首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Indirect double immunofluorescence labelling for eight neuropeptides in the pancreas of the bullfrog, Rana catesbeiana, demonstrated the occurrence, distribution, and coexistence of certain neuropeptides in the exocrine and endocrine pancreas. Immunoreactivity of substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY), FMRFamide (FMRF), and galanin (GAL) was localized in nerve fibers distributed between the acini and around the duct system and vasculature of the exocrine pancreas. In these regions, CGRP-immunoreactive fibers were more numerous than those containing the other five peptides. Almost all SP fibers showed coexistence of SP with CGRP, and about one third of fibers also showed coexistence of SP with VIP, NPY, FMRF, and GAL. In the endocrine pancreas, SP, CGRP, VIP, and GAL were recognized in the nerve fibers around and within the islets of Langerhans, and VIP and GAL fibers were more numerous than SP and CGRP fibers. All CGRP fibers, and about half of the VIP and GAL fibers were immunoreactive for SP. NPY- and FMRF-immunoreactive cells were found at the periphery of the islets. These findings suggest that the exocrine and endocrine pancreatic functions of the bullfrog are under the control of peptidergic innervation.  相似文献   

2.
Immunoreactivity of galanin (GAL) was detected in the nerve fibers distributed within the intervascular stroma of the bullfrog carotid labyrinth. GAL-immunoreactive fibers are numerous, and some are close to the sinusoidal plexus. Most GAL fibers appear as thin processes with some varicosities. A combination of indirect double immunofluorescence labelling and image processing clearly demonstrated that the distribution patern of GAL fibers is different from that of SP fibers. This indicates that GAL and SP do not coexist in the same nerve fibers. The role of GAL fibers may be different from that of previously reported neuropeptides (substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide, neuropeptide Y, and others) as a neuromodulator in controlling vascular tone of the labyrinth.  相似文献   

3.
R L Shew  R E Papka  D L McNeill 《Peptides》1991,12(3):593-600
Immunoreactivity to the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) was examined in nerves in the rat uterus as a prelude to studying their effects on uterine contractility. With immunocytochemical techniques, SP immunoreactivity (SP-I) and CGRP-I were localized in myometrial nerves throughout the uterine horns, with nerves immunoreactive for CGRP being the more numerous. Immunocytochemical double labeling studies revealed SP coexisted with CGRP in a subpopulation of CGRP-I nerve fibers, i.e., SP-I was not present in all CGRP-I nerves. Effects of these neuropeptides on uterine contractility were examined on in vitro preparations of uterine horns from diethylstilbestrol-treated rats. SP (10(-4) to 10(-8) M) stimulated uterine contraction in a dose-related manner. CGRP(1-37) and CGRP(8-37) had no effect on basal uterine tension. While CGRP(1-37) (10(-7) M) reduced SP-stimulated (10(-5) M) uterine contraction by 56%, CGRP(8-37) had no effect on SP-stimulated uterine contraction. However, CGRP(8-37) (10(-6) M) significantly reduced the ability of CGRP(1-37) (10(-7) M) to inhibit SP-stimulated uterine contraction. These results demonstrate that SP- and CGRP-I are present in, and coexist in some uterine nerves, presumably afferent nerves. The first 7 amino acids are necessary for the inhibitory effect of CGRP(1-37) on stimulated uterine contraction. In addition, CGRP(8-37) acted as an antagonist to this inhibitory action. SP and CGRP could be coreleased from afferent fibers in an "efferent fashion" and influence uterine contractility. SP having a contractile effect and CGRP having a relaxing effect.  相似文献   

4.
S Ogawa  L M Kow  D W Pfaff 《Peptides》1992,13(5):965-975
Certain neuropeptides can facilitate lordosis by acting on midbrain periaqueductal gray (PAG) in estrogen-primed female rats. Here, we investigated responses of individual PAG neurons in vitro, to five neuropeptides: substance P (SP), luteinizing hormone-releasing hormone (LHRH), prolactin (PRL), oxytocin (OT), and thyrotropin-releasing hormone (TRH). Substance P, OT, and TRH excited spontaneous activity of PAG neurons through neurotransmitter-like actions in a dose-dependent manner, whereas LHRH and PRL virtually never affected PAG neurons this way. Oxytocin acted through oxytocin receptors located on the recorded PAG neurons, since excitatory actions of OT were 1) not abolished by synaptic blockade, 2) mimicked by the OT-specific agonist [Thr4, Gly7]OT but not by arginine vasopressin, and 3) blocked by the OT-specific antagonist [d(CH2)5,Tyr(Me)2,Orn8]vasotocin. Although LHRH had no neurotransmitter-like action on spontaneous activity of PAG neurons, it, as well as SP, could modulate responses of some dorsal PAG neurons to GABAA and GABAB agonists or norepinephrine. Neuromodulatory actions of LHRH and SP could help facilitate lordosis through PAG neurons.  相似文献   

5.
The appearance of Substance P (SP) and Neuropeptide Y (NPY) has been studied using light microscopic immunocytochemical labeling throughout the complete developmental span of Macaca nemestrina monkey striate cortex. In the adult, 80% of the NPY + neurons occur in the white matter (WM) and most of the remainder are medium to large multipolar neurons in layer 2. Fibers occur in all layers except 4C and are very numerous, given the relatively small number of NPY+ cell bodies. NPY+ neurons first were seen at embryonic day (E) 75. Most neurons were in the intermediate zone (IZ), but a few were in the immature cortical plate (CP). An adultlike distribution was present by E125 for neurons and by birth for fibers, but fiber staining intensity and number increased to postnatal year 1 (P1yr). In adult cortex, numerous SP+ nonpyramidal neurons were present in layers 2–6 and WM, but SP+ fibers were surprisingly infrequent. During development, significant numbers of SP+ neurons were not seen in the CP until E113–125. Later prenatal ages had a prominent plexus of SP+ cell bodies and fibers at the layer 5/6 border. This plexus disappeared by P12wk due to either down-regulation of SP or cell death. SP+ neurons in IZ/WM were very sparse until birth after which they increased in number and staining intensity up to P1yr, suggesting a postnatal up-regulation of SP in a preexisting WM subpopulation. Cell densities were determined for SP, NPY, and the neuron-specific marker microtubule-associated protein 2 (MAP2) to clarify the developmental dynamics of IZ/WM neurons. MAP2+ cell densities in WM peaked around birth and then declined 20% in the outer half and 77% in the inner half of WM. SP+ cell density rose 57% from birth to P20wk and then declined 20% into adult hood. NPY+ cell density was fairly constant prenatally and then rose 300% by adulthood. Neuropeptide cell density changes took place predominatly in the outer WM. These data indicate that cell death does occur in the general population of monkey striate cortical WM neurons. In contrast, both SP+ and NPY+ cells are characterized by minimal cell death and a late expression of neuropeptides which causes an increase in neuropeptide+ cell density in postnatal WM. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
The distribution and origin of substance P (SP) and neurokinin A (NKA) were studied in rat in the anterior buccal glands, which are minor mucous salivary glands. Indirect immunofluorescence staining showed moderate SP and NKA innervation of salivary acini and interlobular ducts, whereas blood vessels were more sparsely innervated, and there were few nerve fibers in the stroma and around the intralobular ducts. About 10%–20% of the trigeminal ganglion cells showed equally strong immunoreactivity to both SP and NKA. Unilateral denervation of the branches of the trigeminal nerve caused complete disappearance of the stromal fibers and greatly reduced the number of all other SP-immunoreactive and NKA-immunoreactive nerve fibers. In the superior cervical ganglia, SP and NKA immunoreactivity was restricted to small intensely fluorescent cells; SP and NKA immunoreactivity was absent from principal ganglionic cells, and thus sympathectomy had no any effect on the number or distribution of fibers immunoreactive for SP and NKA in the anterior buccal glands. The fibers remaining after sensory denervation could have been of parasympathetic origin, indicating a dual origin of nerves immunoreactive for SP and NKA in these glands. The present data demonstrate that the major part of the glandular SP and NKA innervation in the minor salivary glands derives from the trigeminal ganglia. The distribution of the peripheral nerve fibers indicates that they may play a role in the delivery of potent neuropeptides involved in the vascular, secretory, and motor (myoepithelial cells) functions of salivary glands.  相似文献   

7.
In this study, Met-enkephalin (Met-enk), substance P (SP) and tyrosine hydroxylase (TH) immunostaining was assessed in caudate nucleus biopsies from 15 Parkinson's disease patients who were treated surgically. According to the combination of changes in Met-enk, SP and TH immunostaining, several subgroups of parkinsonian patients were disclosed. Group I: Patients showing low SP and normal Met-enk immunostaining, and variably reduced TH immunoreactivity. Group II: both SP and Met-enk immunostaining were apparently of normal intensity in these PD patients, but they showed the greatest decrease in TH labeling. Group III: PD patients that showed normal SP, very low Met-enk and variably reduced TH immunostaining. Low Met-enk immunostaining tended to correlate with the severity of the disease as judged by higher Unified Parkinson's disease Rating Scale and gait scores. These results suggest that different neurochemical phenotypes may exist among Parkinson's disease patients. Peptidergic deficits should be taken into account for therapeutic intervention.  相似文献   

8.
The morphology and topographical distribution of neurons and terminals containing calcitonin gene-related peptide (CGRP) immunoreactivity in the cat periaqueductal grey (PAG) were studied using a rabbit antiserum raised against the C-terminal region of rat α-CGRP. In normal cats, numerous fibers, but rarely immunoreactive neurons, were observed in the PAG. CGRP-containing fibers showed bouton-like swellings along their length and expanded in terminal clusters of boutons. In many cases, CGRP-positive fibers were also observed in close association with small blood vessels. Immunoreactive fibers were particularly numerous at caudal PAG levels, mostly in its ventrolateral portion. In colchicine-treated cats, the pattern of CGRP-containing fibers was basically unchanged, despite a reduction of both the number of fibers and the intensity of fiber staining; in addition, numerous CGRP-positive neurons were found, mostly in the ventrolateral portion of the caudal PAG. These neurons were fusiform, spheroidal, and triangular in shape. The selective distribution of CGRP-positive elements in the PAG suggests a functional specialization of these neurons in the activation of pain-modulating mechanisms.  相似文献   

9.
The morphology and topographical distribution of neurons and terminals containing calcitonin gene-related peptide (CGRP) immunoreactivity in the cat periaqueductal grey (PAG) were studied using a rabbit antiserum raised against the C-terminal region of rat alpha-CGRP. In normal cats, numerous fibers, but rarely immunoreactive neurons, were observed in the PAG. CGRP-containing fibers showed bouton-like swellings along their length and expanded in terminal clusters of boutons. In many cases, CGRP-positive fibers were also observed in close association with small blood vessels. Immunoreactive fibers were particularly numerous at caudal PAG levels, mostly in its ventrolateral portion. In colchicine-treated cats, the pattern of CGRP-containing fibers was basically unchanged, despite a reduction of both the number of fibers and the intensity of fiber staining; in addition, numerous CGRP-positive neurons were found, mostly in the ventrolateral portion of the caudal PAG. These neurons were fusiform, spheroidal, and triangular in shape. The selective distribution of CGRP-positive elements in the PAG suggests a functional specialization of these neurons in the activation of pain-modulating mechanisms.  相似文献   

10.
Indirect double immunofluorescence labelling in the pharynx and lung of the bullfrog, Rana catesbeiana, demonstrated the occurrence, distribution, and coexistence of two neuropeptides. In the pharynx, immunoreactive calcitonin gene-related peptide (CGRP) and substance P (SP) were localized in nerve fibers distributed within and just beneath the ciliated epithelium. In the lung, CGRP and SP were localized in nerve fibers in five principal locations: 1) within the smooth muscle layer in the interfaveolar septa; 2) in the luminal thickened edges of the septa; 3) around the pulmonary vasculature; 4) within, and 5) under the ciliated epithelium. Within the smooth muscle layer in the septa, luminal thickened septa, and around blood vessels, almost all fibers showed coexistence of CGRP and SP. Within and just beneath the ciliated epithelium in the thickened septa, all fibers showed coexistence of CGRP and SP. No immunoreactivity for vasoactive intestinal polypeptide, neuropeptide Y, galanin, somatostatin, FMRFamide, and leucine-and methionine-enkephalins was detected in the nerve fibers within the larynx and the lung. Together with our previous data, the present findings suggest that peptidergic mechanisms are involved in the regulation of amphibian respiratory systems throughout their life.  相似文献   

11.
The distribution of calcitonin gene-related peptide (CGRP), substance P/tachykinin (SP/TK), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY) and gastrin-releasing peptide (GRP) immunreactivities (IR) in the rat pancreas was investigated using radioimmunoassay and immunohistochemistry. CGRP, NPY and VIP tissue contents are much higher than GRP and SP/TK concentrations. Peptide-containing nerves are distributed to both the exocrine and endocrine pancreas. However, differences exist in terms of density and targets of innervation for each peptidergic system. In the acini and through the stroma, fibers IR for CGRP, NPY and VIP are greater than GRP- and SP/TK-containing processes. The vasculature is supplied by a prominent NPY, CGRP and, to a lesser extent, SP/TK innervation. VIP-IR is found occasionally, and GRP-IR is never detected, in fibers associated with blood vessels. Around ducts, CGRP- and NPY-positive neurites are greater than SP/TK- greater than or equal to VIP-IR fibers, whereas GRP-containing nerves are not visualized. In the islets, the density of peptidergic nerves is: VIP-, GRP- greater than or equal to CGRP-IR greater than NPY or SP/TK. In intrapancreatic ganglia. VIP- and, to a lesser extent, NPY-IRs are found in numerous neuronal cell bodies and in nerve fibers; GRP-IR is present in numerous nerve processes and in few cell bodies; CGRP- and SP/TK-IRs are detected only in fibers wrapping around unlabeled ganglion cells. The majority of CGRP-IR fibers contain SP/TK-IR. The existence of differential patterns of peptidergic nerves suggests that peptides exert their effects on pancreatic functions via different pathways.  相似文献   

12.
We demonstrate the existence of nerve fibers possessing substance P (SP) and calcitonin gene-related peptide (CGRP) immunoreactivity in the mouse cervical ventral roots. The distribution of the SP and CGRP fibers was similar, but CGRP fibers were generally more numerous. Both types entered the ventral pia mater or formed hairpin loops, but they did not enter the spinal cord directly through these roots. SP and CGRP fibers in the ventral roots were thin and had many varicosities. We suggest that these SP and CGRP fibers are involved not only in a sensory mechanism, but also in other functions, via the release of SP and CGRP from varicosities in the ventral roots.  相似文献   

13.
Indirect double immunofluorescence labelling for demonstrating nine neuropeptides in the kidney of the bullfrog, Rana catesbeiana, revealed for the first time the occurrence, distribution, and coexistence of certain neuropeptides in the kidney of the submammalian vertebrates. Substance P, neuropeptide Y, and calcitonin generelated peptide were localized in nerve fibers distributed along the afferent arterioles connected with the glomeruli, and along the capillary network between uriniferous tubules. Neuropeptide Y and calcitonin gene-related peptide immunoreactive fibers were more numerous than substance P immunoreactive fibers. In these two regions, about one half of the neuropeptide Y or calcitonin in gene-related peptide fibers contained substance P. No immunoreactivity of vasoactive intestinal polypeptide, somatostatin, FMRFamide, or leucine- and methionine-enkephalins was detected in the bullfrog kidney.  相似文献   

14.
P物质(SP)能神经元及其轴突末和受体广泛分布于很多心血管中枢。外侧下丘脑含SP能神经元,外侧下丘脑投射的升压区内又存在SP能纤维及SP受体;因此本工作检验SP在外侧下丘脑升压反应中的作用。实验显示:(1)L-谷氨酸兴奋外侧下天脑的穹窿周围区(LH/PF)或将SP分别注入各LH投射区,蓝斑(LC)、臂旁核(NPB)或 导不管周围灰质(PAG)均引起升压反应;(2)「D-Pro^2,D-Phe^7,  相似文献   

15.
Neuropeptide and monoamine components of the parabrachial pontine complex   总被引:2,自引:0,他引:2  
C H Block  G E Hoffman 《Peptides》1987,8(2):267-283
The present investigation examined the distributions of immunoreactive neurotensin (NT), cholecystokinin octapeptide (CCK), substance P (SP), methionine enkephalin (ENK), vasoactive intestinal polypeptide (VIP), somatostatin (SS), rat neurophysin II (RNP II), vasopressin (VP), oxytocin (OXY), tyrosine hydroxylase (TH), and serotonin in the parabrachial nuclear complex (PB) of the rat. All of these substances were localized to the PB and they appeared to be chemoarchitecturally organized within the complex. The lateral subdivision (PBL) was organized medial-lateral and ventral-dorsal. Specifically NT, CCK, and SP immunoreactive fibers were found to be the most dense in the ventral aspect of the PBL. The distribution of NT-containing fibers was similar to the pattern of CCK-containing fibers and these were localized primarily to the central zone of the PBL. Immunoreactive SP fibers and cells were found in the external and internal zones ventrally and surrounding the dorsal and dorsolateral nuclei in the PBL. Somatostatin, ENK and VIP were found to be the most dense in the dorsal PBL. Serotonin- and TH-containing cells and fibers were found in both the PBL and PBM. These results, coupled with the observations of neuronal connections of the PB and the known functions of this region, underscore the potential involvement for these neuropeptides and monoamines in limbic-brainstem mechanisms of autonomic control.  相似文献   

16.
The occurrence and distribution of an array of neuropeptides and dopamine-beta-hydroxylase in the fungiform papillae of pigs and rats were studied by immunocytochemistry. Structural differences between the fungiform papillae of the two species were correlated to differences in the occurrence and distribution of neuropeptides. Calcitonin gene-related peptide-, substance P- and neurokinin A-containing fibers were numerous in the fungiform papillae of both species, although their distribution within the papilla differed. In the pig, the majority of these fibers ended within the taste buds, while in the rat numerous fibers also penetrated the adjacent epithelium. Galanin- and bombesin-immunoreactive nerve fibers could not be detected in the rat fungiform papillae, while in the pig many, but not all, of the fungiform papillae contained bombesin- and galanin-positive nerve fibers. Vasoactive intestinal peptide- and peptide histidine isoleucine-immunoreactive fibers occurred in the fungiform papillae of both species. A few neuropeptide Y-containing fibers and dopamine-beta-hydroxylase-positive (presumably adrenergic) fibers could be observed in the porcine papillae only.  相似文献   

17.
Summary The immunocytochemical distribution of substance P (SP), gastrin releasing peptide (GRP), vasoactive intestinal polypeptide (VIP), peptide histidine isoleucine (PHI), and neuropeptide Y (NPY) was studied in the ovary and the Fallopian tube (oviduct) of rats, guinea-pigs, cows, pigs and humans. Generally, the nerve supply was better developed in the oviduct than in the ovary. GRP fibers were most scarce in all tissues. Nerves containing SP were particularly numerous in the oviduct of rat and guinea-pig, supplying the muscular wall and blood vessels. VIP and PHI coexisted in dense plexuses of nerves, not only around blood vessels but also in the follicular wall and the interstitial gland of the ovary, as well as within the smooth muscle layers and subepithelially in the oviduct. The general distribution of NPY was similar, but these immunoreactive nerves were even more numerous. Sequential staining for dopamine--hydroxylase and NPY together with results of chemical sympathectomy with 6-hydroxydopamine suggested that NPY was stored in the noradrenergic sympathetic nerves.  相似文献   

18.
Summary The localization of the vertebrate-like neuropeptides substance P (SP), neuropeptide Y (NPY), calcitonin gene-related peptide (CGRP), and cholecystokinin (CCK8) in the central nervous system of the freshwater snail Planorbarius corneus has been studied using specific antisera and single and double immunohistochemistry. A widespread but precise distribution of immunore-activity (IR) in neurons and fibers of almost all the ganglia is observed for each antiserum. A comparison of the IR with classical neurosecretory staining (AB/AY) shows a partial overlap only for CGRP and CCK8. Whereas CGRP-IR is found in some Yellow Cells in the left parietal ganglion, CCK8-IR is found in Yellow Green, Green and Brown Cells in the viscero-parietal complex. Studies employing double-sequential methods or simultaneous immunofluorescence have shown that, with regard to the tested antisera, CCK8- and NPY-IR are colocalized in a limited number of cells and fibers in the buccal and visceral ganglia, whereas CCK8- and SP-IR are colocalized only rarely in neurons in the left cerebral ganglion. The possible roles in P. corneus of the investigated neuropeptides and the contribution that molluscan models may offer to the knowledge of the basic properties of neuropeptides are discussed.  相似文献   

19.
Using an indirect immunoperoxidase technique, the location of cell bodies and fibers containing substance P, neurokinin A and neurokinin B was studied in the cat spinal cord. The former two neuropeptides showed a widespread distribution throughout the whole spinal cord, whereas the distribution of neurokinin B was more restricted. Neurokinin A-immunoreactive structures showed a more widespread distribution and a higher density than the immunoreactive structures observed to contain substance P. In the cat spinal cord, we observed cell bodies containing neurokinin A, but no cell bodies containing neurokinin B or substance P were found. These cell bodies were located in laminae V (sacral 1 and 2 levels), VI (sacral 1 and 3), VII (lumbar 7, sacral 1 and 3, caudal 1) and X (sacral 1). Laminae I and II showed the highest density of immunoreactive fibers for each of the three tachykinins studied, being in general lamina IV who showed the lowest number of immunoreactive fibers containing substance P, neurokinin A or B. The anatomical distribution of the three tachykinins studied in the cat spinal cord indicates that the neuropeptides could be involved in the neurotransmission and/or in the neuromodulation of nociceptive information, as well as in autonomic and affective responses to pain. Moreover, the involvement of substance P, neurokinin A or B in other functions unrelated to the transmission of pain is also possible (autonomic and motor functions). The distribution of the neuropeptides studied in the cat is compared with the location of the same neuropeptides in the spinal cord of other species. The possible origin of the tachykinergic fibers in the cat spinal cord is also discussed.  相似文献   

20.
Immunohistochemical phenotypic characterization of skeletal nerve fibers has demonstrated the expression of a restricted number of neuropeptides, including calcitonin gene-related peptide (CGRP), substance P (SP) and vasoactive intestinal peptide (VIP). According to the neuro-osteological hypothesis, such neuropeptides can be released and exert paracrine biological effects on bone cells present close to the nerve endings expressing these signaling molecules. The existence of such interplay is most convincingly shown by the hypothalamic control of bone formation, in the case of leptin stimulation of hypothalamic nuclei mediated by the sympathetic nervous system and inhibitory beta-adrenergic receptors on osteoblasts. In addition to these receptors, osteoblasts and osteoclasts express functional receptors for CGRP, SP and VIP, which can regulate both bone formation and bone resorption. The evidence for these observations is summarized in the present paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号