首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparison of HP1c1 and S2 phages of Haemophilus influenzae   总被引:1,自引:0,他引:1  
Physical maps constructed by localization of the cleavage sites of several restriction endonucleases have shown that the chromosome of Haemophilus influenzae bacteriophage S2 and HP1c1 can possess different types of molecular organization (Piekarowicz, Brzezinski, Smorawinska, Kauc, Skowronek, Lenarczyk & Go?embiewska, 1986). We have compared the physical maps of the HP1c1 and S2 phage DNAs of type B and the results led us to conclude that there are no differences between these two phages of the same type of molecular organization of the genomes, i.e. S2 and HP1c1 is the same phage. We also suggest that some of the fine differences between these two phages noted in some laboratories were induced only by different type of genome of the same phage.  相似文献   

2.
3.
Physical maps constructed by the localization of the cleavage site of several restriction endonucleases have shown that the genomes of the Haemophilus bacteriophages S2 and HP1c1 exist in variant forms which differ in the molecular organization of the genomes. At least three regions of different organization of the bacteriophage chromosomes have been identified. The different types of molecular organization can be detected both in the DNA isolated from the mature phage particles and after integration of the phage DNA into the bacterial chromosome.  相似文献   

4.
Restriction fragments hybridizing to phage HP1c1 DNA were identified in digests of DNA from lysogenic strains of Haemophilus influenzae. The results showed that the cohesive ends of the mature phage DNA were joined in lysogens and that the phage genome was covalently linked to the host DNA, indicating that lysogeny involves recombination between specific sites on the phage and host chromosomes. The site on the phage chromosome at which this recombination occurred was between 110 and 750 base pairs of the left end on the mature phage genome.  相似文献   

5.
DNA synthesis during transition from the lysogenic state to the lytic cycle and throughout the latter has been studied in Haemophilus influenzae BC200 (HP1c1). Following exposure to ultraviolet light, there is a 30-min delay in DNA synthesis after which there is a rapidly increasing rate of phage DNA synthesis. The phage genome is replicated without extensive utilization of segments or of breakdown products of the bacterial chromosome. The mode of phage DNA replication was investigated by zonal sedimentation of labeled DNA in 5 to 20% neutral and alkaline sucrose gradients. Tritiated thymidine, incorporated during a 2-min pulse given at 38 min, chases rapidly into DNA, sedimenting like linear DNA of approximately 2 x 10(8) daltons, and then, at the expense of label in this peak, chases into slower-sedimenting phage DNA (2 x 10(7) daltons). The fast-sedimenting, rapidly labeled DNA satisfies certain criteria for being a concatenated replicative intermediate. Observations in the electron microscope revealed linear concatemers in the faster-sedimenting material and circular phage-sized DNA in the slower-sedimenting DNA. When induced cells are gently lysed with lysozyme and Brij 58 to maintain DNA-membrane associations and sedimented in neutral sucrose over a cesium chloride shelf, the concatemer is found with the cell-membrane-wall complex. Membrane-associated label chases to membrane-free material sedimenting like deproteinized HP1c1 DNA. When membrane-associated DNA from the cesium chloride shelf is deproteinized and resedimented in neutral sucrose, the sedimentation profile reveals that sedimentation rates of labeled DNA from this complex are indicative of sizes ranging from 2 x 10(8) daltons down to phage-sized pieces of 2 to 3 x 10(7) daltons. A model is presented which places HP1c1-DNA replication on the cell membrane where a concatemer of phage DNA is synthesized and subsequently degraded to phage-equivalent DNA. Phage-equivalent DNA is then either released from the membrane for packaging or is packaged while still membrane associated. Thus, the cell membrane is not only the site of DNA replication during which phage DNA is synthesized in multiple phage-equivalent concatemers but it is also the site at which these concatemers are selectively reduced to phage-sized pieces.  相似文献   

6.
The integrase encoded by the temperate phage HP1 promotes the site-specific recombination between DNA sites on its genome (the attP site) and on the genome of the host Haemophilus influenzae (the attB site). The protein has been overproduced in Escherichia coli , and purified to apparent homogeneity. HP1 integrase promotes recombination of supercoiled attP -containing molecules with linear segments with attB sites. Reaction was enhanced by spermidine and by the bacterial DNA-bending protein integration host factor. The rate of recombination showed complex and related dependence upon the integrase concentration and the concentration of the supercoiled attP substrate. These relationships probably originate from the need to assemble a multi-protein complex on the attP DNA. The reaction promoted by HP1 integrase produced a four-stranded initial reaction product in which one pair of DNA strands had undergone transfer while the other pair remained intact. This four-stranded component was produced more rapidly than any product, and its steady-state level was proportional to the overall rate of reaction. This component had the kinetic and structural properties of an intermediate in the recombination reaction. The existence of this intermediate was used to determine that the two strand exchanges required for recombination of the duplex substrates proceed in a defined order.  相似文献   

7.
Within this study, the recently identified ovine CSN1S2 variants C and D were characterized at the molecular genetic level. Sequencing of the cDNA and of parts of the DNA identified several sequence differences within CSN1S2*C and D in comparison to CSN1S2*A and B. CSN1S2*C is characterized by two non-synonymous single nucleotide polymorphisms (SNPs) within exon 7 (c.178A>G, c.187G>T) leading to the amino acid substitutions p.Val45Ile and p.Ala48Ser. CSN1S2*D is caused by the SNP c.183G>C, leading to an amino acid replacement at position 46 (p.Arg46Ser). A very common c.527G>A-SNP within exon 15, resulting in the amino acid substitution p.Arg161His and producing the new variant CSN1S2*G, not detectable by isoelectric focusing and previously misidentified as CSN1S2*A, was also identified. On the basis of the identified sequence differences, a new nomenclature is proposed and a possible phylogenetic pathway shown for ovine CSN1S2 variants.  相似文献   

8.
The restriction endonucleases of type I and II from Haemophilus influenzae were studied for their activity on transforming and transfecting DNA. Type I restriction enzyme from Haemophilus influenzae Rf, which requires adenosine 5'-triphosphate, reduced the size of unmodified bacterial DNA from 66x106 daltons to approximately 18x106 daltons and did not attack modified DNA. The action of this enzyme gives only a low level of inactivation of single and linked markers in the transforming DNA. In contrast the HP1c1 phage DNA was drastically inactivated by this enzyme. The endoR.Hind III degrades the ummodified bacterial DNA but the segments generated by this enzyme are still capable of being integrated in transformation. The enzyme has no activity on HP1c1 phage DNA.  相似文献   

9.
Whole phages HP1 and HP3, vegetative-phage deoxyribonucleic acid (DNA), and single and tandem double prophage DNA were exposed to ultraviolet radiation and then assayed on a wild-type (DNA repair-proficient) Haemophilus influenzae Rd strain and on a repair-deficient uvr-1 strain. Host cell reactivation (DNA repair) was observed for whole-phage and vegetative-phage DNA but not for single and double prophage DNA. Competent (phage-resistant) Haemophilus parainfluenzae cells were normally transfected with H. influenzae-grown phage DNA and with tandem double prophage DNA but not at all with single prophage DNA. CaCl2-treated H. influenzae suspensions could be transfected with vegetative phage DNA and with double prophage DNA but not with single prophage DNA. These observations support the hypothesis that transfection with single prophage DNA occurs through prophage DNA single-strand insertion into the recipient chromosome (at the bacterial att site) followed by DNA replication and then prophage induction.  相似文献   

10.
Lysogenic conversion has been suggested as a mechanism of control of group A streptococcal pyrogenic exotoxin type A production. Digestion of DNA from two converting bacteriophages, 3GL16 and T12, with a variety of restriction endonucleases yielded identical DNA fragments upon electrophoresis in agarose gels. Several known A toxin-positive strains that did not appear to produce converting phage upon induction were analyzed for toxin and phage DNA. Strains, including NY5, 594, and C203S, were shown by hybridization studies to carry the A toxin gene (speA) adjacent to chromosomally inserted phage fragments, homologous to phage T12 DNA, which may represent defective converting phages. The phage T12 att site mapped adjacent to speA. These data suggest that phage T12 acquired the A toxin gene from the bacterial genome. All streptococcal strains tested that were A toxin negative by Ouchterlony immunodiffusion failed to show any hybridization to speA-specific probes.  相似文献   

11.
The phages HP1c1 and S2 and a defective phage of Haemophilus influenzae have been compared. The morphology of the phages and the mol wt of their DNAs are similar, although the defective phage appears to have a different tail plate region. Electron microscope observation indicates that the defective phage does not attach to the cell surface, and its DNA appears to lack cohesive ends. The homology of the DNAs of the phages has been measured by hydridization. DNA from the defective phage shows little or no homology with the other phage DNAs. HP1c1 and S2 DNAs show a high level of homology. Each of these phages can form plaques on lawns of the lysogen of the other phage but at reduced plating efficiencies, suggesting that the two phages have related but not identical immunity systems.  相似文献   

12.
Aminopterin- or trimethoprin-resistant thymidine-requiring strains of Haemophilus influenzae produce minicells, and the ratio of minicells to cells increases during the stationary phase of growth. Strain LB11, isolated after mutagenesis of a thymidine-requiring strain (Rd thd), produces more minicells than the parent strain. The mutations involved in high frequency minicell production have been transferred into the wild type (strain Rd) by transformation. The thymidine requirement in the resulting strain, MCl, is essential for minicell production, since spontaneous revertants of MCl to prototrophy do not produce minicells. The ratio of minicells to cells was increased more than 10(3)-fold by differential centrifugation. The minicells contain little or no deoxyribonucleic acid (DNA). Phage HPlcl apparently cannot attach to minicells. Competent cells of LB11 and its thymidine-requiring parent strain produce defective phage as a result of exposure to transforming DNA, whereas only LB11 produces many defective phage in response to the competence regime alone. Competent HP1c1 and S2 lysogens of MC1 and Rd thd are also superinducible by transforming DNA, but competent LB11 lysogens produced about the same amount of HP1c1 or S2 phage with or without exposure to transforming DNA possibly because of competition between the induced defective phage and Hp1c1 or S2 phage.  相似文献   

13.
A temperate actinophage, TG1, was isolated from soil by growth on Streptomyces cattleya and has been shown to be potentially useful for the cloning of DNA in this organism and other streptomycetes. It forms stable lysogens by integration at a unique site on the chromosome. The phage genome consists of 41 kb of double-stranded DNA with cohesive ends. It has unique sites for ClaI, NdeI, PstI, SmaI, and XbaI. The PstI site has been shown to be in a dispensable region of the phage genome. Deletions (2 kb in length) were obtained which retain this site and should be useful for the cloning of DNA.  相似文献   

14.
We have characterized a temperate phage (MM1) from a clinical isolate of the multiply antibiotic-resistant Spanish/American 23F Streptococcus pneumoniae clone (Spain(23F)-1 strain). The 40-kb double-stranded genome of MM1 has been isolated as a DNA-protein complex. The use of MM1 DNA as a probe revealed that the phage genome is integrated in the host chromosome. The host and phage attachment sites, attB and attP, respectively, have been determined. Nucleotide sequencing of the attachment sites identified a 15-bp core site (5'-TTATAATTCATCCGC-3') that has not been found in any bacterial genome described so far. Sequence information revealed the presence of an integrase gene (int), which represents the first identification of an integrase in the pneumococcal system. A 1.5-kb DNA fragment embracing attP and the int gene contained all of the genetic information needed for stable integration of a nonreplicative plasmid into the attB site of a pneumococcal strain. This vector will facilitate the introduction of foreign genes into the pneumococcal chromosome. Interestingly, DNAs highly similar to that of MM1 have been detected in several clinical pneumococcal isolates of different capsular types, suggesting a widespread distribution of these phages in relevant pathogenic strains.  相似文献   

15.
Bacteriophage HP1c1 lysogenizes its host Haemophilus influenzae Rd by inserting its genome into the bacterial chromosome. The DNA segments corresponding to the integration regions on the phage and host chromosomes and the two junctions formed between phage and host sequences on lysogenic insertion were isolated and propagated in Escherichia coli HB101 as hybrid plasmids by using pBR322 as the vector. The nucleotide sequences in the vicinity of the point of recombinational insertion were determined. Phage and host DNA shared an extensive, nearly identical, segment that was 183 base pairs long. This segment consisted of 93 identical residues and a 27-residue portion containing 6 mismatches, followed by 63 identical residues. Recombinational insertion occurred within the 63-residue identical segment and involved neither duplication nor deletion of any residues. Short inverted repeats consisting of clustered A-T base pairs were present within the two 27-residue segments. Two additional sites on the host chromosome showed significant hybridization to the phage-host homology region.  相似文献   

16.
The interaction between transformation and prophages of HP1c1, S2, and a defective phage of Haemophilus influenzae has been investigated by measurement of (i) the effect of prophage on transformation frequency and (ii) the effect of transformation on phage induction. The presence of any of the prophages does not appreciably alter transformation frequencies in various Rec(+) and Rec(-) strains. However, exposure of competent lysogens to transforming deoxyribonucleic acid (DNA) may induce phage but only in Rec(+) strains, which are able to integrate transforming DNA into their genome. Transformation of Rec(+) lysogens with DNA irradiated with ultraviolet (UV) light causes the production of even more phage than results from unirradiated DNA, but this indirect UV induction is not as effective as direct induction by UV irradiation of lysogens. Both types of UV induction are influenced by the repair capacity of the host. Wild-type cells contain a prophage and can be induced by transformation to produce a defective phage, which kills a small fraction of the cells. Defective phage in wild-type cells are also induced by H. parainfluenzae DNA, and a much larger fraction of the cells is killed. Strain BC200, which is highly transformable but is not inducible for defective phage, is not killed by H. parainfluenzae DNA, suggesting that wild-type cells are killed by killed by this DNA because of phage induction. A minicell-producing mutant, LB11, has been isolated. Some phage induction occurs in this strain when the cells are made competent, unlike the wild type. A large majority of LB11 cells surviving the competence regime are killed by exposure to transforming DNA.  相似文献   

17.
18.
Two inducible bacteriophages, alpha 1 and alpha 2, isolated from Clostridium botulinum type A strain 190L and their deoxyribonucleic acids (DNAs) were purified and characterized. Phage alpha 1, which is unable to form plaques on any strain of C. botulinum, was produced in large quantities after treatment with mitomycin C (MC), whereas phage alpha 2, which was induced in much lower quantities than phage alpha 1, propagated in cultures of type A strain Hall. The phage DNAs were exclusively synthesized after induction with MC. Alpha 1 and alpha 2 DNAs had sedimentation coefficients of 34.0 and 30.6 S, corresponding to molecular weights of 31.9 x 10(6) and 23.5 x 10(6), respectively. The buoyant density in CsC1 was 1.682 g/cm3 for alpha 1 DNA and 1.680 g/cm3 for alpha 2 DNA. Based on thermal denaturation characteristics, the genomes of both phages were shown to be double-stranded DNAs. Agarose gel electrophoretic profiles of the phage DNAs digested with restriction endonuclease EcoRI revealed nine fragments for alpha 1 DNA and six fragments for alpha 2 DNA. The molecular weights of the phage DNAs as determined by restriction enzyme analysis were 30.55 x 10(6) for alpha 1 DNA and 25.83 x 10(6) for alpha 2 DNA. Nontoxigenic mutants obtained from strain 190L could, like the toxigenic parent strain, produce the two phages after treatment with MC. Lysogenic conversion to toxigenicity by phage alpha 2 was not observed with the nontoxigenic mutants. It seems likely that there is no relationship between either phage genome and the toxigenicity of C. botulinum type A.  相似文献   

19.
The lysogenic bacteriophage MAV1, which is associated with the arthritogenicity of Mycoplasma arthritidis, was characterized. Several strains of M. arthritidis were examined for their ability to support growth of MAV1. A PFU assay was developed, and the sensitivity of phage to various chemical treatments was assayed. The most notable result was the resistance of MAV1 to proteinase K. The MAV1 genome is a double-stranded, linear DNA molecule of about 16 kb. The site of MAV1 DNA integration in the host chromosome was investigated. The ends of MAV1 DNA were cloned from three independent lysogens shown to have MAV1 DNA inserted at different sites in the host. The nucleotide sequences of the ends of the MAV1 genome and of the MAV1 DNA-chromosomal DNA junctions from each of three lysogens were determined. Sequences flanking the integrated prophage and the ends of native MAV1 DNA were determined, allowing the identification of the phage DNA (attP) and bacterial DNA (attB) recombination sites. Analysis of the left MAV1 DNA-chromosomal DNA junction sites showed a single-base heterogeneity located within MAV1 DNA sequences immediately adjacent to the attB sequence. A model for MAV1 integration-excision is proposed.  相似文献   

20.
Salmonella enteritidis is now the most common Salmonella serovar in many countries. We have used cloned DNA probes to analyze genome interrelationships between strains chosen to represent the current S. enteritidis pandemic, and included designated type strains of the seven subspecies of Salmonella in order to compare the levels of discrimination of probes. DNA sequence divergence and rearrangements were analyzed in and around the rfa, fim and umuDC loci, and around insertion sites of the Salmonella-specific DNA insertion element, IS200. The S. enteritidis isolates showed a high degree of genome homogeneity. Chromosomal genetic loci exhibited characteristic DNA sequence divergence between subspecies of Salmonella, but no intraserovar divergence or difference with the subspecies I type strain was observed for S. enteritidis. The locus umuDC was not found in S. enteritidis. S. enteritidis contains a conserved and a variable site of insertion of insertion sequence IS200 and the analysis of DNA rearrangements around the second of these sites showed that three distinct evolutionary lines or races exist within pandemic isolates associated with human gasteroenteritis. IS200 profiles of a range of U.K. isolates of the epidemic phage type PT4 showed that all belonged to a single clonal line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号