首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of temperature sensation is far less understood than the sensory response to other environmental stimuli such as light, odor, and taste. Thermotaxis behavior in C. elegans requires the ability to discriminate temperature differences as small as approximately 0.05 degrees C and to memorize the previously cultivated temperature. The AFD neuron is the only major thermosensory neuron required for the thermotaxis behavior. Genetic analyses have revealed several signal transduction molecules that are required for the sensation and/or memory of temperature information in the AFD neuron, but its physiological properties, such as its ability to sense absolute temperature or temperature change, have been unclear. We show here that the AFD neuron responds to warming. Calcium concentration in the cell body of AFD neuron is increased transiently in response to warming, but not to absolute temperature or to cooling. The transient response requires the activity of the TAX-4 cGMP-gated cation channel, which plays an essential role in the function of the AFD neuron. Interestingly, the AFD neuron further responds to step-like warming above a threshold that is set by temperature memory. We suggest that C. elegans provides an ideal model to genetically and physiologically reveal the molecular mechanism for sensation and memory of temperature information.  相似文献   

2.
3.
Mutations in the highly conserved Aristaless-related homeodomain protein ARX have been shown to underlie multiple forms of X-linked mental retardation. Arx knockout mice exhibit thinner cerebral cortices because of decreased neural precursor proliferation, and also exhibit defects in the differentiation and migration of GABAergic interneurons. However, the role of ARX in the observed behavioral and developmental abnormalities is unclear. The regulatory functions of individual homeodomain proteins and the networks in which they act are frequently highly conserved across species, although these networks may be deployed in different developmental contexts. In Drosophila, aristaless mutants exhibit defects in the development of terminal appendages, and Aristaless has been shown to function with the LIM-homeodomain protein LIM1 to regulate leg development. Here, we describe the role of the Aristaless/Arx homolog alr-1 in C. elegans. We show that alr-1 acts in a pathway with the LIM1 ortholog lin-11 to regulate the development of a subset of chemosensory neurons. Moreover, we demonstrate that the differentiation of a GABAergic motoneuron subtype is affected in alr-1 mutants, suggesting parallels with ARX functions in vertebrates. Investigating ALR-1 functions in C. elegans may yield insights into the role of this important protein in neuronal development and the etiology of mental retardation.  相似文献   

4.
5.
The cultivation temperature (T(c)) modulates the thermosensory responses exhibited by C. elegans on thermal gradients. The AFD sensory neurons are essential for thermosensory behaviors, but the molecular mechanisms by which temperature is sensed and the memory of the T(c) is encoded are unknown. Here, we show that the CMK-1 Ca2+/calmodulin-dependent protein kinase I (CaMKI) and the TAX-4 cyclic nucleotide-gated channel regulate gene expression, morphology, and functions of the AFD thermosensory neurons. Mutations in cmk-1 and tax-4 result in temperature-dependent defects in AFD-specific gene expression, and TAX-4 functions are required during larval stages to maintain gene expression in the adult. CMK-1 and TAX-4 act cell autonomously to regulate AFD-mediated thermosensory behaviors. The molecular requirements for CMK-1 activity in the AFD neurons appear to be distinct from those previously described. We propose that the activation of distinct programs of AFD-specific gene expression at different temperatures by CMK-1 and TAX-4 enables C. elegans to sense and/or encode a memory for the T(c).  相似文献   

6.
7.
8.
9.
The establishment of cell type-specific dendritic arborization patterns is a key phase in the assembly of neuronal circuitry that facilitates the integration and processing of synaptic and sensory input. Although studies in Drosophila and vertebrate systems have identified a variety of factors that regulate dendrite branch formation, the molecular mechanisms that control this process remain poorly defined. Here, we introduce the use of the Caenorhabditis elegans PVD neurons, a pair of putative nociceptors that elaborate complex dendritic arbors, as a tractable model for conducting high-throughput RNAi screens aimed at identifying key regulators of dendritic branch formation. By carrying out two separate RNAi screens, a small-scale candidate-based screen and a large-scale screen of the ~3000 genes on chromosome IV, we retrieved 11 genes that either promote or suppress the formation of PVD-associated dendrites. We present a detailed functional characterization of one of the genes, bicd-1, which encodes a microtubule-associated protein previously shown to modulate the transport of mRNAs and organelles in a variety of organisms. Specifically, we describe a novel role for bicd-1 in regulating dendrite branch formation and show that bicd-1 is likely to be expressed, and primarily required, in PVD neurons to control dendritic branching. We also present evidence that bicd-1 operates in a conserved pathway with dhc-1 and unc-116, components of the dynein minus-end-directed and kinesin-1 plus-end-directed microtubule-based motor complexes, respectively, and interacts genetically with the repulsive guidance receptor unc-5.  相似文献   

10.
We have analyzed the sma-5(n678) mutant in C. elegans to elucidate mechanisms controlling body size. The sma-5 mutant is very small, grows slowly and its intestinal granules look abnormal. We found a 15 kb deletion in the mutant that includes a 226 bp deletion of the 3' end of the W06B3.2-coding sequence. Based on this result, rescue experiments, RNAi experiments and a newly isolated deletion mutant of W06B3.2, we conclude that W06B3.2 is the sma-5 gene. The sma-5 mutant has much smaller intestine, body wall muscles and hypodermis than those of the wild type. However, the number of intestinal cells or body wall muscle cells is not changed, indicating that the sma-5 mutant has much smaller cells. In relation to the smaller cell size, the amount of total protein is drastically decreased; however, the DNA content of the intestinal nuclei is unchanged in the sma-5 mutant. The sma-5 gene is expressed in intestine, excretory cell and hypodermis, and encodes homologs of a mammalian MAP kinase BMK1/ERK5/MAPK7, which was reported to control cell cycle and cell proliferation. Expression of the sma-5 gene in hypodermis is important for body size control, and it can function both organ-autonomously and non-autonomously. We propose that the sma-5 gene functions in a MAP kinase pathway to regulate body size mainly through control of cell growth.  相似文献   

11.
Epithelial tubes are basic building blocks of complex organs, but their architectural requirements are not well understood. Here we show that erm-1 is a unique C. elegans ortholog of the ERM family of cytoskeleton-membrane linkers, with an essential role in lumen morphogenesis. ERM-1 localizes to the luminal membranes of those tubular organ epithelia which lack stabilization by cuticle. RNA interference (RNAi), a germline deletion, and overexpression of erm-1 cause cystic luminal phenotypes in these epithelia. Confocal and ultrastructural analyses indicate that erm-1 functions directly in apical membrane morphogenesis, rather than in epithelial polarity and junction assembly as has been previously proposed for ERMs. We also show that act-5/cytoplasmic actin and sma-1/beta-H-spectrin are required for lumen formation and functionally interact with erm-1. Our findings suggest that there are common structural constraints on the architecture of diverse organ lumina.  相似文献   

12.
In Caenorhabditis elegans, uncoordinated (unc)-55 encodes a nuclear hormone receptor that is necessary for coordinated movement and male mating. An unc-55 reporter gene revealed a sexually dimorphic pattern: early in post-embryonic motor neurons in both sexes; and later in a subset of male-specific cells that included an interneuron and eight muscle cells. A behavioral analysis coupled with RNA interference (RNAi) revealed that males require UNC-55 to execute copulatory motor programs. Two mRNA isoforms (unc-55a and unc-55b) were detected throughout post-embryonic development in males, whereas only one, unc-55a, was detected in hermaphrodites. In unc-55 mutant males isoform a rescued the locomotion and mating defect, whereas isoform b rescued the mating defect only. Isoform b represents the first report of male-specific splicing in C. elegans. In addition, isoform b extended the number of days that transgenic unc-55 mutant males mated when compared to males rescued with isoform a, suggesting an anabolic role for the nuclear hormone receptor. The male-specific expression and splicing is part of a regulatory hierarchy that includes two key genes, male abnormal (mab)-5 and mab-9, required for the generation and differentiation of male-specific cells. We suggest that UNC-55 acts as an interface between genes involved in male tail pattern formation and those responsible for function.  相似文献   

13.
14.
Activation of caspases is an integral part of the apoptotic cell death program. Collectively, these proteases target hundreds of substrates, leading to the hypothesis that apoptosis is “death by a thousand cuts”. Recent work, however, has demonstrated that caspase cleavage of only a subset of these substrates directs apoptosis in the cell. One such example is C. elegans CNT-1, which is cleaved by CED-3 to generate a truncated form, tCNT-1, that acquires a potent phosphoinositide-binding activity and translocates to the plasma membrane where it inactivates AKT survival signaling. We report here that ACAP2, a homolog of C. elegans CNT-1, has a pro-apoptotic function and an identical phosphoinositide-binding pattern to that of tCNT-1, despite not being an apparent target of caspase cleavage. We show that knockdown of ACAP2 blocks apoptosis in cancer cells in response to the chemotherapeutic antimetabolite 5-fluorouracil and that ACAP2 expression is down-regulated in some esophageal cancers, leukemias and lymphomas. These results suggest that ACAP2 is a functional homolog of C. elegans CNT-1 and its inactivation or downregulation in human cells may contribute to cancer development.The caspases (cysteine aspartic acid proteases) are a class of proteases with diverse roles in cellular physiology including differentiation, inflammation and cell death.1–3 Caspases play a critical role in apoptosis, where they collectively target hundreds of proteins. One prevailing view is that caspases drive apoptosis through a mass action effect due to hundreds of proteolytic cleavage events that lead to cellular disassembly and cell death.4 Recent studies, however, suggest that proteolysis of most substrates may simply be a bystander effect and that caspase cleavage of key proteins controlling a few specific cellular processes is what functionally drives apoptosis.5 Although much of the work to date has focused on factors acting upstream of caspase activation, it is becoming increasingly clear that events downstream of this commitment step are also tightly regulated and critically important for apoptosis. Presently, there is evidence of requirements for caspase-mediated control of the BCL2 family of anti-apoptotic proteins, mitochondrial elimination, chromosome fragmentation, phosphatidylserine externalization, and, as we have recently reported, inactivation of the AKT survival signaling pathway in programmed cell death (6-10 Therefore, a more thorough understanding of physiologically relevant caspase targets will increase our understanding of apoptosis in the context of animal development and disease.

Table 1

Human homologues of functional caspase targets in C. elegans. A summary of identified caspase substrates and caspase downstream events important for cell death execution in C. elegans and humans
Functional Caspase Targets
C. elegansHumanDownstream Events
CED-9BCL2Inactivation of apoptosis inhibitors
DRP-1DRP1aMitochondrial elimination
DCR-1DFF40/45#Chromosome fragmentation
CED-8XKR8PS externalization
CNT-1ACAP2Inactivation of AKT signaling
Open in a separate window*Roles of DRP1 and FIS1 in apoptosis related mitochondrial elimination have not been extensively tested.#Proteins have similar functions but are not homologous  相似文献   

15.
hunchback regulates the temporal identity of neuroblasts in Drosophila. Here we show that hbl-1, the C. elegans hunchback ortholog, also controls temporal patterning. Furthermore, hbl-1 is a probable target of microRNA regulation through its 3'UTR. hbl-1 loss-of-function causes the precocious expression of adult seam cell fates. This phenotype is similar to loss-of-function of lin-41, a known target of the let-7 microRNA. Like lin-41 mutations, hbl-1 loss-of-function partially suppresses a let-7 mutation. The hbl-1 3'UTR is both necessary and sufficient to downregulate a reporter gene during development, and the let-7 and lin-4 microRNAs are both required for HBL-1/GFP downregulation. Multiple elements in the hbl-1 3'UTR show complementarity to regulatory microRNAs, suggesting that microRNAs directly control hbl-1. MicroRNAs may likewise function to regulate Drosophila hunchback during temporal patterning of the nervous system.  相似文献   

16.
17.
18.
The regional specialization of brain function has been well documented in the mouse and fruitfly. The expression of regulatory factors in specific regions of the brain during development suggests that they function to establish or maintain this specialization. Here, we focus on two such factors—the Drosophila cephalic gap genes empty spiracles (ems) and orthodenticle (otd), and their vertebrate homologues Emx1/2 and Otx1/2—and review novel insight into their multiple crucial roles in the formation of complex sensory systems. While the early requirement of these genes in specification of the neuroectoderm has been discussed previously, here we consider more recent studies that elucidate the later functions of these genes in sensory system formation in vertebrates and invertebrates. These new studies show that the ems and Emx genes in both flies and mice are essential for the development of the peripheral and central neurons of their respective olfactory systems. Moreover, they demonstrate that the otd and Otx genes in both flies and mice are essential for the development of the peripheral and central neurons of their respective visual systems. Based on these recent experimental findings, we discuss the possibility that the olfactory and visual systems of flies and mice share a common evolutionary origin, in that the conserved visual and olfactory circuit elements derive from conserved domains of otd/Otx and ems/Emx action in the urbilaterian ancestor.  相似文献   

19.
《Autophagy》2013,9(5):608-615
Autophagy is an evolutionarily conserved intracellular catabolic system for degradation of long-lived proteins or damaged organelles. In this study, we have identified and characterized a new gene, epg-1, that plays a role in the autophagy pathway in C. elegans. Loss of function of epg-1 causes defects in various autophagy-regulated processes, including degradation of aggregate-prone proteins and optimal survival of animals during starvation. epg-1 encodes a novel protein that shows limited sequence similarity to the yeast autophagy protein Atg13. epg-1 displays a similar expression pattern to, and directly interacts with, the C. elegans Atg1 homolog UNC-51, suggesting that epg-1 encodes a divergent functional homolog of Atg13 in C. elegans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号