首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
In the slow-growing soybean symbiont, Bradyrhizobium japonicum (strain 110), a nifA-like regulatory gene was located immediately upstream of the previously mapped fixA gene. By interspecies hybridization and partial DNA sequencing the gene was found to be homologous to nifA from Klebsiella pneumoniae and Rhizobium meliloti, and to a lesser extent, also to ntrC from K. pneumoniae. The B. japonicum nifA gene product was shown to activate B. japonicum and K. pneumoniae nif promoters (using nif::lacZ translational fusions) both in Escherichia coli and B. japonicum backgrounds. In the heterologous E. coli system activation was shown to be dependent on the ntrA gene product. Site-directed insertion and deletion/replacement mutagenesis revealed that nifA is probably the promoter-distal cistron within an operon. NifA- mutants were Fix- and pleiotropic: (i) they were defective in the synthesis of several proteins including the nifH gene product (nitrogenase Fe protein); the same proteins had been known to be repressed under aerobic growth of B. japonicum but derepressed at low O2 tension; (ii) the mutants had an altered nodulation phenotype inducing numerous, small, widely distributed soybean nodules in which the bacteroids were subject to severe degradation. These results show that nifA not only controls nitrogenase genes but also one or more genes involved in the establishment of a determinate, nitrogen-fixing root nodule symbiosis.  相似文献   

5.
6.
7.
8.
Hybrid 5' regulatory regions were constructed in which the upstream activator sequence (UAS) and promoter of various nif genes were exchanged with the upstream regulatory sequence (URS) of the fdhF gene from Escherichia coli. They were analysed for their regulatory response under different growth conditions with the aid of fdhF'-'lacZ or nif'-'lacZ fusions. Placement of the UAS from the Bradyrhizobium japonicum nifH gene in front of the spacer (DNA region between URS and promoter) plus promoter from fdhF renders fdhF expression activatable by the Klebsiella pneumoniae NIFA protein, both under aerobic and anaerobic conditions. This excludes the possibility that the spacer of the fdhF5' flanking region contains a site recognized by a putative oxygen- or nitrate-responsive repressor. There was also considerable activation by NIFA of fdhF expression in a construct lacking the nifH UAS but containing the fdhF spacer plus promoter. Further experimental evidence suggests that this reflects a direct interaction between NIFA and RNA polymerase at the ntrA-dependent promoter. A second set of hybrid constructs in which the URS from fdhF (E. coli) was placed in front of the nifD spacer plus promoter from B. japonicum or in front of the K. pneumoniae nifH, nifU, nifB spacers and promoters, delivered inactive constructs in the case of the nifD, nifU and nifB genes. However, a nifH'-'lacZ fusion preceded by its own spacer and promoter plus the foreign fdhF URS displayed all the regulatory characteristics of fdhF expression, i.e. anaerobic induction with formate and repression by oxygen and nitrate. Although it is not known why only one out of the four nif promoters could be activated by the fdhF URS, this result nevertheless demonstrates that the various regulatory stimuli affecting expression of fdhF in E. coli have their target at the upstream regulatory sequence.  相似文献   

9.
10.
Methanosarcina barkeri 227 possesses two clusters of genes potentially encoding nitrogenases. We have previously demonstrated that one cluster, called nif2, is expressed under molybdenum (Mo)-sufficient conditions, and the deduced amino acid sequences for nitrogenase structural genes in that cluster most closely resemble those for the Mo nitrogenase of the gram-positive eubacterium Clostridium pasteurianum. The previously cloned nifH1 from M. barkeri shows phylogenetic relationships with genes encoding components of eubacterial Mo-independent eubacterial alternative nitrogenases and other methanogen nitrogenases. In this study, we cloned and sequenced nifD1 and part of nifK1 from M. barkeri 227. The deduced amino acid sequence encoded by nifD1 from M. barkeri showed great similarity with vnfD gene products from vanadium (V) nitrogenases, with an 80% identity at the amino acid level with the vnfD gene product from Anabaena variabilis. Moreover, there was a small open reading frame located between nifD1 and nifK1 with clear homology to vnfG, a hallmark of eubacterial alternative nitrogenases. Stimulation of diazotrophic growth of M. barkeri 227 by V in the absence of Mo was demonstrated. The unusual complement of nif genes in M. barkeri 227, with one cluster resembling that from a gram-positive eubacterium and the other resembling a eubacterial V nitrogenase gene cluster, suggests horizontal genetic transfer of those genes.  相似文献   

11.
Lei S  Pulakat L  Gavini N 《FEBS letters》2000,482(1-2):149-153
Azotobacter vinelandii carries three different and genetically distinct nitrogenase systems on its chromosome. Expression of all three nitrogenases is repressed by high concentrations of fixed nitrogen. Expression of individual nitrogenase systems is under the control of specific metal availability. We have isolated a novel type of A. vinelandii DJ54 revertant, designated A. vinelandii BG54, which carries a defined deletion in the nifH gene and is capable of diazotrophic growth in the presence of molybdenum. Inactivation of nifDK has no effect on growth of this mutant strain in nitrogen-free medium suggesting that products of the nif system are not involved in supporting diazotrophic growth of A. vinelandii BG54. Similar to the wild type, A. vinelandii BG54 is also sensitive to 1 mM tungsten. Tn5-B21 mutagenesis to inactivate the genes specific to individual systems revealed that the structural genes for vnf nitrogenase are required for diazotrophic growth of A. vinelandii BG54. Analysis of promoter activity of different nif systems revealed that the vnf promoter is activated in A. vinelandii BG54 in the presence of molybdenum. Based on these data we conclude that A. vinelandii BG54 strain utilizes vnf nitrogenase proteins to support its diazotrophic growth.  相似文献   

12.
13.
14.
The DNA sequence was determined for the cloned Thiobacillus ferrooxidans nifH and part of the nifD genes. A putative T. ferrooxidans nifH promoter was identified whose sequences showed perfect consensus with those of the Klebsiella pneumoniae nif promoter. Two putative consensus upstream activator sequences were also identified. The amino acid sequence was deduced from the DNA sequence. In a comparison of nifH DNA sequences from T. ferrooxidans and eight other nitrogen-fixing microbes, a Rhizobium sp. isolated from Parasponia andersonii showed the greatest homology (74%) and Clostridium pasteurianum (nifH 1) showed the least homology (54%). In a comparison of the amino acid sequences of the Fe proteins, the Rhizobium sp. and Rhizobium japonicum showed the greatest homology (both 86%) and C. pasteurianum (nifH 1 gene product) demonstrated the least homology (56%) to the T. ferrooxidans Fe protein.  相似文献   

15.
16.
The genes encoding the structural components of nitrogenase, nifH, nifD and nifK, from the fast-growing, broad-host-range Rhizobium strain ANU240 have been identified and characterized. They are duplicated and linked in an operon nifHDK in both copies. Sequence analysis of the nifH gene from each copy, together with partial sequence analysis of the nifD and nifK genes, and restriction endonuclease analysis suggested that the duplication is precise. Comparison of the Fe-protein sequence from strain ANU240 with that from other nitrogen-fixing organisms revealed that, despite its broad host range and certain physiological properties characteristic of Bradyrhizobium strains, ANU240 is more closely related to the narrow-host-range Rhizobium strains than to the broad-host-range Bradyrhizobium strains. The promoter regions of both copies of the nif genes contain the consensus sequence characteristic of nif promoters, and functional analysis of the two promoters suggested that both nif operons are transcribed in nodules.  相似文献   

17.
In contrast to Klebsiella pneumoniae or fast-growing Rhizobium species, such as R. meliloti, where the nitrogenase structural genes are clustered in one operon (nifHDK), in slow-growing Rhizobium japonicum 110, nifH and nifDK are on separate operons.  相似文献   

18.
Rhizobium japonicum nitrogenase Fe protein gene (nifH).   总被引:15,自引:6,他引:9       下载免费PDF全文
  相似文献   

19.
Ineffective alfalfa nodules formed by Rhizobium meliloti nif::Tn5 mutants were examined by light and electron microscopy. R. meliloti nifH::Tn5 mutants formed nodules that were similar in structure to wild-type nodules except that nifH- bacteroids accumulated a compact, electron-dense body. In contrast to nodules induced by wild type and nifH mutants, nifDK- R. meliloti mutants induced nodules which contained numerous starch grains and prematurely senescent bacteroids. In addition, meristematic activity in nifDK- nodules ceased significantly earlier than in nifH- nodules. All mutant nodules exhibited elevated levels of rough endoplasmic reticulum and Golgi membranes compared to wild-type nodule cells. These elevated levels may reflect either a response to nitrogen starvation in the ineffective nodules or an abnormal synthesis and export of nodule-specific proteins during later developmental stages.  相似文献   

20.
Anabaena variabilis fixes nitrogen under aerobic growth conditions in differentiated cells called heterocysts using either a Mo nitrogenase or a V nitrogenase. The nifH1 gene, which encodes the dinitrogenase reductase of the Mo nitrogenase that is expressed only in heterocysts, is cotranscribed with nifD1 and nifK1, which together encode the Mo dinitrogenase. These genes were expressed in the presence or absence of molybdate or vanadate. The vnfH gene, which encodes the dinitrogenase reductase of the V nitrogenase, was located about 23 kb from vnfDGK, which encodes the V dinitrogenase; however, like vnfDGK, vnfH was expressed only in the absence of molybdate, with or without vanadate. Like nifH1, the vnfH gene was expressed exclusively in heterocysts under either aerobic or anaerobic growth conditions and thus is under the control of developmental factors. The vnfH mutant was able to grow diazotrophically using the V nitrogenase, because NifH1, which was also made in cells starved for molybdate, could substitute for VnfH. Under oxic conditions, the nifH1 mutant grew in the absence of molybdate but not in its presence, using VnfH, while the nifH1 vnfH double mutant did not grow diazotrophically with or without molybdate or vanadate. A nifH1 mutant that expressed nifDK and vnfH but not vnfDGK was able to grow and fix nitrogen normally, indicating that VnfH could substitute for NifH in the Mo nitrogenase and that these dinitrogenase reductases are not involved in determining the metal specificity of the Mo nitrogenase or the V nitrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号