首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: In the present study we investigated uptake of the nitric oxide (NO) synthase inhibitors N G-methyl- l -arginine and N G-nitro- l -arginine by the mouse neuroblastoma × rat glioma hybrid cell line NG108-15. Uptake of N G-methyl- l -arginine was characterized by biphasic kinetics ( K m1 = 8 µmol/L, V max1 = 0.09 nmol × mg−1× min−1; K m2 = 229 µmol/L, V max2 = 2.9 nmol × mg−1× min−1) and was inhibited by basic but not by neutral amino acids. Uptake of N G-nitro- l -arginine followed Michaelis-Menten kinetics ( K m = 265 µmol/L, V max = 12.8 ± 0.86 nmol × mg−1× min−1) and was selectively inhibited by aromatic and branched chain amino acids. Further characterization of the transport systems revealed that uptake of N G-methyl- l -arginine is mediated by system y+, whereas systems L and T account for the transport of N G-nitro- l -arginine. In agreement with these data on uptake of the inhibitors, l -lysine and l -ornithine antagonized the inhibitory effects of N G-methyl- l -arginine on bradykinin-induced intracellular cyclic GMP accumulation, whereas l -tryptophan, l -phenylalanine, and l -leucine interfered with the effects of N G-nitro- l -arginine. These data suggest that rates of uptake are limiting for the biological effects of NO synthase inhibitors.  相似文献   

2.
Nitric oxide (NO) derived from endothelial nitric oxide synthase (eNOS) is a potent vasodilator and signaling molecule that plays an essential role in vascular remodeling of collateral arteries and perfusion recovery in response to hindlimb ischemia. In ischemic conditions, decreased NO bioavailability was observed because of increased oxidative stress, decreased l-arginine and tetrahy-drobiopterin. This study tested the hypothesis that dietary cosupplementation with tetrahydrobiopterin (BH4), l-arginine, and vitamin C acts synergistically to decrease oxidative stress, increase nitric oxide and improve blood flow in response to acute hindlimb ischemia. Rats were fed normal chow, chow supplemented with BH4 or l-arginine (alone or in combination) or chow supplemented with BH4 + l-arginine + vitamin C for 1 wk before induction of unilateral hindlimb ischemia. Cosupplementation with BH4 + l-arginine resulted in greater eNOS expression, Ca2+-dependent NOS activity and NO concentration in gastrocnemius from the is-chemic hindlimb, as well as greater recovery of foot perfusion and more collateral artery enlargement than did rats receiving either agent separately. The addition of vitamin C to the BH4 + l-arginine regimen did further increase these dependent variables, although only the increase in eNOS expression reached statistical significances. In addition, rats given all three supplements demonstrated significantly less Ca2+-independent activity, less nitrotyrosine accumulation, greater glutathione:glutathione disulfide (GSH:GSSG) ratio and less gastrocnemius muscle necrosis, on both macroscopic and microscopic levels. In conclusion, cosupplementation with BH4 + l-arginine + vitamin C significantly increased vascular perfusion after hindlimb ischemia by increasing eNOS activity and reducing oxidative stress and tissue necrosis. Oral cosupplementation of l-arginine, BH4 and vitamin C holds promise as a biological therapy to induce collateral artery enlargement.  相似文献   

3.
Nitric oxide (NO) derived from endothelial nitric oxide synthase (eNOS) is a potent vasodilator and signaling molecule that plays essential roles in neovascularization. During limb ischemia, decreased NO bioavailability occurs secondary to increased oxidant stress, decreased l-arginine and tetrahydrobiopterin. This study tested the hypothesis that dietary cosupplementation with tetrahydrobiopterin (BH4), l-arginine and vitamin C acts synergistically to decrease oxidant stress, increase NO and thereby increase blood flow recovery after hindlimb ischemia. Rats were fed normal chow, chow supplemented with BH4 or l-arginine (alone or in combination) or chow supplemented with BH4 + l-arginine + vitamin C for 1 wk before induction of hindlimb ischemia. In the is-chemic hindlimb, cosupplementation with BH4 + l-arginine resulted in greater eNOS and phospho-eNOS (P-eNOS) expression, Ca2+-dependent NOS activity and NO concentration in the ischemic calf region (gastrocnemius), as well as greater NO concentration in the region of collateral arteries (gracilis). Rats receiving cosupplementation of BH4 + l-arginine led to greater recovery of foot perfusion and greater collateral enlargement than did rats receiving either agent separately. The addition of vitamin C to the BH4 + l-arginine regimen further increased these dependent variables. In addition, rats given all three supplements showed significantly less Ca2+-independent activity, less nitrotyrosine accumulation, greater glutathione (GSH)–to–glutathione disulfide (GSSG) ratio and less gastrocnemius muscle necrosis, on both macroscopic and microscopic levels. In conclusion, co-supplementation with BH4 + l-arginine + vitamin C significantly increased blood flow recovery after hindlimb ischemia by reducing oxidant stress, increasing NO bioavailability, enlarging collateral arteries and reducing muscle necrosis. Oral cosupplementation of BH4, l-arginine and vitamin C holds promise as a biological therapy to induce collateral artery enlargement.  相似文献   

4.
It has been speculated that NG-hydroxy- -arginine (OH- -Arg), which is an intermediate in NO production from -arginine, may be converted to NO by superoxide ion. However, there is still no direct evidence for this conversion. In the present study this was investigated using superoxide ion generated either in acellular or cellular systems. It was found that OH- -Arg and hydroxylamine were converted to nitrite and nitrate apparently via NO by superoxide ion in aqueous solution. Arginine remained unaffected. These changes were observed during reaction of chemical substances as well as in a biological system (zymosan-activated macrophages in culture). Superoxide dismutase prevented this transformation. OH- -Arg was also spontaneously hydrolysed to hydroxylamine and -citrulline, however this occurred at pH> 9 only. Activated microsomes (containing different isoforms of cytochrome P450) were unable to replace NO-synthase in its ability to produce OH- -Arg from -arginine. These data support the hypothesis that a pathway alternative to the well-known synthesis of NO by NO-synthase via OH- -Arg exists. This pathway may involve the production of OH- -Arg by NO-synthase and decomposition of OH- -Arg to NO by the action of superoxide ion. Alternatively, hydrolysis of OH- -Arg to hydroxylamine may occur followed by its oxidation to NO, again by superoxide ion.  相似文献   

5.
Complex interactions between the -arginine/nitric oxide synthase (NOS) pathway and the sympathetic nervous system have been reported. Methods capable of measuring -arginine and norepinephrine (NE) have mainly been reported for plasma. We report the use of the microdialysis technique combined with high-performance liquid chromatography (HPLC) for measurement of both -arginine and NE within the same tissue microdialysis sample. The microdialysis probe consisted of linear flexible probes (membrane length: 10 mm, outside diameter: 290 μm, molecular weight cut-off 50 kDa). The method used for -arginine measurement was HPLC with fluorescence detection, giving a within-run and a between-day coefficient of variation of 2.9 and 12.8%, respectively. The detection limit was 0.5 pM/20 μl injected for -/ -arginine. The method used for NE measurement was HPLC with electrochemical detection. The coefficients of variation were 4% for within-assay precision and 7.5% for between-assay precision. The detection limit for NE was 1 fmol/20 μl injected. The microdialysis technique coupled with HPLC system was validated in vivo to measure muscular interstitial concentrations of both arginine and NE under baseline conditions and after intravenous infusion of 500 mg/kg of -arginine or -arginine. In conclusion, the microdialysis technique coupled to HPLC allows the simultaneous measurements of both -arginine and NE within the same tissue microenvironment and will enable the study of the complex interactions between the -arginine/NO pathway and sympathetic nervous system within the interstitial space of different organs.  相似文献   

6.
The influence of l-arginine on the temperature-induced aggregation of porcine and mink growth hormones was studied by fluorescence spectroscopy. It was found that l-arginine suppresses the heat-induced aggregation. Moreover, the analysis of l-arginine interaction with the native proteins by fluorescence spectroscopy and circular dichroism spectroscopy revealed no significant changes in their native structure. On the basis of the results, l-arginine could be considered as a potential additive for the prevention of storage and temperature-related denaturation and aggregation of veterinary growth hormones.  相似文献   

7.
Summary. This study examines the relationship between traditional risk factors of coronary artery disease and indicators involved in the metabolism of l-arginine (plasma and urine l-arginine, plasma l-citrulline, serum creatinine and urine orotic acid). Our study population consisted of 40 healthy male volunteers aged between 35 and 55 years. We found an inverse association between serum creatinine and blood pressure, between plasma l-citrulline and blood pressure, as well as between urine l-arginine and blood pressure. We also found a positive association between plasma LDL-cholesterol and urine l-arginine and a negative correlation between plasma l-arginine and LDL-cholesterol. Orotic acid measured from urine was not associated with any of the indicators of l-arginine metabolism. Our results indicate that l-arginine metabolism is of profound significance for cardiovascular health. However, our study does not answer questions relating to causality. Further studies are needed to clarify the causal relationship between cardiovascular risk factors, especially elevated blood pressure and high LDL-cholesterol, and indicators of l-arginine metabolism. Received January 18, 1999  相似文献   

8.
Nitric Oxide Synthase Activity Endogenously Modulates NMDA Receptors   总被引:7,自引:0,他引:7  
Abstract: We tested the possibility that endogenous nitric oxide synthase activity regulated NMDA receptors in primary cultured striatal neurons. We monitored NMDA-induced increase in intra-cellular Ca2+ levels with fura-2 ratio imaging, while nitric oxide synthase activity was either increased with l -arginihe (the natural substrate of nitric oxide synthase) or inhibited using nitro- l -arginine (a specific inhibitor of nitric oxide synthase). We found that the NMDA receptor effect was slowly but strongly diminished after an l -arginine (1 m M , 15 min) treatment ( l -arginine preincubation reduced the 100 μM NMDA-induced maximal effect by 30–50%). The l -arginine blockade of NMDA receptors was long-lasting but could be partially reversed by hemoglobin (100 μM , 10 min), which binds nitric oxide. This was not observed when the neurons were treated with l -arginine together with nitro- l -arginine. Our data strongly suggest that physiological nitric oxide synthase activity could regulate NMDA receptors.  相似文献   

9.
Investigations on P(2)-P(3)-heterocyclic dipeptide surrogates directed towards identification of an orally bioavailable thrombin inhibitor led us to pursue novel classes of achiral, non-covalent P(1)-arginine derivatives. The design, synthesis, and biological activity of inhibitors NC1-NC30 that feature three classes of monocyclic P(1)-arginine surrogates will be disclosed: (1) (hetero)aromatic amidines, amines and hydroxyamidines, (2) 2-aminopyrazines, and (3) 2-aminopyrimidines and 2-aminotetrahydropyrimidines.  相似文献   

10.
Endothelial function is impaired in hypercholesterolemia and atherosclerosis, which is probably due to reduced biological activity of endothelium-derived nitric oxide (NO). NO is synthesized in functionally intact endothelium by oxidation of the terminal guanidino nitrogen atom(s) of the amino acid precursor, L-arginine. We applied stable isotope dilution techniques and gas chromatographic-mass spectrometric approaches to investigate metabolism of L-[guanidino-(15)N(2)]-arginine to (15)N-labeled nitrate in hypercholesterolemic rabbits and controls. After 4 weeks on control or 1% cholesterol-enriched diet, rabbits received 267 +/- 6 micromol of L-[guanidino-(15)N(2)]-arginine/kg of body weight via gastric cannulation. (15)N-isotope content of L-arginine in plasma and in platelet lysates increased 2h later in both groups, and almost returned to baseline until 24h. (15)N-isotope content of plasma nitrite and nitrate also increased in both groups at 2h, and had almost returned to natural content 24h later. (15)N-isotope content of urinary nitrate was significantly increased in control animals in urines collected from 0 to 12, 12 to 24, and had returned to baseline in the urine sample collected from 24 to 48 h. In the cholesterol group only a slight, insignificant elevation of (15)N-isotope content was observed for urinary nitrate. The extent of conversion of L-[guanidino-(15)N(2)]-arginine to (15)N-labeled nitrate was strongly and inversely correlated to plasma concentration of the endogenous NO synthase inhibitor, asymmetric dimethylarginine (ADMA), which was elevated in cholesterol-fed rabbits (R=0.77; p < 0.05). Our data show that baseline NO synthase turnover rate is reduced in rabbits during early hypercholesterolemia. Our study gives evidence that the mechanism of the impaired conversion of L-[guanidino-(15)N(2)]-arginine to (15)N-labeled nitrate most likely involves inhibition of NO synthase by ADMA, which is present in elevated concentrations in hypercholesterolemia.  相似文献   

11.
Most of the bacteria, which were examined for the sensitivity to l-arginine analogs (l-canavanine, l-homoarginine, d-arginine and arginine hydroxamate), were insensitive to the analogs at a concentration of 8 mg/ml. Corynebacterium glutamicum DSS-8 isolated as d-serine-sensitive mutant from an isoleucine auxotroph KY 10150, was found to be sensitive to d-arginine and arginine hydroxamate. Furthermore, DSS-8 produced l-arginine in a cultural medium. l-Arginine analog-resistant mutants were derived from DSS-8 by N-methyl-N′-nitro-N-nitrosoguanidine (NTG) treatment. Most of them were found to produce a large amount of l-arginine. An isoleucine revertant from one of these mutants produced 19.6 mg/ml of l-arginine in the medium containing 15% (as sugar) of molasses.

The mechanism of the sensitivity to l-arginine analogs and that of the production of l-arginine in the d-serine-sensitive mutant, DSS-8, were investigated. DSS-8 seems to be a mutant having increased permeability to d- and l-arginine.  相似文献   

12.
Abstract: Characteristics of the transport of the nitric oxide synthase substrate l -arginine and its inhibitor, N G-nitro- l -arginine ( l -NOARG), into rat cerebellar synaptosomes were studied. Uptake of both l -arginine and l -NOARG was linear with increasing amount of protein (up to 40 µg) and time of incubation (up to 5 min) at 37°C. Uptake of both compounds reached a steady state by 20 min. Maximal uptake of l -NOARG (650 pmol/mg of protein) was three to four times higher than that of l -arginine (170 pmol/mg of protein). l -NOARG uptake showed biphasic kinetics ( K m 1 = 0.72 m M , V max 1 = 0.98 nmol/min/mg of protein; K m 2 = 2.57 m M , V max 2 = 16.25 nmol/min/mg of protein). l -Arginine uptake was monophasic with a K m of 106 µ M and a V max of 0.33 nmol/min/mg of protein. l -NOARG uptake was selectively inhibited by l -NOARG, N G-nitro- l -arginine methyl ester, and branched-chain and aromatic amino acids. l -Alanine and l -serine also inhibited l -NOARG uptake but with less potency. Uptake of l -arginine was selectively inhibited by N G-monomethyl- l -arginine acetate and basic amino acids. These studies suggest that in rat cerebellar synaptosomes, l -NOARG is transported by the neutral amino acid carrier systems T and L with high affinity, whereas l -arginine is transported by the basic amino acid carrier system y+ with high affinity. These data indicate that the concentration of competing amino acids is an important factor in determining the rates of uptake of l -NOARG and l -arginine into synaptosomes and, in this way, may control the activity of nitric oxide synthase.  相似文献   

13.
We investigated the effects of combining 1 g of l-citrulline and 1 g of l-arginine as oral supplementation on plasma l-arginine levels in healthy males. Oral l-citrulline plus l-arginine supplementation more efficiently increased plasma l-arginine levels than 2 g of l-citrulline or l-arginine, suggesting that oral l-citrulline and l-arginine increase plasma l-arginine levels more effectively in humans when combined.  相似文献   

14.
The aim of this study was to evaluate the influence of the intake of l-arginine alone and of l-arginine with vitamin C on mineral concentration in rats fed with a high-fat diet, and to assess the lipid glucose, insulin, and total antioxidant status (TAS) and tumor necrosis factor (TNF) alpha serum levels that result. Wistar rats were assigned to groups fed with either a standard control diet (C), a diet high in fat (FD), a diet high in fat with l-arginine, or a diet high in fat with l-arginine and vitamin C. After 6 weeks, the length and weight of the rats were measured, and the animals were euthanized. The liver, spleen, kidneys, pancreas, heart, and gonads were collected, as were blood samples. The total serum cholesterol, triglyceride, fasting glucose, insulin, TAS, and TNF alpha levels were measured. The tissue calcium, magnesium, iron, zinc, and copper concentrations were determined. It was found that l-arginine supplementation diminished the effect of the modified diet on the concentration of iron in the liver and spleen and of copper in heart. At the same time, it was observed that l-arginine supplementation reduced the effect of the high-fat diet on insulin, TNF alpha, and TAS. The combination of l-arginine and vitamin C produced a similar effect on the mineral levels in the tissues as did l-arginine used alone. Moreover, positive correlations between serum insulin and iron in the liver, between TNF alpha and iron in the liver, and between TNF alpha and copper in the heart were observed. The level of TAS in serum was inversely correlated with the copper level in the heart and the iron level in the liver. We concluded that the beneficial influence of l-arginine on insulin, TAS, and TNF alpha serum level is associated with changes in the iron and copper status in rats fed with a high-fat diet. No synergistic effect of l-arginine and vitamin C in the biochemical parameters or in the mineral status in rats fed with the modified diet was observed.  相似文献   

15.
Conformaitons of poly(L -arginine)/polyanion complexes were studies by CD measurements. The polyanions were the homoplolypeptides poly(L -glutamic acid) and poly(L -aspartic acid); the synthetic polyelectrolytes and polyethylenesulfonate; and the polynucleotides were native DNA, denatured DNA, and poly(U). It was found that poly(L -arginine) forms the α-helical conformation by interacting with the acidic homopolypeptides and the synthetic anionic polyelectrolytes. In each complex, poly(L -glutamic acid) is in the α-helical conformation, whereas poly(L -aspartic acid) is mostly in the random structure. The poly(L -glutamic acid) complex changed into the β-sheet structure at the transition temperature about 65°C in 0.01M cacodylate buffer (pH 7). Even in the presence of 5M urea, this complex remained in the α-helical conformation at room temperature. The existence of the stable complex of α-helical poly(L -arginine) and α-helical poly(L -glutamic acid) was successfully supported by the model building study of the complex. The α-helix of poly(L -arginine) induced by binding with polyacrylate was the most stable of the poly(L -arginine)-polyanion complexes examined as evidenced by thermal and urea effects. The lower helical content of the polyethylenesulfonate-complexed poly(L -aginine) was explained in terms of the higher charge density of the polyanion. On the other hand, native DNA, denatured DNA, and poly(U) were not effective in stabilizing the helical structure of poly(L -arginine). This may be due to the rigidity of polyanions and to the steric hindrance of bases. Furthermore, the distinitive structual behavior of poly(L -arginine) and poly(L -lysine) regarding polyanion interaction has been noticed throughout the study.  相似文献   

16.
This study was conducted with rats to determine the safety of long-term dietary supplementation with l-arginine. Beginning at 6 weeks of age, male and female rats were fed a casein-based semi-purified diet containing 0.61 % l-arginine and received drinking water containing l-arginine-HCl (0, 1.8, or 3.6 g l-arginine/kg body-weight/day; n = 10/group). These supplemental doses of l-arginine were equivalent to 0, 286, and 573 mg l-arginine/kg body-weight/day, respectively, in humans. After a 13-week supplementation period, blood samples were obtained from rats for biochemical analyses. Supplementation with l-arginine increased plasma concentrations of arginine, ornithine, proline, homoarginine, urea, and nitric oxide metabolites without affecting those for lysine, histidine, or methylarginines, while reducing plasma concentrations of ammonia, glutamine, free fatty acids, and triglycerides. l-Arginine supplementation enhanced protein gain and reduced white-fat deposition in the body. Based on general appearance, feeding behavior, and physiological parameters, all animals showed good health during the entire experimental period; Plasma concentrations of all measured hormones (except leptin) did not differ between control and arginine-supplemented rats. l-Arginine supplementation reduced plasma levels of leptin. Additionally, l-arginine supplementation increased l-arginine:glycine amidinotransferase activity in kidneys but not in the liver or small intestine, suggesting tissue-specific regulation of enzyme expression by l-arginine. Collectively, these results indicate that dietary supplementation with l-arginine (e.g., 3.6 g/kg body-weight/day) is safe in rats for at least 91 days. This dose is equivalent to 40 g l-arginine/kg body-weight/day for a 70-kg person. Our findings help guide clinical studies to determine the safety of long-term oral administration of l-arginine to humans.  相似文献   

17.
Due to the complex mechanisms of l-arginine activity, it is difficult to determine the clinical significance of supplementation with this amino acid. The objective of this study was to determine the influence of short-term supplementation with l-arginine in stress conditions, induced by ischemia–reperfusion syndrome, by assessing the damage to muscular and hepatic cells on the basis of creatine kinase (CK), alanine aminotransferase (ALAT) and aspartic aminotransferase (AspAT) activity in blood and the level of oxygen free radicals in analyzed tissues of rats. We observed that induced ischemia of hind limb caused an increase in CK, ALAT and AspAT activity and an increase in the level of free radicals in liver, but not in skeletal muscle. Supplementation with l-arginine led to a reduction in serum activity of CK and AspAT and reduction of the level of free radicals in analysed tissues. Simultaneous supplementation with l-arginine AND l-NAME resulted in a reversal of changes induced by l-arginine supplementation in the case of AspAT and free radicals in skeletal muscle. The results indicate that under conditions of ischemia–reperfusion, short-term administration of l-arginine has a protective effect on skeletal muscle manifesting itself by reduction of CK in the serum and reduction of free radicals level in THIS tissue.  相似文献   

18.
The contents of plasma free amino acids, the amounts of urinary excreted amino acids and urea, and the activities of liver serine dehydratase, glutamic-oxalacetic transaminase and glutamic-pyruvic transaminase were determined in weanling rats fed ad libitum a 10% casein diet (control), a 10% casein diet containing 7% glycine and 10% casein diets containing 7% glycine supplemented with 1.4% L-arginine and/or 0.9% L-methionine for 14 days.

The remarkable increase of glycine and the moderate increase of serine in the plasma of animals fed excess glycine diets were observed. The amount of excreted glycine in the urine of animals fed the excess glycine diet supplemented with L-arginine and L-methionine was much greater than that of animals given the excess glycine diet. Urinary excreted urea of rats fed the excess glycine diet was a little greater and that of rats fed the excess glycine diet supplemented with L-arginine and L-methionine was much greater than the control. Liver serine dehydratase activity of animals given the excess glycine diets with or without L-arginine was higher than the control and the highest activity was observed in the liver of animals fed the excess glycine diet containing L-arginine and L-methionine. The activity of liver glutamic-oxalacetic transaminase of rats fed the excess glycine diet containing L-arginine and L-methionine was a little higher than that of rats given the other diets. Liver glutamic-pyruvic transaminase activity was a little higher in animals given the excess glycine diets with or without L-arginine and further higher in animals fed the excess glycine diet containing L-arginine and L-methionine than the control.  相似文献   

19.
The current paper continues our study on the ability of l-arginine to prevent/reduce the aggregation of proteins that results from the various stresses during the lyophilisation and/or storage of lyophilized protein-based products. The first part of our study, i.e. formulation development, was devoted to the rational design and optimization of an l-arginine containing lyophilized formulation which can resist the natural tendency of l-arginine to absorb atmosphere moisture. Mannitol and trehalose were chosen among other excipients to be included in the protein-based formulation, as mannitol in a combination with l-arginine has been shown to reduce moisture sorption while trehalose provides a degree of lyoprotection. In the present study, a number of formulations, which comprised bovine serum albumin (BSA) with and without l-arginine, and with five different ratios of trehalose-to-mannitol (from 30:70 to 80:20) were lyophilised and assessed. The internal structures and the moisture sorption/retention of the lyophilized formulations were characterised. To study the effect of l-arginine on BSA solid-phase stability, the lyophilized powder was exposed to accelerated storage conditions (high moisture (75% RH) and temperature (22 or 45 °C)) for up to 24 h. The lyophilized BSA formulations were then reconstituted and solution-state protein aggregation assessed by turbidimetry at 360 nm and fluorescence spectroscopy using the thioflavin T assay. It was demonstrated that l-arginine can be used in protein-based freeze-dried formulations to significantly reduce the aggregation of protein during the manufacturing, storage and subsequent reconstitution. The results also revealed the importance of a sufficient amount of mannitol in the arginine-containing formulations.  相似文献   

20.
The effect ofL-arginine, the precursor of nitric oxide, on ischemic dopamine release from the striatum was investigated in Mongolian gerbils subjected to bilateral carotid artery occlusion (15 min) alone or with reflow (2 h). Dopamine and its metabolites were measured in the striatal extracellular space dialysate after continuous perfusion (2 l/min) of artificial extracellular fluid in the presence or absence of 15 mmol/literL- orD-arginine or 1 mmol/liter nitro-L-arginine.L-Arginine but notD-arginine increased the striatal content of dopamine in pre- and postischemia whereas it lowered the levels of dopamine and 3-methoxytyramine induced by ischemia. In contrast, nitro-L-arginine reduced the preischemic levels of dopamine and 3,4-dihydroxyphenyl-acetic acid, and had no effect on the ischemic release of dopamine. These findings indicate thatL-arginine stereospecifically modified the ischemic release and metabolism of dopamine. The data also suggest that the basal level of nitric oxide is not involved in dopamine release during ischemia but may participate in regulating dopamine release under physiological conditions.Presented in part at the 19th International Joint Conference on Stroke and Cerebral Circulation, San Diego, California, February 17–19, 1994.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号