BAC indicated that entire inserts were present in about one-quarter of the transformants.  相似文献   

4.
We report one large-insert BIBAC library and three BAC libraries for japonica rice cv Nipponbare. The BIBAC library was constructed in the HindIII site of a plant-transformation-competent binary vector (pCLD04541) and the three BAC libraries were constructed in the BamHI, HindIII and EcoRI sites of a BAC vector (pECBAC1), respectively. Each library contains 23,040 clones, has an average insert size of 130 kb, 170 kb, 150 kb and 156 kb, and covers 6.7x, 8.7x, 7.7x and 8.0 x rice haploid genomes, respectively. The combined libraries contain 92,160 clones in total, covering 31.1 x rice haploid genomes. To demonstrate their utility, we screened the libraries with 55 DNA markers mapped to chromosome 8 of the rice genetic maps and analyzed a number of clones by the restriction fingerprinting and contig assembly method. The results indicate that the libraries completely cover the rice genome and, thus, are well-suited for genome research in rice and other gramineous crops. The BIBAC library represents the first plant-transformation-competent large-insert DNA library for rice, which will streamline map-based cloning, functional analysis of the rice genome sequence and molecular breeding in rice and other grass species. These libraries are being used in the development of a whole-genome, BAC/BIBAC-based, integrated physical, genetic and sequence map of rice and in the research of genome-wide comparative genomics of grass species.  相似文献   

5.
A genomic bacterial artificial chromosome (BAC) library of the A genome of wheat has been constructed. Triticum monococcum accession DV92 was selected for this purpose because it is a cultivated diploid wheat and one of the parental lines used in the construction of a saturated genetic map. Leaves from this accession were used to isolate high-molecular-weight DNA from nuclei. This DNA was partially digested with restriction enzyme Hind III, subjected to double size selection, electroeluted and cloned into the pINDIGO451 BAC vector. The library consists of 276,480 clones with an average insert size of 115 kb. Excluding the 1.33% of empty clones and 0.14% of clones with chloroplast DNA, the coverage of this library is 5.6 genome equivalents. With this genome coverage the probability of having any DNA sequence represented in this library is higher than 99.6%. Clones were sorted in 720,384-well plates and blotted onto 15 high-density filters. High-density filters were screened with several single or low-copy clones and five positive BAC clones were selected for further analysis. Since most of the T. monococcum BAC ends included repetitive sequences, a modification was introduced into the classical end-isolation procedure to select low copy sequences for chromosome walking.  相似文献   

6.
P Ling  X M Chen 《Génome》2005,48(6):1028-1036
A hexaploid wheat (Triticum aestivum L.) bacterial artificial chromosome (BAC) library was constructed for cloning Yr5 and other genes conferring resistance to stripe rust (Puccinia striiformis f. sp. tritici). Intact nuclei from a Yr5 near-isogenic line were used to isolate high molecular weight DNA, which was partially cleaved with HindIII and cloned into pECBAC1 and pIndigoBAC-5 vectors. The wheat BAC library consisted of 422,400 clones arrayed in 1100 micro-titer plates (each plate with 384 wells). Random sampling of 300 BAC clones indicated an average insert size of 140 kb, with a size range from 25 to 365 kb. Ninety percent of the clones in the library had an insert size greater than 100 kb and fewer than 5% of the clones did not contain inserts. Based on an estimated genome size of 15,966 Mb for hexaploid wheat, the BAC library was estimated to have a total coverage of 3.58x wheat genome equivalents, giving approximately 96% probability of identifying a clone representing any given wheat DNA sequence. Twelve BAC clones containing an Yr5 locus-specific marker (Yr5STS7/8) were successfully selected by PCR screening of 3-dimensional BAC pools. The results demonstrated that the T. aestivum BAC library is a valuable genomic resource for positional cloning of Yr5. The library also should be useful in cloning other genes for stripe rust resistance and other traits of interest in hexaploid wheat.  相似文献   

7.
Maize inbred line 77Ht2 contains agriculturally important genes and has been widely used in corn breeding in China. A bacterial artificial chromosome (BAC) library of 77Ht2 has been constructed in order to identify useful genes and to facilitate the study of the maize genome. The library contains 175104 clones with an average insert size of 57 kb and represents about 4 maize haploid genome equivalents. Characterization of the library showed less than 0.5% of clones to not contain large inserts. Significant contamination of chloroplast and mitochondria DNA was not detected. BAC clones (152 arrays) were stored in 96 microtiter plates, with each well containing 12 clones. This is the first maize BAC library constructed in China. It is well suited for map-based cloning of maize genes and genome physical mapping.  相似文献   

8.
Bacterial artificial chromosome (BAC) library is an important tool in genomic research. We constructed two libraries from the genomic DNA of grass carp (Ctenopharyngodon idellus) as a crucial part of the grass carp genome project. The libraries were constructed in the EcoRI and HindIII sites of the vector CopyControl pCC1BAC. The EcoRI library comprised 53,000 positive clones, and approximately 99.94% of the clones contained grass carp nuclear DNA inserts (average size, 139.7 kb) covering 7.4× haploid genome equivalents and 2% empty clones. Similarly, the HindIII library comprised 52,216 clones with approximately 99.82% probability of finding any genomic fragments containing single-copy genes; the average insert size was 121.5 kb with 2.8% insert-empty clones, thus providing genome coverage of 6.3× haploid genome equivalents of grass carp. We selected gene-specific probes for screening the target gene clones in the HindIII library. In all, we obtained 31 positive clones, which were identified for every gene, with an average of 6.2 BAC clones per gene probe. Thus, we succeeded in constructing the desired BAC libraries, which should provide an important foundation for future physical mapping and whole-genome sequencing in grass carp.  相似文献   

9.
A bacterial artificial chromosome (BAC) library has been established for Arabidopsis thaliana (ecotype Col-0) covering about seven haploid nuclear genome equivalents. This library, called the Institut für Genbiologische Forschung (IGF) BAC library, consists of 10?752 recombinant clones carrying inserts (generated by partial EcoRI digestion) of an average size of about 100?kb in a modified BAC vector, pBeloBAC-Kan. Hybridization with organellar DNA and nuclear repetitive DNA elements revealed the presence of 1.1% clones with mitochondrial DNA, 0.2% clones with plastid DNA, 3.2% clones with the 180?bp paracentromeric repeat, 1.6% clones with 5S rDNA, and 10.8% clones with the 18S-25S rDNA repeat. With its extensive genome coverage, its rather uniformly sized inserts (80?kb?<85% <120?kb) and low contamination with organellar DNA, this library provides an excellent resource for A. thaliana genomic mapping, map-based gene cloning, and genome sequencing.  相似文献   

10.
A BAC library of hexaploid wheat was constructed using the spring wheat cultivar Triticum aestivum L. 'Glenlea'. Fresh shoot tissue from 7- to 10-day-old seedlings was used to obtain HMW DNA. The library was constructed using the HindIII site of pIndigoBAC-5 and the BamHI site of pIndigoBAC-5 and pECBAC1. A total of 12 ligations were used to construct the entire library, which contains over 650 000 clones. Ninety-six percent of the clones had inserts. The insert size ranged from 5 to 189 kb with an average of 79 kb. The entire library was gridded onto 24 high-density filters using a 5 x 5 array. A subset of these membranes was hybridized with two intergenic chloroplast probes and the percentage of clones containing chloroplast DNA (cpDNA) was calculated to be 2.2%. The genome coverage was estimated to be 3.1 x haploid genome equivalents, giving a 95.3% probability of identifying a clone corresponding to any wheat DNA sequence. BAC pools were constructed and screened using markers targeting the Glu-B1 locus (1BL), the hardness loci (5AS, 5BS, 5DS), the leaf rust resistance locus Lr1 (5DL), and the major fusarium head blight QTL locus located on 3BS. These markers were either locus-specific amplicons or microsatellites. A total of 49 BAC clones were identified for 14 markers giving an average of 3.5 clones/marker, thereby corroborating the estimated 3.1x genome coverage. An example using the gene encoding the HMW glutenin Bx7 is illustrated.  相似文献   

11.
We have constructed a soybean bacterial artificial chromosome (BAC) library using the plant introduction (PI) 437654. The library contains 73728 clones stored in 192384-well microtiter plates. A random sampling of 230 BACs indicated an average insert size of 136 kb with a range of 20 to 325 kb, and less than 4% of the clones do not contain inserts. Ninety percent of BAC clones in the library have an average insert size greater than 100 kb. Based on a genome size of 1115 Mb, library coverage is 9 haploid genome equivalents. Screening the BAC library colony filters with cpDNA sequences showed that contamination of the genomic library with chloroplast clones was low (1.85%). Library screening with three genomic RFLP probes linked to soybean cyst nematode (SCN) resistance genes resulted in an average of 18 hits per probe (range 7 to 30). Two separate pools of forward and reverse suppression subtractive cDNAs obtained from SCN-infected and uninfected roots of PI 437654 were hybridized to the BAC library filters. The 488 BACs identified from positive signals were fingerprinted and analyzed using FPC software (version 4.0) resulting in 85 different contigs. Contigs were grouped and analyzed in three categories: (1) contigs of BAC clones which hybridized to forward subtracted cDNAs, (2) contigs of BAC clones which hybridized to reverse subtracted cDNAs, and (3) contigs of BAC clones which hybridized to both forward and reverse subtracted cDNAs. This protocol provides an estimate of the number of genomic regions involved in early resistance response to a pathogenic attack.  相似文献   

12.
A porcine genomic bacterial artificial chromosome (BAC) library was constructed by cloning partial EcoRI-digested high-molecular-weight DNA from a Korean native boar into the EcoRI site of the pBACe3.6 vector. The library consists of about 165,000 clones with an average insert size of 125 kb, representing about seven genome equivalents of coverage. About 130,000 clones (corresponding to fivefold genome coverage) were arrayed in 14 superpools which were organized as four dimensional pools. The library was further characterized by PCR screening of 38 microsatellite probes. An average of 4.84 positive clones were selected per marker. This indicates that the library is unbiased and will be useful for initiating fine scale physical mapping of major QTL in pigs. The library is being used to isolate specific clones by screening with type I and type II marker clones located in the QTL region affecting intramuscular fat content on SSC6.  相似文献   

13.
Rice is an important crop and a model system for monocot genomics, and is a target for whole genome sequencing by the International Rice Genome Sequencing Project (IRGSP). The IRGSP is using a clone by clone approach to sequence rice based on minimum tiles of BAC or PAC clones. For chromosomes 10 and 3 we are using an integrated physical map based on two fingerprinted and end-sequenced BAC libraries to identifying a minimum tiling path of clones. In this study we constructed and tested two rice genomic libraries with an average insert size of 10 kb (10-kb library) to support the gap closure and finishing phases of the rice genome sequencing project. The HaeIII library contains 166,752 clones covering approximately 4.6x rice genome equivalents with an average insert size of 10.5 kb. The Sau3AI library contains 138,960 clones covering 4.2x genome equivalents with an average insert size of 11.6 kb. Both libraries were gridded in duplicate onto 11 high-density filters in a 5 x 5 pattern to facilitate screening by hybridization. The libraries contain an unbiased coverage of the rice genome with less than 5% contamination by clones containing organelle DNA or no insert. An efficient method was developed, consisting of pooled overgo hybridization, the selection of 10-kb gap spanning clones using end sequences, transposon sequencing and utilization of in silico draft sequence, to close relatively small gaps between sequenced BAC clones. Using this method we were able to close a majority of the gaps (up to approximately 50 kb) identified during the finishing phase of chromosome-10 sequencing. This method represents a useful way to close clone gaps and thus to complete the entire rice genome.  相似文献   

14.
A bacterial artificial chromosome (BAC) library containing a large genomlc DNA insert is an important tool for genome physical mapping, map-based cloning, and genome sequencing. To Isolate genes via a map-based cloning strategy and to perform physical mapping of the cotton genome, a high-quality BAC library containing large cotton DNA Inserts Is needed. We have developed a BAC library of the restoring line 0-613-2R for Isolating the fertility restorer (Rf1) gene and genomic research in cotton (Gossypium hirsutum L.). The BAC library contains 97 825 clones stored In 255 pieces of a 384-well mlcrotiter plate. Random samples of BACs digested with the Notl enzyme Indicated that the average Insert size Is approximately 130 kb, with a range of 80-275 kb, and 95.7% of the BAC clones in the library have an average insert size larger than 100 kb. Based on a cotton genome size of 2 250 Mb, library coverage is 5.7 × haploid genome equivalents. Four clones were selected randomly from the library to determine the stability of the BAC clones. There were no different fingerprints for 0 and 100 generations of each clone digested with Notl and Hlndiii enzymes. Thus, the atabiiity of a single BAC clone can be sustained at iesat for 100 generations. Eight simple sequence repeat (SSR) markers flanking the Rf; gene were chosen to screen the BAC library by pool using PCR method and 25 positive clones were identified with 3.1 positive clones per SSR marker.  相似文献   

15.
Pea (Pisum sativum L.) has a genome of about 4 Gb that appears to share conserved synteny with model legumes having genomes of 0.2-0.4 Gb despite extensive intergenic expansion. Pea plant inventory (PI) accession 269818 has been used to introgress genetic diversity into the cultivated germplasm pool. The aim here was to develop pea bacterial artificial chromosome (BAC) libraries that would enable the isolation of genes involved in plant disease resistance or control of economically important traits. The BAC libraries encompassed about 3.2 haploid genome equivalents consisting of partially HindIII-digested DNA fragments with a mean size of 105 kb that were inserted in 1 of 2 vectors. The low-copy oriT-based T-DNA vector (pCLD04541) library contained 55 680 clones. The single-copy oriS-based vector (pIndigoBAC-5) library contained 65 280 clones. Colony hybridization of a universal chloroplast probe indicated that about 1% of clones in the libraries were of chloroplast origin. The presence of about 0.1% empty vectors was inferred by white/blue colony plate counts. The usefulness of the libraries was tested by 2 replicated methods. First, high-density filters were probed with low copy number sequences. Second, BAC plate-pool DNA was used successfully to PCR amplify 7 of 9 published pea resistance gene analogs (RGAs) and several other low copy number pea sequences. Individual BAC clones encoding specific sequences were identified. Therefore, the HindIII BAC libraries of pea, based on germplasm accession PI 269818, will be useful for the isolation of genes underlying disease resistance and other economically important traits.  相似文献   

16.
We report the construction of a YAC library that provides 10-fold redundant coverage of the chicken genome. The library was made by transforming S. cerevisiae AB1380 with YAC constructs consisting of partially digested and size fractionated (>465 kb) EcoRI genomic fragments ligated to pCGS966 YAC vector arms. The primary library provides 8.5-fold redundant coverage and consists of 16,000 clones arrayed in duplicate 96-well microtiter plates and gridded on nylon membranes at high density (18,000 clones/484cm2). The average insert size, 634 kb, was derived from size fractionation of a random sample of 218 YACs. Hybridization of five unlinked chicken genes to colony blots revealed six or more positive clones. This is consistent with the theoretical expectation from average insert sizes and number of clones. A second collection of clones consists of a further 20,000 colonies, of which 20% contain inserts larger than 450 kb and 80% contain only coligated vector arms. We estimate that these clones provide a further 1.5-fold redundant coverage of the chicken genome; thus, the total collection of 36,000 clones provides 10-fold redundant coverage of the chicken genome. The library is intended as a resource for fine-scale analysis of the organization of the chicken genome and is presently being used to construct a contig map of chicken Chromosome (Chr) 16, which contains the MHC and nucleolar organizer. Received: 15 July 1996 / Accepted: 20 November 1996  相似文献   

17.
Brachypodium is well suited as a model system for temperate grasses because of its compact genome and a range of biological features. In an effort to develop resources for genome research in this emerging model species, we constructed 2 bacterial artificial chromosome (BAC) libraries from an inbred diploid Brachypodium distachyon line, Bd21, using restriction enzymes HindIII and BamHI. A total of 73,728 clones (36,864 per BAC library) were picked and arrayed in 192,384-well plates. The average insert size for the BamHI and HindIII libraries is estimated to be 100 and 105 kb, respectively, and inserts of chloroplast origin account for 4.4% and 2.4%, respectively. The libraries individually represent 9.4- and 9.9-fold haploid genome equivalents with combined 19.3-fold genome coverage, based on a genome size of 355 Mb reported for the diploid Brachypodium, implying a 99.99% probability that any given specific sequence will be present in each library. Hybridization of the libraries with 8 starch biosynthesis genes was used to empirically evaluate this theoretical genome coverage; the frequency at which these genes were present in the library clones gave an estimated coverage of 11.6- and 19.6-fold genome equivalents. To obtain a first view of the sequence composition of the Brachypodium genome, 2185 BAC end sequences (BES) representing 1.3 Mb of random genomic sequence were compared with the NCBI GenBank database and the GIRI repeat database. Using a cutoff expectation value of E<10-10, only 3.3% of the BESs showed similarity to repetitive sequences in the existing database, whereas 40.0% had matches to the sequences in the EST database, suggesting that a considerable portion of the Brachypodium genome is likely transcribed. When the BESs were compared with individual EST databases, more matches hit wheat than maize, although their EST collections are of a similar size, further supporting the close relationship between Brachypodium and the Triticeae. Moreover, 122 BESs have significant matches to wheat ESTs mapped to individual chromosome bin positions. These BACs represent colinear regions containing the mapped wheat ESTs and would be useful in identifying additional markers for specific wheat chromosome regions.  相似文献   

18.
We have constructed an arrayed, large insert, multiple coverage genomic library of Pneumocystis carinii DNA using the bacteriophage P1 cloning system. The library consists of ∽4800 independent clones with an average insert size of ∽55 kbp individually arrayed in 50 microtiter plates, and is readily screened on ten or fewer microtiter plate-sized filters using a high density colony replicating device. Screening of the library for unique P. carinii sequences detected an average of 4–5 positive clones for each, consistent with a several-fold coverage of the ∽10-mbp P. carinii genome. Restriction and hybridization analyses demonstrated that the P1 clones in this library are quite stable and contain few, if any, chimeric inserts. Thus, this arrayed, large insert library off. carinii genomic DNA will be a valuable tool in the future genetic dissection of this important pathogen.  相似文献   

19.
A bacterial artificial chromosome (BAC) library has been established for Arabidopsis thaliana (ecotype Col-0) covering about seven haploid nuclear genome equivalents. This library, called the Institut für Genbiologische Forschung (IGF) BAC library, consists of 10 752 recombinant clones carrying inserts (generated by partial EcoRI digestion) of an average size of about 100 kb in a modified BAC vector, pBeloBAC-Kan. Hybridization with organellar DNA and nuclear repetitive DNA elements revealed the presence of 1.1% clones with mitochondrial DNA, 0.2% clones with plastid DNA, 3.2% clones with the 180 bp paracentromeric repeat, 1.6% clones with 5S rDNA, and 10.8% clones with the 18S-25S rDNA repeat. With its extensive genome coverage, its rather uniformly sized inserts (80 kb <85% <120 kb) and low contamination with organellar DNA, this library provides an excellent resource for A. thaliana genomic mapping, map-based gene cloning, and genome sequencing. Received: 26 November 1997 / Accepted: 19 February 1998  相似文献   

20.
Three maize (Zea mays) bacterial artificial chromosome (BAC) libraries were constructed from inbred line B73. High-density filter sets from all three libraries, made using different restriction enzymes (HindIII, EcoRI, and MboI, respectively), were evaluated with a set of complex probes including the 185-bp knob repeat, ribosomal DNA, two telomere-associated repeat sequences, four centromere repeats, the mitochondrial genome, a multifragment chloroplast DNA probe, and bacteriophage lambda. The results indicate that the libraries are of high quality with low contamination by organellar and lambda-sequences. The use of libraries from multiple enzymes increased the chance of recovering each region of the genome. Ninety maize restriction fragment-length polymorphism core markers were hybridized to filters of the HindIII library, representing 6x coverage of the genome, to initiate development of a framework for anchoring BAC contigs to the intermated B73 x Mo17 genetic map and to mark the bin boundaries on the physical map. All of the clones used as hybridization probes detected at least three BACs. Twenty-two single-copy number core markers identified an average of 7.4 +/- 3.3 positive clones, consistent with the expectation of six clones. This information is integrated into fingerprinting data generated by the Arizona Genomics Institute to assemble the BAC contigs using fingerprint contig and contributed to the process of physical map construction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号